Datastrukturer och algoritmer
|
|
- Ulf Johansson
- för 8 år sedan
- Visningar:
Transkript
1 Datastrukturer och algoritmer Föreläsning 5 Algoritmer & Analys av Algoritmer Algoritmer Vad är det? Innehåll Mer formellt om algoritmer beräkningsbarhet Att beskriva algoritmer Analysera algoritmer Exekveringstid, minnesåtgång Algoritm? Ingredienser Algoritm? Ingredienser Recept som man följer för att lösa ett givet problem på ett strukturerat sätt Ändlig stegvis beskrivning av en ändlig process Recept Bullar Ugn, plåtar, etc Texten som beskriver algoritmen är fix stor Processen kan variera i storlek Kornighet i en algoritm Recept Bullar Ugn, plåtar, etc Exempel Antag att vi har en lista på alla anställda på ett företag: Namn, Pnr, lön, etc. Vi vill räkna ut lönekostanden för företaget. 1. Skriv ner talet 0 2. Gå igenom listan, och för varje anställd så adderar man du personens lön till det skrivna talet 3. När man nått slutet på listan så är det ned skrivna talet resultatet Definition: Algoritmer mer formellt Algoritm är en noggrann plan, en metod för att stegvis utföra något
2 Krav på algoritmer Algoritmer mer formellt Ändlighet Algoritmen måste sluta Bestämdhet Varje steg måste vara entydigt Indata Måste ha noll eller flera indata Utdata Måste ha ett eller flera utdata Effektivitet/Genomförbarhet Varje steg i algoritmen måste gå att utföra på ändlig tid 23. Donald Knuth Algoritmiska problem & beräkningsbarhet En klass av problem Beräkningsbar omm det finns en Turingmaskin som löser problemet Turing maskin Att (be)skriva algoritmer Vi behöver ett språk som: Är strukturerat och formellt Mindre formellt än programmeringsspråk Ingen typning Dynamisk bindning Räckvidd Pseudokod Mix av naturligt språk och programmeringsspråk Influenser från matematisk notation! används för tilldelning = används för likhetsrelationen Funktionsdeklaration Algorithm name(param1,param2) Pseudokod programkonstruktioner Besluts strukturer: if then [else ] Villkorsloopar: while do repeat until Räkneloopar:! for do Arrayindexering: A[i] Anrop: method(args) object metod(args) Returnera värden: return value Pseudokod exempel Algorithm arraymax(a,n) input: An array A storing n integers output: The maximum element in A currentmax! A[0] for i! 1 to n-1 do if currentmax < A[i] then currentmax! A[i] return currentmax
3 Pseudokod Vi använder oss av pseudokod för att beskriva algoritmer Det finns inget universellt språk utan många dialekter Alla döljer mycket av programspråkens designval, dvs. pseodokoden är programspråksoberoende Analys av algoritmer Vad kan analyseras? Exekveringstid Minnesåtgång Implementationskomplexitet Förstålighet Korrekthet Varför analysera algoritmer? Beräkningsbar/hanterbar Alla (mattematiska)problem Exekveringstid/minnesåtgång Är algoritmen praktiskt körbar Vi vill ha den snabbaste! Att implementera Att köra Icke hanterbara - superpolynom (n!, nn, ) Beräkningsbara Ej beräkningsbara 111 Hanterbara - polynom 1+n 2 +3*n 112 Stora Ordo f(n)! c*g(n) => f(n) är av O(g(n)) n 0 Storlek på indata cg(n) f(n) Litet räkneexempel 1 operation tar 1µs 1*10 9 element i en lista Kvadratisk sorteringsalgoritm n år Logaritmisk sorteringsalgoritm n*log(n) 30000s " 1 arbetsdag n 2 och dubbelt så snabb => år n 2 och1000 gånger så snabb => 31år
