Översikt av kursen FMSF70. Statistikämnet
|
|
- Ulf Jakobsson
- för 6 år sedan
- Visningar:
Transkript
1 Översikt av kursen FMSF70 Statistikämnet
2 Praktiska ting
3 Kurshemsida Kommer att uppdateras
4 12 föreläsningar+1 repetition Alla föreläsningar äger rum i Rieszsalen på bottenplanet i Matematikhuset Måndagar , läsvecka 1-7 (3/9,10/9,...,15/10) Onsdagar , läsvecka 1-5 (5/9,12/9,...,3/10) En repetionsföreläsning onsdag den läsvecka 8 (24/10) även den i Rieszsalen. Ett tips (som nästan ingen kommer att följa) är att läsa igenom det aktuella stycket före föreläsningen.
5 Skaffa kursboken! Lennart Olbjers kompendium Experimentell och industriell statistik
6 Skaffa övningsboken! /R%C3%A4kna+med+variati on
7
8 1.10 och kan möjligen vänta till laborationen.
9 Datoruppgifter
10 Laborationer Läsvecka 2 (11/9 och 12/9)/läsvecka 4 (25/9 och 26/9) Tis Stibium och Tellurium /Cadmium(KC) Saturnus och Uranus /Uranus(E) Ons Saturnus och Uranus/Uranus (E) Matlab eller R. Den första laborationen blir
11 Laboration 1 Första laborationen är handledning för att lösa två datorbaserade uppgifter i boken. Skaffa Matlab. (Ska gå för alla studenter) eller R (open source). Andra laborationen är hjälp med projektuppgiften.
12
13 Mozquiztosystemet Jag får be att återkomma om detta på onsdag.
14
15 Statistik
16 Verkligheten är oändligt komplicerad. Människan tänker i myter: betydelseskapande berättelser
17 Vår tids myter är ofta formulerade som statistik. Här: BNP/capita ( Myt betyder här inte osann.)
18 Hans Roslings Gapminder
19 Vad Rosling ville nyansera
20 Myter för en avförtrollad tid
21 Statistik är Beskrivning av världen med siffror och figurer. Exempel: arbetslöshet, sysselsättning, löner, BNP, CO2-halt, barnadödlighet, PH-värdet i en sjö, antal isbjörnar på Grönland... Test av hypoteser: Exempel: En medicin fungerar (inte), en kemikalie är farlig, en pedagogisk metod fungerar bättre än en annan... Användning av sannolikhetsteori för att göra detta. I några få fall, i stil med antalet kvinnor över 65 i Kalmar län 2016 behövs ingen sannolikhetsteori, men oftast behöver man göra slumpmässiga stickprov, och då behövs sannolikhetsteori för att veta hur nära sanningen man kan vara.
22 Stickprov
23 Dagens innehåll - Stickprov Beskrivande statistik Sannolikhet
24 Slumpmässigt urval - - I exakt mening nästan bara tänkbart i konstruerade situationer som att dra kort eller bollar ur en urna. Statistikteorin brukar dock förutsätta att det går att ur en population ta ut ett stickprov. Det är ofta tillräckligt sant för att vara ett användbart antagande.
25 Slumpmässigt stickprov
26 Alla ska ha samma sannolikhet - - I telefonundersökningarnas barndom var det vanligt att rika blev mer tillfrågade. Trump och Sverigedemokraterna underskattades i undersökningarna för att deras väljare av olika skäl inte ville säga vad de röstade på. Brexitanhängarnas tunghäfta bäddade för en kalldusch för de EU-vänliga. Medicinska undersökningar kan vara lättare att bara utföra på några sjukhus. Man får då inte ett slumpmässigt urval av alla med sjukdomen. (Det finns tekniker för att hantera detta, men det för bortom denna kurs omfång)
27 Oberoende observationer - - De numer vanliga webundersökningarna kan ge beroende: Om djurrättsaktivisten Stina går med, så tipsar hon sin ALF-kompis Johnny, som tipsar medlemmen i djurens parti Moa-Ylva I opinionsundersökningen ser det ut som som intresset för djurrättsfrågor exploderat när egentligen Stina är hela orsaken. Beroendet mellan svarspersonerna innebär att det som var en slumpvariation (Stina fick nys om undersökningen) ser ut som en systematisk förändring i en stor grupp (Stina, Johnny, Moa-Ylva osv intresserar sig för djurrättsfrågor.)
