ESN lokala kursplan Lgr11 Ämne: Matematik



Relevanta dokument
Centralt innehåll. I årskurs 1.3

Kursplanen i matematik grundskolan

Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik

MATEMATIK 5.5 MATEMATIK

Kursplan Grundläggande matematik

MATEMATIK 3.5 MATEMATIK

Del ur Lgr 11: kursplan i matematik i grundskolan

Förslag den 25 september Matematik

Samband och förändringar Olika proportionella samband, däribland dubbelt och hälften.

FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ

Geometri. Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock

Kurskod: GRNMAT2 Verksamhetspoäng: 600

Syfte. Malmö stad Komvux Malmö Södervärn PRÖVNING. prövning grundläggande matematik

MATEMATIK 3.5 MATEMATIK

Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera.

ämnesområden. Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband.

Studenter i lärarprogrammet Ma 4-6 I

formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,

formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,

Terminsplanering årskurs 6 Matematik Ärentunaskolan

22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:

Lgr 11, miniräknare och skrivmaterial. 33 p 20 p. Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.

Arbetsområde: Jag får spel

matematik Syfte Kurskod: GRNMAT2 Verksamhetspoäng: KuRSplanER FöR KoMMunal VuxEnutBildninG på GRundläGGandE nivå 55

Målet med undervisningen är att eleverna ges förutsättningar att:

Lokal studieplan matematik åk 1-3

Lgr 11 matriser i Favorit matematik 4 6

Arbetsområde: Från pinnar till tal

Röda tråden. Skyttorps skola, Vattholmaskolan, Pluggparadiset, Storvretaskolan och Ärentunaskolan Reviderad:

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

"Läsårs-LPP med kunskapskraven för matematik"

Skolverkets förslag till kursplan i matematik i grundskolan. Matematik

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 9

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Statistik, sannolikhet, algebra och funktioner, 3 hp. Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8

Om Lgr 11 och Favorit matematik 4 6

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte

Matematikplanering 3 geometri HT-12 VT-13 7 a KON

Gunnar Hyltegren. Ämnet matematik 2011 i grundskolan

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för åk 8

Om Lgr 11 och Favorit matematik 4 6

Bedömning för lärande i matematik

Ladokkod: TentamensKod: Tentamensdatum: Tid: Hjälpmedel: Inga hjälpmedel

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. En uppgift per blad och inga svar på baksidan av bladen Lycka till!

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. Skriv inte på bladens baksidor. Helst en uppgift per blad.

Studenter i lärarprogrammet GF(11GF20) 46 p G: 28 p VG: 38 p

Grundläggande matematik fo r grundlärare med inriktning mot arbete i grundskolans a rskurs 4-6, 15 hp VT ho gskolepoäng

Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1

Ladokkod: Studenter i lärarprogrammet GF 11GF20 vt17 tillfälle 1 och vt16 tillfälle 4

Hjälpmedel: Miniräknare, skrivmateriel (ex. linjal, gradskiva, passare) och Lgr 11

Ma7-Per: Geometri. Det tredje arbetsområdet handlar om geometri.

Dagens innehåll Bedömning för lärande i matematik. PRIM-gruppen. Katarina Kjellström Inger Ridderlind Anette Skytt

8G Ma: Bråk och Procent/Samband

Ma7-Åsa: Procent och bråk

48 p G: 29 p VG: 38 p

8A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.

8G Ma: Bråk och Procent/Samband

Centralt innehåll. Problemlösning. Taluppfattning och tals användning. Tid och pengar. Sannolikhet och statistik. Geometri.

Extramaterial till Start Matematik

9A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.

Centralt innehåll som vi arbetar med inom detta område:

Planering - Geometri i vardagen v.3-7

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9

RÖDA TRÅDEN MATEMATIK F-KLASS ÅK

8B Ma: Procent och bråk

Ma Åk7-Conor: Aritmetik och bråkbegreppet

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt

Kunskapskrav. Materialet består av flera olika komponenter.

15 högskolepoäng. Grundläggande matematik fo r la rare med inriktning mot arbete i fo rskoleklass och grund-skolans a rskurs 1-3, 15 hp VT17

Om Favorit matematik för åk 4-6 och Lgr 11

Matematikbokens Prio kapitel Kap 3,.,Digilär, NOMP

7F Ma Planering v2-7: Geometri

Matematikbokens Prio kapitel Kap 3,.,Digilär, NOMP

8F Ma: Aritmetik och bråkbegreppet

Matematik - Åk 9 Funktioner och algebra Centralt innehåll

8F Ma Planering v2-7 - Geometri

Om Lgr 11 och Favorit matematik 4 6

Pedagogisk planering aritmetik (räkning)

Lokal pedagogisk planering

9E Ma Planering v2-7 - Geometri

9F Ma: Aritmetik och bråkbegreppet

"Procent och sannolikhet 6D"

Kunskapskrav och nationella prov i matematik

Vilken kursplanskompetens behöver rektor?

Ämnesplan i matematik för Häggenås, Bringåsen och Treälven

Syfte med undervisningen är att du ska få utveckla din förmåga att...

8E Ma: Aritmetik och bråkbegreppet

Matematik i informellt lärande på fritidshem. Många möten med ord och begrepp i den dagliga verksamheten

Matematik. Syfte. reflektera över rimlighet i situationer med matematisk anknytning, och använda ämnesspecifika ord, begrepp och symboler.