4 Exekveringstider - en dator med 1 MIPS, 1*10 6 op/sek N 2 1/ /2500 1/400 1/100 9/100 N 5 1/ sek. 5.2 min. 2.8 tim dag. 2 N 1/ s 35.7 år billioner år N N 2.8 tim. 3.3 billioner år Ohanterbarhet Många triviala att förstå och viktiga att lösa Schemaläggning Handelsresande Moore s lag förändrar den situationen? Hur hanterar vi ohanterbarhet?! Drygt 10 miljarder µs på en dag! 1*10 24 µs sedan Big Bang Heuristik Hantera ohanterbarhet Lösa nästan rätt problem Förenkling Lösa problemet nästan rätt Approximation NP-kompletta problem En speciell klass av ohanterliga problem Har problem X en lösning med egenskaperna Y Ekvivalenta: Transformeras Högst exponentiella Saknar bevis för ohanterbarhet Icke hanterbara - superpolynom (n!, nn, ) Mäta tidsåtgången Exempel Hur ska vi mäta tidsåtgången? Experimentell analys Implementera algoritmen Kör programmet med varierande datamängd Storlek Sammansättning Använd metoder för tidtagning så som time (ger tiden i sekunder sedan 1970) clock (ger processortid med hyfsad precision) gettimeofday (bättre precision än time, men ej standard i c) Plotta uppmätt data t(ms) n
5 Medel Bästa, värsta & medel Värsta Bäst a Experimentell analys Begränsningar med metoden Måste implementera och testa algoritmen Svårt att veta om programmet har stannat eller fast i beräkningarna. T ex. 2 n ; n=100 => billioner år Experimenten kan endast utföras på en begränsad mängd av data, man kan missa viktiga testdata Hårdvaran och mjukvaran måste vara den samma för alla implementationer Generellare metod behövs Som använder en högnivåbeskrivning av algoritmerna istället för en implementation av den Tar hänsyn till alla möjliga indata Analys oberoende av hårdvaran och mjukvaran Asymptotisk analys (som vi går igenom på nästa föreläsning) 123
Datastrukturer och algoritmer
Innehåll Föreläsning 5 Algoritmer Experimentell komplexitetsanalys Kapitel 2.1-2.2, Kapitel 12.1-12.4 Algoritmer Algoritm Definition: Algoritm är en noggrann plan, en metod för att stegvis utföra något
Bakgrund och motivation. Definition av algoritmer Beskrivningssätt Algoritmanalys. Algoritmer. Lars Larsson VT 2007. Lars Larsson Algoritmer 1
Algoritmer Lars Larsson VT 2007 Lars Larsson Algoritmer 1 1 2 3 4 5 Lars Larsson Algoritmer 2 Ni som går denna kurs är framtidens projektledare inom mjukvaruutveckling. Som ledare måste ni göra svåra beslut
Datastrukturer och algoritmer (Python) Algoritmer och listor
Datastrukturer och algoritmer (Python) Algoritmer och listor 1 Innehåll Algoritmer och pseudokod som ett sätt att beskriva dem. Abstrakta datatypen lista och algoritmmönster för lista. Olika sätt att konstruera
Asymptotisk komplexitetsanalys
1 Asymptotisk komplexitetsanalys 2 Lars Larsson 3 4 VT 2007 5 Lars Larsson Asymptotisk komplexitetsanalys 1 Lars Larsson Asymptotisk komplexitetsanalys 2 et med denna föreläsning är att studenterna skall:
Datastrukturer, algoritmer och programkonstruktion (DVA104, VT 2015) Föreläsning 6
Datastrukturer, algoritmer och programkonstruktion (DVA104, VT 2015) Föreläsning 6? DAGENS AGENDA Komplexitet Ordobegreppet Komplexitetsklasser Loopar Datastrukturer Några nyttiga regler OBS! Idag jobbar
Analys av algoritmer. Beräkningsbar/hanterbar. Stora Ordo. O(definition) Datastrukturer och algoritmer. Varför analysera algoritmer?
Datastrukturer och algoritmer Föreläsig 2 Aalys av Algoritmer Aalys av algoritmer Vad ka aalyseras? - Exekverigstid - Miesåtgåg - Implemetatioskomplexitet - Förstålighet - Korrekthet - - 29 30 Varför aalysera
Turingmaskiner och oavgörbarhet. Turingmaskinen. Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen.
Turingmaskiner och oavgörbarhet Turingmaskinen Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen. Data är ett oändligt långt band där nollor och ettor står skrivna: Oändligt
Föreläsning 1. Introduktion. Vad är en algoritm?
Några exempel på algoritmer. Föreläsning 1. Introduktion Vad är en algoritm? 1. Häll 1 dl havregryn och ett kryddmått salt i 2 1 2 dl kallt vatten. Koka upp och kocka gröten ca 3minuter. Rör om då och
Föreläsning 9: Turingmaskiner och oavgörbarhet. Turingmaskinen. Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen.