28 Exempel
29 Hur många gånger förekommer de olika orden? - Vilken är egentligen populationen? Ändå kan vi ge mening på påståendet att språket innehåller ett litet antal jättevanliga ord, medan de flesta ord används sällan. Alla element i populationen ska ha samma sannolikhet att väljas, oberoende av varandra. Populationen kan också vara oändlig: Alla gånger du kan kasta en tärning. Då blir ett antal tärningskast ett slumpmässigt urval ur denna population.
30 Beskrivande statistik
31 Beskrivning av data Vilka som dog och vilka som överlevde Titanickatastrofen1912. Grafik kan vara ett mycket kraftfullt sätt att få överblick över data. Notera: Beroende på vad man vill visa är den övre eller den undre bilden bäst.
32 Vänsterns senaste världsstjärna byggde sin karriär på grafer.
33 Tino Sanandajis kritik av invandringspolitiken kan heller inte tänkas utan grafer.
34 Diskreta data Pajdiagram är utmärkta för väldigt enkel information.
35 Stapeldiagram Pajdiagram för andelar, stapeldiagram för antal. Om värdena är tal istället för kategorier, brukar man göra staplarna smalare och talar om stolpdiagram. På y-axeln kan antingen stå antal eller procent, beroende på vad det är man vill lyfta fram. Titanicexemplet är egentligen bara en utveckling av stapeldiagrammet.
36 Stolpdiagram Under blitzen i London misstänkte man att tyskarna undvek att bomba vissa stadsdelar för att där kankse fanns tyska spioner. För att undersöka saken studerade man hur många träffar olika lika stora områden drabbats av.
37 Kontinuerliga data Ett histogram är oftast ett stapeldiagram där klasserna består av kategoriserade kontinuerliga variabler. Kategorierna här är: 20-30, 30-40,... Klassbredden är tio här. Histogram har inte luft mellan staplarna.
38 Histogrammets hemliga mening
39 Ett annat sätt att jämföra Histogram är bra för någon eller några populationer. För många blir det bökigt.
40 Boxplot En boxplot låter boxen begränsas av första och tredje kvartilen.
41 Box- and whiskers plot Gör lådan enligt tidigare som Q1-Q3 med en markering av medianen. Drag whiskers till minsta och största värdet, men useslut dem som är längre än 1,5 * (Q3-Q1). (1,5*IQR) från medianen. De värden som är längre bort plottas separat och kallas ibland för utliggare (outliers). Enligt normalförelningsteorin är det bör kring 5 % vara utliggare. Om det är betydligt fler får man fundera över normaliteten.
42 Deskriptiv statistisk Kategoriska variabler visas med antal och procent. Kontinuerliga visas med medelvärde, standardavvikelse (SD), min, max, median, Q1, Q3. Glöm inte antal saknade värden om det är relevant! Under mitt yrkesmässiga liv har jag aldrig sett någon använda variationsbredden = Max-min.
43 Rökning och lungcancer Smoking and Carcinoma of the Lung Richard Doll and A. Bradford Hill Br Med J Sep 30; 2(4682): En av mina lärdomar som statistiker: Figurer är inte alltid bättre än siffror. (Det är lätt att tro det när man förälskat sig i något statistikprogram)
44 Väntevärde och varians Väntevärdet är den teoretiska motsvarigheten till medelvärde μ. Standardavvikelsen σ är typisk avvikelse från medelvärdet. För en teoretisk fördelning är
45 Beräkningar
46 Sannolikhet
47 Sannolikhet Efter denna sommar kan vi väl mer än någonsin känna med bonden som ser upp i himlen och undrar om det kommer regn. Är jag gravid? Har jag cancer? Får jag jobbet efter den sopiga intervjun? Kan jag lita på att den murkna bron håller?
48 Venndiagram P(A) är den area A upptar. Klart att P(B)<P(A). Den ljusrosa arean är A B. A och B tillsammans är A B. A* är komplementet till A.