Föreläsning 9: Turingmaskiner och oavgörbarhet Turingmaskinen Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen. Data är ett oändligt långt band där nollor och ettor står
Föreläsning 5 Innehåll
Föreläsning 5 Innehåll Algoritmer och effektivitet Att bedöma och jämföra effektivitet för algoritmer Begreppet tidskomplexitet Datavetenskap (LTH) Föreläsning 5 VT 2019 1 / 39 Val av algoritm och datastruktur
Programkonstruktion och Datastrukturer
Programkonstruktion och Datastrukturer VT 2012 Tidskomplexitet Elias Castegren elias.castegren.7381@student.uu.se Problem och algoritmer Ett problem är en uppgift som ska lösas. Beräkna n! givet n>0 Räkna
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 5 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 5 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Algoritmanalys Tidskomplexitet, Rumskomplexitet
Sökning och sortering
Sökning och sortering Programmering för språkteknologer 2 Sara Stymne 2013-09-16 Idag Sökning Analys av algoritmer komplexitet Sortering Vad är sökning? Sökning innebär att hitta ett värde i en samling
Datastrukturer. föreläsning 2
Datastrukturer föreläsning 2 1 De som vill ha en labkamrat möts här framme i pausen Övningsgrupper: efternamn som börjar på A-J: EC, Arnar Birgisson K-Ö: ED, Staffan Björnesjö 2 Förra gången Vi jämförde
Datastrukturer D. Föreläsning 2
Datastrukturer D Föreläsning 2 Jämförelse mellan olika sorteringsalgoritmer n Selection sort T(n) Insertion sort T(n) 2 1 1 1 Merge sort T(n) 4 6 3-6 4-5 8 28 7-28 12-17 16 120 15-120 32-49 Analysis of
Algoritmanalys. Inledning. Informationsteknologi Malin Källén, Tom Smedsaas 1 september 2016
Informationsteknologi Malin Källén, Tom Smedsaas 1 september 2016 Algoritmanalys Inledning Exempel 1: x n När vi talade om rekursion presenterade vi två olika sätt att beräkna x n, ett iterativt: x n =
Algoritmer och effektivitet. Föreläsning 5 Innehåll. Analys av algoritmer. Analys av algoritmer Tidskomplexitet. Algoritmer och effektivitet
Föreläsning 5 Innehåll Algoritmer och effektivitet Algoritmer och effektivitet Att bedöma, mäta och jämföra effektivitet för algoritmer Begreppet tidskomplexitet Undervisningsmoment: föreläsning 5, övningsuppgifter
Föreläsning 5 Innehåll. Val av algoritm och datastruktur. Analys av algoritmer. Tidsåtgång och problemets storlek
Föreläsning 5 Innehåll Val av algoritm och datastruktur Algoritmer och effektivitet Att bedöma och jämföra effektivitet för algoritmer Begreppet tidskomplexitet Det räcker inte med att en algoritm är korrekt
Programmering för språkteknologer II, HT2014. Rum
Programmering för språkteknologer II, HT2014 Avancerad programmering för språkteknologer, HT2014 evelina.andersson@lingfil.uu.se Rum 9-2035 http://stp.ling.uu.se/~evelina/uv/uv14/pst2/ Idag - Sökalgoritmer
Magnus Nielsen, IDA, Linköpings universitet
Föreläsning 7 Introduktion till sortering TDDC91,TDDE22,725G97: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 24 september 2018 Magnus Nielsen, IDA, Linköpings universitet 7.1 1
TDDI16 Datastrukturer och algoritmer. Algoritmanalys
TDDI16 Datastrukturer och algoritmer Algoritmanalys 2017-08-28 2 Översikt Skäl för att analysera algoritmer Olika fall att tänka på Medelfall Bästa Värsta Metoder för analys 2017-08-28 3 Skäl till att
Datastrukturer och algoritmer
Iehåll Föreläsig 6 Asymtotisk aalys usammafattig experimetell aalys uasymtotisk aalys Lite matte Aalysera pseudokode O-otatio ostrikt o Okulärbesiktig 2 Mäta tidsåtgåge uhur ska vi mäta tidsåtgåge? Experimetell
Datastrukturer. föreläsning 3. Stacks 1
Datastrukturer föreläsning 3 Stacks 1 Abstrakta datatyper Stackar - stacks Köer - queues Dubbeländade köer - deques Vektorer vectors (array lists) All är listor men ger tillgång till olika operationer
Algoritmer och datastrukturer H I HÅKAN S T R Ö M B E R G N I C K L A S B R A N D E F E L T
Algoritmer och datastrukturer H I 1 0 2 9 HÅKAN S T R Ö M B E R G N I C K L A S B R A N D E F E L T Föreläsning 1 Inledande om algoritmer Rekursion Stacken vid rekursion Rekursion iteration Möjliga vägar
Översikt. Stegvis förfining. Stegvis förfining. Dekomposition. Algoritmer. Metod för att skapa ett program från ett analyserat problem
Översikt Stegvis förfining Pseudokod Flödesdiagram Dekomposition KISS-regeln Procedurell dekomposition DRY-regeln Algoritmer Sortering och sökning Stegvis förfining Metod för att skapa ett program från
Tentamen: Programutveckling ht 2015
Tentamen: Programutveckling ht 2015 Datum: 2015-11-04 Tid: 09:00-13:00 Sal: Ansvarig: Resultat: Hjälpmedel: Maxpoäng: Betygsgränser: Anslås inom 3 veckor. Inga 40 p 20 p för G, 32 p för VG. Iakttag följande:
samt lite algoritmer en kortfattad introduktion för studenter på Intro:DV
O, P, N och NP samt lite algoritmer en kortfattad introduktion för studenter på Intro:DV DSV En enkel algoritm Ponera att du spelar poker och har fått korten till höger. Eftersom det bara rör sig om fem
Föreläsning 2 Datastrukturer (DAT037)
Föreläsning 2 Datastrukturer (DAT037) Fredrik Lindblad 1 1 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 5 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 5 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Algoritmanalys, Ordo Sortering, Insertionsort
Imperativ programmering. Föreläsning 2
Imperativ programmering 1DL126 3p Föreläsning 2 Imperativ programmering Kännetecken för imperativa språk: Programmet består av en serie instruktioner. Olika språk har olika uppsättningar av instruktioner.
Algoritmer och datastrukturer TDA143
Algoritmer och datastrukturer TDA143 2017 02 15 Uno Holmer Algoritmer och datastrukturer, TDA143, HT17, UH Algoritm Informell beskrivning: Ett antal steg som beskriver hur en uppgift utförs. Formell beskrivning:
Tommy Färnqvist, IDA, Linköpings universitet. 2 Rekursion i C Implementation av rekursion Svansrekursion En till övning...
Föreläsning 15 Rekursion TDDD86: DALP Utskriftsversion av föreläsning i Datastrukturer, algoritmer och programmeringsparadigm 2 november 2015 Tommy Färnqvist, IDA, Linköpings universitet 15.1 Innehåll
Föreläsning 13 Innehåll
Föreläsning 13 Innehåll Exempel på problem där materialet i kursen används Hitta k största bland n element Histogramproblemet Schemaläggning PFK (Föreläsning 13) VT 2013 1 / 15 Hitta k största bland n
Rebecka Geijer Michaeli, IDA, Linköpings universitet. 1 Administrativ information Upplägg... 2
Föreläsning 1 Introduktion TDDC91: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 29 augusti 2016 Rebecka Geijer Michaeli, IDA, Linköpings universitet 1.1 Innehåll Innehåll 1 Administrativ
Tentamen i Algoritmer & Datastrukturer i Java
Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2008-05-27 Skrivtid: 4 timmar Kontakt person: Nicolina Månsson, tel. 035-167487 Poäng / Betyg:
Tommy Färnqvist, IDA, Linköpings universitet
Föreläsning 8 Sortering och urval TDDC70/91: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 1 oktober 2013 Tommy Färnqvist, IDA, Linköpings universitet 8.1 Innehåll Innehåll 1 Sortering
Tommy Färnqvist, IDA, Linköpings universitet. 1 Administrativ information Upplägg... 2
Föreläsning 1 Introduktion TDDC70/91: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 3 september 2013 Tommy Färnqvist, IDA, Linköpings universitet 1.1 Innehåll Innehåll 1 Administrativ
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 8 Anton Grensjö grensjo@csc.kth.se 10 november 2015 Anton Grensjö ADK Övning 8 10 november 2015 1 / 34 Översikt Kursplanering F21: Introduktion till komplexitet
Föreläsning 1. Introduktion och sökning i graf. Vad är en algoritm?