49 (Ur minnet från Daniel Kahnemans bok Tänka, snabbt och långsamt) Folk är beredda att betala mer för en försäkring mot en terroristattack mot flyget än för en som täcker alla slags flygolyckor. Vi har ofta dålig intuition för sannolikheter.
50 Venn-diagram Antag att P(A) = 0.5, P(B) = 0.2 och P(A B)=0.6 Vad är P(A B)?
51 P(AC) = 1-P(A) - Sannolikheten att få 1-5 på tärning: ⅙=⅚ 1-
52 Kolmogorovs axiomsystem - 0 P(A) 1 P( )=1. är hela utfallsrummet. - P(A1 A2 )= P(A1)+P(A2)+,om A1,A2,... är disjunkta, dvs. inte innehåller gemensamma element.
53 P(A1 A2 )= P(A1)+P(A2)+,om A1,A2,... är disjunkta
54 Betingad sannolikhet P(A) är den area A upptar. Klart att P(B)<P(A). P(B A) är den betingade sannolikheten för B givet A. P(B A) = P(A B)/P(A)
55 Exempel - B: En kvinna har mutationen zz A: Hon har bröstcancer P(A B) = 0.4 Ska läsas som att mutationen zz ger 40 % risk för bröstcancer. Denna siffra kan man komma fram till genom att vid allmän mammografi kontrollera mutationen på ett ganska stort antal kvinnor. Om 5 % har mutationen och 2 % har både mutationen och bröstcancer, gäller: P(B A) = P(A B)/P(A)=0.02/0.05=0.4.
56 Lagen om total sannolikhet
57 Multiplikationssatsen P(B A) = P(A B)/P(A) ger P(A B)=P(B A)*P(A) A: Du drar ett ess B: Du drar ett ess när du redan har dragit ett. A B är händelsen att dra två ess vid dragning av två kort P(A B)=P(A)*P(B A)= 1/13*3/51=0.452
58 Överlevnadsberäkningar P(A2)=P(A2 A1)=P(A2 A1)P(A1) Om man känner sannolikheten att överleva tills man och sannolikheten att leva tills man är två givet att man levt tills man är ett, P(A2 A1), så får man sannolikheten att leva tills man är två. Sannolikheten att dö ett år givet att man levde i dess början kallas dödsrat. Man kan få dödsrater ur mortality.org.
59
60 Sannolikheten att en nyfödd flicka dör före två års ålder
61 Bayes sats P(A B)=P(A B)*P(B) P(B A) = P(A B)/P(A)=P(A B)*P(B)/P(A)
62 Oberoende händelser Om händelserna A och B är oberoende, så gäller. P(A B) = P(A)*P(B) Exempel: A: Det blir en varm vår. P(A) = 0.5 B: Det blir en regnig sommar. P(B) = 0.7 P(A B) = 0.5*0.7 = 0.35.
63 Tre maskiner fungerar med slh ⅓, ¼ och ½ (ober.) Vad är sannolikheten att minst två fungerar? P(A) = ⅓; A: Första maskinen fungerar P(B) = ¼ ; A: Första maskinen fungerar P(C) =1/2; A: Första maskinen fungerar Den sökta sannolikheten är P(A* B C)+P(A B* C)+ P(A B C*)+P(A B C)= ⅔ * ¼ * ½ +⅓*¾ *½ +⅓*¼ *½ +⅓*¼ *½=( )/24=7/24 = 0,292
64 P(A1 A2 )= P(A1)+P(A2)+,om A1,A2,... är disjunkta
65 Sammanfattning Ett stickprov ur en population är element ur populationen utvalda oberoende av varandra. Man kan beskriva data både med grafik och tal. Ingetdera sättet är att förakta. Pajdiagram, stolp- och stapeldiagram är alla sätt att beskriva kategoriska (diskreta) data. Histogram och box- and whiskersplots är framställningar av kontinuerliga data. Sannolikheter kan vara betingade. Med betingade sannolikheter kan man dela in sannolikhetsproblem i mindre delar.