Föreläsning 1. Introduktion och sökning i graf Vad är en algoritm? Först: Vad är ett problem? Består av indata och ett mål. Indata: [En beskrivning av en struktur.] Mål: [Kan vara Ja/Nej, ett tal eller
Föreläsning 1 Datastrukturer (DAT037)
Föreläsning 1 Datastrukturer (DAT037) Fredrik Lindblad 1 30 oktober 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
CS - Computer science. Datateknik Informationsbehandling Datalogi Datavetenskap (ÅA 2008)
CS - Computer science Datateknik Informationsbehandling Datalogi Datavetenskap (ÅA 2008) Vad datateknik INTE är: Att studera datorer Att studera hur man skriver datorprogram Att studera hur man använder
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 1 Anton Grensjö grensjo@csc.kth.se 14 september 2015 Anton Grensjö ADK Övning 1 14 september 2015 1 / 22 Översikt Kursplanering F1: Introduktion, algoritmanalys
Objektorienterad modellering och diskreta strukturer. 13. Problem. Sven Gestegård Robertz. Datavetenskap, LTH
Objektorienterad modellering och diskreta strukturer 13. Problem Sven Gestegård Robertz Datavetenskap, LTH 2014 Rekaputilation Vi har talat om satslogik och härledning predikatlogik och substitution mängder
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 9 oktober 2015 Anton Grensjö ADK Övning 6 9 oktober 2015 1 / 23 Översikt Kursplanering Ö5: Grafalgoritmer och undre
Pseudokod Analys av algoritmer Rekursiva algoritmer
Föreläsning 7 Pseudokod Analys av algoritmer Rekursiva algoritmer För att beskriva algoritmer kommer vi använda oss av en pseudokod (låtsas programspråk) definierad i kursboken Appendix C. Vi går igenom
COMPUTABILITY BERÄKNINGSBARHET. Källa: Goldschlager, Lister: Computer Science A Modern Introduction 2. upplaga 1988, Prentice Hall
COMPUTABILITY BERÄKNINGSBARHET Källa: Goldschlager, Lister: Computer Science A Modern Introduction 2. upplaga 1988, Prentice Hall Den centrala frågan: givet ett problem, kan det ha en algoritmisk lösning?
Algoritmer och datastrukturer TDA Fredrik Johansson
Algoritmer och datastrukturer TDA143 2015-02- 18 Fredrik Johansson Algoritmer Informell beskrivning E" antal steg som beskriver hur en uppgi5 görs. A set of steps that defines how a task is performed.
Några svar till TDDC70/91 Datastrukturer och algoritmer
Några svar till TDDC70/91 Datastrukturer och algoritmer 2011--18 Följande är lösningsskisser och svar till uppgifterna på tentan. Lösningarna som ges här ska bara ses som vägledning och är oftast inte
Dugga Datastrukturer (DAT036)
Dugga Datastrukturer (DAT036) Duggans datum: 2012-11-21. Författare: Nils Anders Danielsson. För att en uppgift ska räknas som löst så måste en i princip helt korrekt lösning lämnas in. Enstaka mindre
Föreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-16 Idag Mängder, avbildningar. Hashtabeller. Sortering. Pseudokod Blandning av programmeringsspråk, matematisk notation och naturligt
Problemlösning. Planering av program. Konstruktion. Programmeringsmetaforer. Problemlösning. Programmering = Problemlösning
Problemlösning Problemlösning Vad är problemlösning Hur ser ett problem ut? Programmering = Problemlösning Omformulering av ett problem kan i slutändan omsättas i ett program. Ett program består av en,
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 10 Anton Grensjö grensjo@csc.kth.se 9 november 2017 1 Idag En konstruktionsreduktion Fler bevis av NP-fullständighet 2 Teori Repetition Ett problem tillhör
TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 14:00-19:00
TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 170117 kl. 14:00-19:00 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna eller i bilagarna. *** OBS *** Betygsgräns:
Föreläsning 3. Iteration while-satsen
Föreläsning 3 Iteration while-satsen Datatypen double I en dator kan man inte lagra hur stora eller hur små tal som helst. De enkla datatyperna, som används för att lagra tal (t.ex. int och double), har
Datastrukturer och algoritmer. Föreläsning 15 Inför tentamen
Datastrukturer och algoritmer Föreläsning 15 Inför tentamen 1 Innehåll Kursvärdering Vi behöver granskare! Repetition Genomgång av gammal tenta 2 Första föreläsningen: målsättningar Alla ska höja sig ett
Föreläsning 1: Dekomposition, giriga algoritmer och dynamisk programmering
2D1458, Problemlösning och programmering under press Föreläsning 1: Dekomposition, giriga algoritmer och dynamisk programmering Datum: 2007-09-04 Skribent(er): Anders Malm-Nilsson och Niklas Nummelin Föreläsare:
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 7 Anton Grensjö grensjo@csc.kth.se 14 oktober 2015 Anton Grensjö ADK Övning 7 14 oktober 2015 1 / 28 Översikt Kursplanering Ö6: Algoritmkonstruktion F19:
Föreläsning 1. Abstrakta datatyper, listor och effektivitet
Föreläsning 1 Abstrakta datatyper, listor och effektivitet Föreläsning 1 Datastrukturer Abstrakta DataTyper ADT Lista Lista och Java Collections Framework (ArrayList) Lista implementerad med en array Analys
Föreläsning 5. Rekursion
Föreläsning 5 Rekursion Föreläsning 5 Algoritm Rekursion Rekursionsträd Funktionsanrop på stacken Binär sökning Problemlösning (möjliga vägar) Algoritm En algoritm är ett begränsat antal instruktioner/steg
FÖRELÄSNING 2, TDDC74, VT2018 BEGREPP PROBLEMLÖSNING MED HJÄLP AV FALLANALYS PROBLEMLÖSNING MED HJÄLP AV REKURSION
FÖRELÄSNING 2, TDDC74, VT2018 Begrepp och definitioner (delvis från föreläsning 1) Fallanalys som problemlösningsmetod Rekursivt fallanalys Rekursiva beskrivningar och processer de kan skapa Rekursiva
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 4 oktober 2017 1 Idag Algoritmkonstruktion (lite blandat) Redovisning och inlämning av labbteori 3 2 Uppgifter Uppgift
i=1 c i = B och c i = a i eller c i = b i för 1 i n. Beskriv och analysera en algoritm som löser detta problem med hjälp av dynamisk programmering.
Algoritmer och Komplexitet ht 8 Övning 3+4 Giriga algoritmer och Dynamisk programmering Längsta gemensamma delsträng Strängarna ALGORITM och PLÅGORIS har den gemensamma delsträngen GORI Denlängsta gemensamma
n (log n) Division Analysera skolboksalgoritmen för division (trappdivision). Använd bitkostnad.
Algoritmer och Komplexitet ht 08. Övning 1 Algoritmanalys Ordo Jämför följande par av funktioner med avseende på hur dom växer då n växer. Tala i varje fall om ifall f(n) Θ(g(n)), f(n) O(g(n)) eller f(n)
TIDS- OCH RUMSKOMPLEXITET
TIDS- OCH RUMSKOMPLEXITET Praktiska begränsningar långt innan teoretiska Tids- och rumskomplexitet Dramatiska effekter av skillnader i tidskomplexitet Utbytesförhållande tid och rum Hanterliga problem
Tentamen Datastrukturer D DAT 035/INN960
Tentamen Datastrukturer D DAT 035/INN960 22 december 2006 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.) Betygsgränser,
Universitetet i Linköping Institutionen för datavetenskap Anders Haraldsson
1 2 - Block, räckvidd Dagens föreläsning Programmering i Lisp - Bindning av variabler (avs 14.6) fria variabler statisk/lexikalisk och dynamisk bindning - Felhantering (kap 17) icke-normala återhopp catch
SORTERING OCH SÖKNING
Algoritmer och Datastrukturer Kary FRÄMLING Kap. 9, Sid 1 C-språket 2/Kary Främling v2000 och Göran Pulkkis v2003 SORTERING OCH SÖKNING Sortering är ett av de bästa exemplen på problem där valet av lösningsalgoritm
Tentamen i Algoritmer & Datastrukturer i Java
Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2010-03-16 Skrivtid: 4 timmar Kontaktperson: Nicolina Månsson Poäng / Betyg: Max 44 poäng
Dagens föreläsning Programmering i Lisp. - Bindning av variabler (avs 14.6) fria variabler statisk/lexikalisk och dynamisk bindning
1 Dagens föreläsning Programmering i Lisp - Block, räckvidd - Bindning av variabler (avs 14.6) fria variabler statisk/lexikalisk och dynamisk bindning - Felhantering (kap 17) icke-normala återhopp catch
Föreläsning 12. Söndra och härska
Föreläsning 12 Söndra och härska Föreläsning 12 Söndra och härska Maximal delsekvens Skyline Closest pair Växel Uppgifter Söndra och härska (Divide and conquer) Vi stötte på dessa algoritmer när vi tittade
Skriv i mån av plats dina lösningar direkt i tentamen. Skriv ditt kodnummer längst upp på varje blad.