Fördelningar. Föreläsning 2, FMS070
Fördelningar Föreläsning 2, FMS070 Repetition och sådant som inte kom med. Mål med delavsnittet - Satsen om total sannolikhet är ett viktat medelvärde. Bayes sats är ett sätt att uppdatera sannolikheter
Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 1 Statistik; teori och tillämpning i biologi 1 Kursens uppbyggnad 9 föreläsningar Föreläsningsunderlag läggs ut på kurshemsidan 5 lektioner Uppgifter från kursboken enligt planering 5 laborationer
Utfall, Utfallsrummet, Händelse. Sannolikhet och statistik. Utfall, Utfallsrummet, Händelse. Utfall, Utfallsrummet, Händelse
Utfall, Utfallsrummet, Händelse Sannolikhet och statistik Sannolikhetsteorins grunder HT 2008 Uwe.Menzel@math.uu.se http://www.math.uu.se/ uwe/ Denition 2.1 Resultatet av ett slumpmässigt försök kallas
Grundläggande matematisk statistik
Grundläggande matematisk statistik Grundbegrepp, axiomsystem, betingad sannolikhet, oberoende händelser, total sannolikhet, Bayes sats Uwe Menzel uwe.menzel@slu.se 23 augusti 2017 Slumpförsök Ett försök
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data
Statistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik
Statistik Statistik betyder ungefär sifferkunskap om staten Statistik är en gren inom tillämpad matematik som sysslar med insamling, utvärdering, analys och presentation av data eller information. Verkligheten
Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,
Kolmogorovs Axiomsystem Kolmogorovs Axiomsystem Varje händelse A tilldelas ett tal : slh att A inträar Sannolikheten måste uppfylla vissa krav: Kolmog
Slumpvariabel (Stokastisk variabel) Resultat av ett slumpförsök - utgången kann inte kontrolleras Sannolikhet och statistik Sannolikhetsteorins grunder VT 2009 Resultatet kan inte förutspås, men vi vet
Föreläsning 1, Matematisk statistik Π + E
Introduktion Sannolikhetsteori Beroende Föreläsning 1, Matematisk statistik Π + E Sören Vang Andersen 4 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F1 1/26 Introduktion Sannolikhetsteori
Föreläsning 1. 732G60 Statistiska metoder
Föreläsning 1 Statistiska metoder 1 Kursens uppbyggnad o 10 föreläsningar Teori blandas med exempel Läggs ut några dagar innan på kurshemsidan o 5 räknestugor Tillfälle för individuella frågor Viktigt
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.
732G01/732G40 Grundläggande statistik (7.5hp)
732G01/732G40 Grundläggande statistik (7.5hp) 2 Grundläggande statistik, 7.5 hp Mål: Kursens mål är att den studerande ska tillägna sig en översikt över centrala begrepp och betraktelsesätt inom statistik.
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Beskrivande statistik
Beskrivande statistik Tabellen ovan visar antalet allvarliga olyckor på en vägsträcka under 15 år. år Antal olyckor 1995 36 1996 20 1997 18 1998 26 1999 30 2000 20 2001 30 2002 27 2003 19 2004 24 2005
Föreläsning 1, Matematisk statistik för M
Föreläsning 1, Matematisk statistik för M Erik Lindström 23 mars 2015 Erik Lindström - erikl@maths.lth.se FMS035 F1 1/30 Tillämpningar Praktiska detaljer Matematisk statistik slumpens matematik Sannolikhetsteori:
Matematisk statistik 9hp för: C,D,I, Pi
Matematisk statistik 9hp för: C,D,I, Pi Föreläsning 1, Sannolikhet Stas Volkov September 12, 2017 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F1: Sannolikhet 1/27 Tillämpningar Praktiska detaljer Matematisk
Matematisk statistik - Slumpens matematik
Matematisk Statistik Matematisk statistik är slumpens matematik. Började som en beskrivning av spel, chansen att få olika utfall. Brevväxling mellan Fermat och Pascal 1654. Modern matematisk statistik
MVE051/MSG Föreläsning 7
MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel
Matematisk statistik fo r B, K, N, BME och Kemister. Matematisk statistik slumpens matematik. Beskriva Data Florence Nightingale.
Matematisk statistik fo r B, K, N, BME och Kemister Fo rela sning 1 Johan Lindstro m 28 augusti 2017 Johan Lindstro m - johanl@maths.lth.se FMSF70/MASB02 F1 2/18 Tilla mpningar Matematisk statistik slumpens
Typvärde. Mest frekventa värdet Används framförallt vid nominalskala Ex: typvärdet. Kemi 250. Ekon 570. Psyk 120. Mate 195.