5(16) Tentamen på kurserna Programmeringsteknik med C och Matlab Programmering i C Tid: 2/11-11, kl. 9-13 Lärare: Jonny Pettersson Totalt: 60 poäng Betyg 3: 30 poäng Betyg 4: 39 poäng Betyg 5: 48 poäng
Objektorienterad programmering E. Algoritmer. Telefonboken, påminnelse (och litet tillägg), 1. Telefonboken, påminnelse (och litet tillägg), 2
Objektorienterad programmering E Algoritmer Linjär sökning Binär sökning Tidsuppskattningar Föreläsning 9 Vad behöver en programmerare kunna? (Minst) ett programspråk; dess syntax och semantik, bibliotek
Problemlösning och algoritmer
Problemlösning och algoritmer Human Centered Systems Inst. för datavetenskap Linköpings universitet Översikt Stegvis förfining Pseudokod Flödesdiagram Dekomposition KISS regeln Procedurell dekomposition
Laboration: Whitebox- och blackboxtesting
Tilda11 höstterminen 2011 Laboration: Whitebox- och blackboxtesting Mål med laborationen Du ska lära dig begreppen white-box testing och black-box testing Du ska öva dig på att konstruera testfall Du ska
Tentamen med lösningsförslag Datastrukturer för D2 DAT 035
Tentamen med lösningsförslag Datastrukturer för D2 DAT 035 17 december 2005 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.)
Föreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-20 Idag Grafer: Terminologi. Datastrukturer. Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. (Vi får
Algoritmer. Två gränssnitt
Objektorienterad programmering E Algoritmer Sökning Linjär sökning Binär sökning Tidsuppskattningar Sortering Insättningssortering Föreläsning 9 Vad behöver en programmerare kunna? (Minst) ett programspråk;
Övningsuppgifter #11, Programkonstruktion och datastrukturer
Övningsuppgifter #11, Programkonstruktion och datastrukturer Lösningsförslag Elias Castegren elias.castegren@it.uu.se Övningar 1. 1 2. 2 3. Ett binomialträd med rang n har 2 n noder. En binomial heap innehåller
Beräkningsvetenskap föreläsning 2
Beräkningsvetenskap föreläsning 2 19/01 2010 - Per Wahlund if-satser if x > 0 y = 2 + log(x); else y = -1 If-satsen skall alltid ha ett villkor, samt en då det som skall hända är skrivet. Mellan dessa
Rekursion och induktion för algoritmkonstruktion
Informationsteknologi Tom Smedsaas 22 januari 2006 Rekursion och induktion för algoritmkonstruktion Att lösa ett problem rekursivt innebär att man uttrycker lösningen i termer av samma typ av problem som
Hitta k största bland n element. Föreläsning 13 Innehåll. Histogramproblemet
Föreläsning 13 Innehåll Algoritm 1: Sortera Exempel på problem där materialet i kursen används Histogramproblemet Schemaläggning Abstrakta datatyper Datastrukturer Att jämföra objekt Om tentamen Skriftlig
Twincat: PLC Control
Dokument Förklaring Dat. Revision KI-221-003-003 Kom igång med trukturerad Text 080402 1.0 Twincat: PLC Control Kom igång med Strukturerad Text (ST) programmering 1. Kod exempel. a. Exemplen som demonstreras
Bakgrund. Bakgrund. Bakgrund. Håkan Jonsson Institutionen för systemteknik Luleå tekniska universitet Luleå, Sverige
Är varje påstående som kan formuleras matematiskt*) alltid antingen sant eller falskt? *) Inom Institutionen för systemteknik Luleå tekniska universitet Luleå, Sverige Exempel: 12 = 13 nej, falskt n! >
Datastrukturer och algoritmer
Datastrukturer och algoritmer Föreläsning 16 2 Innehåll Snabbrepetition Exempeltentamen Kursutvärdering Mina målsättningar Kursens mål: 3 Rolig och viktig kurs Bli en bättre programmerare och inse att
Viktiga begrepp. Algoritm. Array. Binärkod. Blockprogrammering. Bugg / fel och felsökning. Dataspel. Dator
Viktiga begrepp Den här ordlistan är till för dig som går kursen Om Programmering. Eftersom detta är en grundläggande kurs har vi i vissa fall gjort en del förenklingar. En del begrepp är svåra att förenkla,