Lägesmått Det kan ibland räcka med ett lägesmått för att beskriva datamaterial Lägesmåttet kan vara bra att använda då olika datamaterial skall jämföras Vilket lägesmått som skall användas: Typvärde Median
Föreläsning G70 Statistik A
Föreläsning 2 732G70 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde (mellan
Föreläsning 1: Introduktion
Föreläsning 1: Introduktion Matematisk statistik David Bolin Chalmers University of Technology March 22, 2014 Lärare och kurslitteratur David Bolin: Rum: E-mail: Fredrik Boulund: Rum: E-mail: Kursansvarig,
KURSPROGRAM HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER, FMSF70 & MASB02
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK KURSPROGRAM HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER, FMSF70 & MASB02 Allmänt Kursen ger 7.5hp och omfattar 26 timmar föreläsning,
TMS136. Föreläsning 2
TMS136 Föreläsning 2 Slumpförsök Med slumpförsök (random experiment) menar vi försök som upprepade gånger utförs på samma sätt men som kan få olika utfall Enkla exempel är slantsingling och tärningskast
bli bekant med summor av stokastiska variabler.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för diskreta, bivariate
Föreläsning G70 Statistik A
Föreläsning 1 732G70 Statistik A 1 Population och stickprov Population = den samling enheter (exempelvis individer) som vi vill dra slutsatser om. Populationen definieras på logisk väg med utgångspunkt
Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska
Introduktion till statistik för statsvetare
"Det finns inget så praktiskt som en bra teori" November 2011 Repetition Vad vi gjort hitills Vi har börjat med att studera olika typer av mätningar och sedan successivt tagit fram olika beskrivande mått
SF1901: SANNOLIKHETSTEORI OCH GRUNDLÄGGANDE SANNOLIKHETSTEORI, STATISTIK BETINGADE SANNOLIKHETER, OBEROENDE. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 2 GRUNDLÄGGANDE SANNOLIKHETSTEORI, BETINGADE SANNOLIKHETER, OBEROENDE HÄNDELSER Tatjana Pavlenko 30 augusti, 2016 SANNOLIKHETSGRUNDER (REPETITION) Slumpförsöket
SF1922/SF1923: SANNOLIKHETSTEORI OCH DISKRETA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 23 mars, 2018
SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 3 DISKRETA STOKASTISKA VARIABLER Tatjana Pavlenko 23 mars, 2018 PLAN FÖR DAGENSFÖRELÄSNING Repetition av betingade sannolikheter, användbara satser
TMS136. Föreläsning 7
TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna
Matematisk statistik for B, K, N, BME och Kemister. Matematisk statistik slumpens matematik. Beskriva Data Florence Nightingale. Forel.
Matematisk statistik for B, K, N, BME och Kemister asning Forel 1 Johan Lindstrom 29 augusti 2016 Johan Lindstr om - johanl@maths.lth.se FMS086/MASB02 F1 2/21 Till ampningar Matematisk statistik slumpens
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 1. Jan Grandell & Timo Koski 01.09.2008 Jan Grandell & Timo Koski () Matematisk statistik 01.09.2008 1 / 48 Inledning Vi ska först ge några exempel på
Datorövning 1: Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, VT-17 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och
Föreläsning 1: Introduktion
Föreläsning 1: Introduktion Matematisk statistik Chalmers University of Technology Mars 23, 2015 Lärare och kurslitteratur : Rum: E-mail: Anders Hildeman: Rum: E-mail: Kursansvarig och föreläsare H3018
DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03. bli bekant med summor av stokastiska variabler.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03 Syfte: Syftet med dagens laborationen är att du skall: få förståelse
Matematisk statistik 9 hp för I, Pi, C, D och fysiker Föreläsning 1: Introduktion och Sannolikhet
Matematisk statistik 9 hp för I, Pi, C, D och fysiker Föreläsning 1: Introduktion och Sannolikhet Anna Lindgren 30+31 augusti 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F1: Sannolikhet 1/27 Praktiska
FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 5, a 2 e x2 /a 2, x > 0 där a antas vara 0.6.
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 5, 28-4-6 EXEMPEL (max och min): Ett instrument består av tre komponenter.
2 Dataanalys och beskrivande statistik
2 Dataanalys och beskrivande statistik Vad är data, och vad är statistik? Data är en samling fakta ur vilken man kan erhålla information. Statistik är vetenskapen (vissa skulle kalla det konst) om att
F9 SAMPLINGFÖRDELNINGAR (NCT
Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion
SF1901: SANNOLIKHETSTEORI OCH STATISTIK GRUNDLÄGGANDE SANNOLIKHETSTEORI, BETINGAD SANNOLIKHETER, OBEROENDE. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 2 GRUNDLÄGGANDE SANNOLIKHETSTEORI, BETINGAD SANNOLIKHETER, OBEROENDE HÄNDELSER Tatjana Pavlenko 26 mars, 2015 SANNOLIKHETSGRUNDER (REPETITION) Slumpförsöket
Exempel: Väljarbarometern. Föreläsning 1: Introduktion. Om Väljarbarometern. Statistikens uppgift
Exempel: Väljarbarometern Föreläsning 1: Introduktion Matematisk statistik Det som typiskt karakteriserar ett statistiskt problem är att vi har en stor grupp (population) som vi vill analysera. Vi kan
Föreläsning 2. Kapitel 3, sid Sannolikhetsteori
Föreläsning 2 Kapitel 3, sid 47-78 Sannolikhetsteori 2 Agenda Mängdlära Kombinatorik Sannolikhetslära 3 Mängdlära Används för att hantera sannolikheter Viktig byggsten inom matematik och logik Utfallsrummet,
TMS136. Föreläsning 1
TMS136 Föreläsning 1 Varför? Om vi gör mätningar vill vi kunna modellera och kvantifiera de osäkerheter som obönhörligen finns Om vi handlar med värdepapper vill kunna modellera och kvantifiera de risker
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende Jan Grandell & Timo Koski 21.01.2016 Jan Grandell & Timo Koski Matematisk statistik 21.01.2016 1 / 39 Lärandemål Betingad
TMS136. Föreläsning 2
TMS136 Föreläsning 2 Sannolikheter För en händelse E skriver vi sannolikheten att E inträffar som P(E) För en händelse E skriver vi sannolikheten att E inte inträffar som P(E ) Exempel Låt E vara händelsen
FÖRELÄSNING 3:
FÖRELÄSNING 3: 26-4-3 LÄRANDEMÅL Fördelningsfunktion Empirisk fördelningsfunktion Likformig fördelning Bernoullifördelning Binomialfördelning Varför alla dessa fördelningar? Samla in data Sammanställ data
Föreläsning 12: Repetition
Föreläsning 12: Repetition Marina Axelson-Fisk 25 maj, 2016 GRUNDLÄGGANDE SANNOLIKHETSTEORI Grundläggande sannolikhetsteori Utfall = resultatet av ett försök Utfallsrum S = mängden av alla utfall Händelse
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 1 Mängdlära Grundläggande sannolikhetsteori Kombinatorik Deskriptiv statistik
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 1 Mängdlära Grundläggande sannolikhetsteori Kombinatorik Deskriptiv statistik Jörgen Säve-Söderbergh Information om kursen Kom ihåg att
Föreläsning 5, FMSF45 Summor och väntevärden
Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)
Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, HT-16 Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen Syftet med den här laborationen
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 3 4 november 2016 1 / 28 Idag Förra gången Stokastiska variabler (Kap. 3.2) Diskret stokastisk variabel (Kap. 3.3 3.4) Kontinuerlig stokastisk
Medelvärde, median och standardavvikelse
Medelvärde, median och standardavvikelse Detta är en enkel aktivitet där vi på ett dynamiskt sätt ska titta på hur de statistiska måtten, t.ex. median och medelvärde ändras när man ändar ett värde i en
Föreläsning 2, Matematisk statistik för M
Repetition Stok. Var. Diskret Kont. Fördelningsfnk. Föreläsning 2, Matematisk statistik för M Erik Lindström 25 mars 2015 Erik Lindström - erikl@maths.lth.se FMS012 F2 1/16 Repetition Stok. Var. Diskret
Föreläsning 1: Introduktion
Föreläsning 1: Introduktion Matematisk statistik Chalmers University of Technology August 29, 2016 Lärare : Rum: E-mail: Anders Hildeman: Rum: E-mail: Sandra Eriksson Barman: Rum: E-mail: Kursansvarig
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende Jan Grandell & Timo Koski 14.01.2013 Jan Grandell & Timo Koski () Matematisk statistik 14.01.2013 1 / 25 Repetition:
Grundläggande matematisk statistik
Grundläggande matematisk statistik Väntevärde, varians, standardavvikelse, kvantiler Uwe Menzel, 28 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Väntevärdet X : diskret eller kontinuerlig slumpvariable