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 6 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 6 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Sortering Selectionsort, Bubblesort,
729G75: Programmering och algoritmiskt tänkande. Tema 1, föreläsning 1 Jody Foo
729G75: Programmering och algoritmiskt tänkande Tema 1, föreläsning 1 Jody Foo Föreläsningsöversikt Kursinfo / Om kursen Algoritmer Objektorienterad programmering i praktiken terminologi använda objekt
Föreläsning 5. Rekursion
Föreläsning 5 Rekursion Föreläsning 5 Algoritm Rekursion Rekursionsträd Funktionsanrop på stacken Binär sökning Problemlösning (möjliga vägar) Läsanvisningar och uppgifter Algoritm En algoritm är ett begränsat
Program & programmering
Program & programmering Vad är program? Satser och instruktioner, toggla igenom exempel Program på olika nivåer, för olika maskiner, för olika saker Tolka program; kompilator, intepretator, binärbytekod,
Föreläsning 13 Datastrukturer (DAT037)
Föreläsning 13 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-12-14 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Sammanfattning
Programmering I Tobias Wrigstad fredag, 2009 augusti 28
Programmering I Tobias Wrigstad tobias@dsv.su.se Vad är programmering? Lågnivåspråk och högnivåspråk Kompilering och interpretering Variabler Notation för flödesschema (flow chart) Kontrollstrukturer (conditionals,
Föreläsning 3. Stack
Föreläsning 3 Stack Föreläsning 3 ADT Stack Stack JCF Tillämpning Utvärdera ett postfix uttryck Stack implementerad med en array Stack implementerad med en länkad lista Evaluate postfix expressions Läsanvisningar
Föreläsning 11. Giriga algoritmer
Föreläsning 11 Giriga algoritmer Föreläsning 11 Giriga algoritmer Användning Växelproblemet Kappsäcksproblemet Schemaläggning Färgläggning Handelsresandeproblemet Uppgifter Giriga algoritmer (Greedy algorithms)
Tentamen Datastrukturer för D2 DAT 035
Tentamen Datastrukturer för D2 DAT 035 17 december 2005 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.) Betygsgränser:
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 6 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 6 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Omega, Theta Selectionsort, Shellsort,
Lösningar Datastrukturer TDA
Lösningar Datastrukturer TDA416 2016 12 21 roblem 1. roblem 2. a) Falskt. Urvalssortering gör alltid samma mängd av jobb. b) Sant. Genom att ha en referens till sista och första elementet, kan man nå både
Introduktion till programmering SMD180. Föreläsning 9: Tupler
Introduktion till programmering Föreläsning 9: Tupler 1 1 Sammansatta datatyper Strängar Sekvenser av tecken Icke muterbara Syntax: "abcde" Listor Sekvenser av vad som helst Muterbara Syntax: [1, 2, 3]
729G75: Programmering och algoritmiskt tänkande. Tema 1. Föreläsning 1 Jody Foo
729G75: Programmering och algoritmiskt tänkande Tema 1. Föreläsning 1 Jody Foo Föreläsningsöversikt Kursinfo / Om kursen Algoritmer Objektorienterad programmering i praktiken terminologi använda objekt
Tentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Det här är inte originaltesen. Uppgift 6 var felaktigt formulerad, och har rättats till. Datum och tid för tentamen: 2011-12-16, 8:30 12:30. Ansvarig: Nils Anders Danielsson.
Inledning. Vad är ett datorprogram, egentligen? Olika språk. Problemlösning och algoritmer. 1DV433 Strukturerad programmering med C Mats Loock
Inledning Vad är ett datorprogram, egentligen? Olika språk Problemlösning och algoritmer 1 (14) Varför använda en dator? Genom att variera de program som styr datorn kan den användas för olika uppgifter.