Matematisk statistik 9hp Föreläsning 2: Slumpvariabel
Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Anna Lindgren 6+7 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp Utfall
4 Diskret stokastisk variabel
4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används
Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden
Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Anna Lindgren 20+21 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F5: väntevärden 1/18 2D stokastisk variabel Tvådim. stokastisk
732G70, 732G01 Statistik A 7hp
732G70, 732G01 Statistik A 7hp Linda Wänström (linda.wanstrom@liu.se) Tommy Schyman (tommy.schyman@liu.se) Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin 1 Statistik är en gren inom
Föreläsning 5, Matematisk statistik Π + E
Repetition Summor max/min Väntevärde Varians Föreläsning 5, Matematisk statistik Π + E Sören Vang Andersen 25 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F5 1/16 Repetition Summor max/min
SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt
Finansiell statistik, vt-05. Slumpvariabler, stokastiska variabler. Stokastiska variabler. F4 Diskreta variabler
Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-05 F4 Diskreta variabler Slumpvariabler, stokastiska variabler Stokastiska variabler diskreta variabler kontinuerliga
Välkommen till Matematik 3 för lärare!
Välkommen till Matematik 3 för lärare! Nu: Statistik för lärare + Linjär algebra + datorlabbar Antagen? Registrerad? För er som läser första ämnet nu (MAxx eller FYMA): Hållbar Utveckling med Människan
Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels
Inledning till statistikteorin. Skattningar och konfidensintervall för μ och σ
Inledning till statistikteorin Skattningar och konfidensintervall för μ och σ Punktskattningar Stickprov från en population - - - Vi vill undersöka bollhavet men får bara göra det genom att ta en boll
Föreläsning 6, Repetition Sannolikhetslära
Föreläsning 6, Repetition Sannolikhetslära kap 4 Sannolikhetslära och slumpvariabler kap 5 Stickprov, medelvärden, CGS, binomialfördelning Viktiga grundbegrepp utfall, händelse, sannolikheter, betingad
Idag. EDAA35, föreläsning 4. Analys. Kursmeddelanden. Vanliga steg i analysfasen av ett experiment. Exempel: exekveringstid
EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Slump och slumptal Analys Boxplot Konfidensintervall Experiment och test Kamratgranskning Kursmeddelanden Analys Om laborationer: alla labbar
Tentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 22 mars TEN1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Torsdagen den 22 mars 2018 TEN1, 9 hp Tillåtna hjälpmedel: Miniräknare
Sannolikhetsteori. Måns Thulin. Uppsala universitet Statistik för ingenjörer 23/ /14
1/14 Sannolikhetsteori Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 23/1 2013 2/14 Dagens föreläsning Relativa frekvenser Matematik för händelser Definition av sannolikhet
Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E
Innehåll I. Grundläggande begrepp II. Deskriptiv statistik (sid 53 i E) III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser 1 II. Beskrivande statistik,
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik
SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011
Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i
Föreläsning G60 Statistiska metoder
Föreläsning 5 Statistiska metoder 1 Dagens föreläsning o Konfidensintervall För andelar För medelvärden Vid jämförelser o Den statistiska felmarginalen o Stickprovsstorlek 2 Introduktion När man beräknar
repetera begreppen sannolikhetsfunktion, frekvensfunktion och fördelningsfunktion
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF25: MATEMATISK STATISTIK KOMPLETTERANDE PROJEKT DATORLABORATION 1, 14 NOVEMBER 2017 Syfte Syftet med dagens laboration är att du ska träna
Bearbetning och Presentation
Bearbetning och Presentation Vid en bottenfaunaundersökning i Nydalasjön räknade man antalet ringmaskar i 5 vattenprover. Följande värden erhölls:,,,4,,,5,,8,4,,,0,3, Det verkar vara diskreta observationer.
LABORATIONER. Det finns en introduktionsfilm till Minitab på http://www.screencast.com/t/izls2cuwl.
UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk Statistik Statistiska Metoder 5MS010, 7.5 hp Kadri Meister Rafael Björk LABORATIONER Detta dokument innehåller beskrivningar av de tre laborationerna
Satsen om total sannolikhet och Bayes sats
Satsen om total sannolikhet och Bayes sats Satsen om total sannolikhet Ibland är det svårt att direkt räkna ut en sannolikhet pga att händelsen är komplicerad/komplex. Då kan man ofta använda satsen om
Idag. EDAA35, föreläsning 4. Analys. Exempel: exekveringstid. Vanliga steg i analysfasen av ett experiment
EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Kamratgranskning Analys Exempel: exekveringstid Hur analysera data? Hur vet man om man kan lita på skillnader och mönster som man observerar?
F3 SANNOLIKHETSLÄRA (NCT ) För komplementhändelsen A till händelsen A gäller att
Stat. teori gk, ht 2006, JW F3 SANNOLIKHETSLÄRA (NCT 4.3-4.4) Ordlista till NCT Complement rule Addition rule Conditional probability Multiplication rule Independent Komplementsatsen Additionssatsen Betingad
Tentamen på. Statistik och kvantitativa undersökningar STA100, 15 HP. Ten1 9 HP. 19 e augusti 2015
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA100, 15 HP Ten1 9 HP 19 e augusti 2015 Tillåtna hjälpmedel: Miniräknare
1.1 Diskret (Sannolikhets-)fördelning
Föreläsning III. Diskret (Sannolikhets-)fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15
Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 6 april 004, klockan 08.15-13.15 Tillåtna hjälpmedel: Bifogad
Matematisk Statistik och Disktret Matematik, MVE051/MSG810, VT19
Matematisk Statistik och Disktret Matematik, MVE051/MSG810, VT19 Nancy Abdallah Chalmers - Göteborgs Universitet March 25, 2019 1 / 36 1. Inledning till sannolikhetsteori 2. Sannolikhetslagar 2 / 36 Lärare
Valresultat Riksdagen 2018
Valresultat Riksdagen 2018 I ämnesplanerna i matematik betonas att eleverna ska få möjlighet att använda digitala verktyg. Ett exempel från kursen Matematik 2 är Statistiska metoder för rapportering av
Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle
Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Lärare: Mikael Elenius, 2006-08-25, kl:9-14 Betygsgränser: 65 poäng Väl Godkänt, 50 poäng
Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6):
EM-fotboll 2012 några grafer Sport är en verksamhet som genererar mängder av numerisk information som följs med stort intresse EM i fotboll är inget undantag och detta dokument visar några grafer med kommentarer
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Vad är statistik?
Reliability analysis in engineering applications
Reliability analysis in engineering applications Fredrik Carlsson Sannolikhetsteorins grunder Fördelningar och stokastiska variabler Extremvärdesfördelningar Simulering Structural Engineering - Lund University
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende
SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende Jan Grandell & Timo Koski 21.01.2015 Jan Grandell & Timo Koski () Matematisk statistik 21.01.2015 1 / 1 Repetition:
Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT
Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT Jointly distributed Joint probability function Marginal probability function Conditional probability function Independence
SF1901: Sannolikhetslära och statistik
SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska
Föreläsning G70, 732G01 Statistik A
Föreläsning 3 732G70, 732G01 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde
TMS136. Föreläsning 1
TMS136 Föreläsning 1 Varför? Om vi gör mätningar vill vi modellera och kvantifiera de osäkerheter som obönhörligen finns Om vi handlar med värdepapper vill vi modellera och kvantifiera de risker som finns
Föreläsning 2, FMSF45 Slumpvariabel
Föreläsning 2, FMSF45 Slumpvariabel Stas Volkov 2017-09-05 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp och beteckningar Utfall resultatet
13.1 Matematisk statistik
13.1 Matematisk statistik 13.1.1 Grundläggande begrepp I den här föreläsningen kommer vi att definiera och exemplifiera ett antal begrepp som sedan kommer att följa oss genom hela kursen. Det är därför