Ur kursplanen för ämnet matematik I detta arbetsområde ska eleven utveckla sin förmåga att:

Enhet / skola: Lindens skola i Lanna Åk: 1

7E Ma Planering v45-51: Algebra

Pedagogisk planering i matematik

Kursplan för Matematik

Kunskapsprofil Resultat på ämnesprovet

Transkript:

ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband mellan begrepp, välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter, föra och följa matematiska resonemang, och använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser. Årskurs 1 Matematik Centralt innehåll Taluppfattning och tals användning Hur naturliga tal kan delas upp och användas för att ange antal och ordning. Symboler för tal. Addition och subtraktion och sambandet samt användning i olika Algebra Likhetstecknets betydelse. Hur enkla mönster i talföljder och enkla geometriska mönster kan konstrueras och beskrivas. Geometri Grundläggande geometriska objekt, däribland punkter, linjer, fyrhörningar, Kunskapskrav Kan jämföra och dela upp tal (0-10). Kan beskriva addition och subtraktion med hjälp av symboler och konkret material eller bilder. Kan använda addition och subtraktion i vanligt förekommande sammanhang på ett i huvudsak Kan ge exempel på hur addition och subtraktion relaterar till varandra. Kan använda huvudräkning för att genomföra beräkningar med addition och subtraktion när talen och svaren ligger inom heltalsområdet 0-10. skriftliga räknemetoder för addition och subtraktion med tillfredställande resultat när talen och svaren ligger inom heltalsområdet 0-10. Kan hantera enkla matematiska likheter (addition och subtraktion). Kan följa matematiska resonemang om geometriska mönster och mönster i talföljder. Kan använda grundläggande geometriska begrepp och vanliga lägesord för att beskriva geometriska objekts egenskaper och läge (punkter, linjer, 1

trianglar och cirklar samt deras inbördes relationer. Vanliga lägesord för att beskriva föremåls och objekts läge i rummet. Mätning av längd, volym och tid med vanliga måttenheter. Sannolikhet och statistik Enkla tabeller och diagram och hur de kan användas för att beskriva resultat från enkla undersökningar. Problemlösning Matematisk formulering av frågeställningar utifrån enkla vardagliga fyrhörningar, trianglar och cirklar). Kan göra enkla mätningar av längder (t.ex. cm) och volymer(t.ex. dl). Kan göra enkla mätningar av tider (t.ex. timmar, dagar, veckor, månader). Kan avläsa enkla tabeller och diagram för att beskriva resultat. Kan lösa enkla problem i elevnära Årskurs 2 Matematik Centralt innehåll Taluppfattning och tals användning Naturliga tal och deras egenskaper samt hur talen kan delas upp och hur de kan användas för att ange antal och ordning. Hur positionssystemet kan användas för att beskriva naturliga tal. Symboler för tal. Del av helhet. Hur delarna kan benämnas och uttryckas som enkla bråk. Enkla tal i bråkform och deras användning i vardagliga De fyra räknesättens egenskaper och samband samt användning i olika Centrala metoder för beräkningar med naturliga tal, vid huvudräkning och vid beräkningar med skriftliga metoder och miniräknare. Rimlighetsbedömning vid enkla beräkningar Algebra Matematiska likheter och likhetstecknets betydelse. Hur enkla mönster i talföljder och enkla geometriska mönster kan Kunskapskrav Kan jämföra och dela upp tal.(0-100) Kan beskriva några matematiska begreppens egenskaper med hjälp av symboler och konkret material eller bilder. Visar grundläggande kunskaper om tal i bråkform genom att dela upp helheter i olika antal delar (halv och en fjärdedel). Kan använda matematiska begrepp i vanligt förekommande sammanhang på ett i huvudsak fungerande sätt (t.ex.de fyra räknesätten). Kan ge exempel på hur några begrepp relaterar till varandra. Kan följa matematiska resonemang om val av metoder och räknesätt genom att ställa och besvara frågor som i huvudsak hör till ämnet. Kan använda huvudräkning för att genomföra beräkningar med de fyra räknesätten när talen och svaren ligger inom heltalsområdet 0-20. Kan välja och använda skriftliga räknemetoder vid addition och subtraktion med tillfredställande resultat när talen och svaren ligger inom heltalsområdet 0-50. Ger enkla omdömen om resultatens rimlighet. Kan hantera enkla matematiska likheter och använder då likhetstecknet på ett fungerande sätt (addition och subtraktion). Kan föra och följa matematiska resonemang om geometriska mönster och 2

konstrueras, beskrivas och uttryckas. mönster i talföljder. Geometri Grundläggande geometriska objekt, däribland punkter, linjer, fyrhörningar, trianglar och cirklar, samt deras inbördes relationer. Grundläggande geometriska egenskaper hos dessa objekt. Konstruktion av geometriska objekt. Vanliga lägesord för att beskriva föremåls och objekts läge i rummet. Jämförelser och uppskattningar av matematiska storheter. Mätning av längd, massa, och tid med vanliga nutida måttenheter. Sannolikhet och statistik Slumpmässiga händelser i spel. Enkla tabeller och diagram och hur de kan användas för att sortera data och beskriva resultat från enkla undersökningar. Problemlösning Strategier för matematisk problemlösning i enkla Matematisk formulering av frågeställningar utifrån enkla vardagliga Kan använda grundläggande geometriska begrepp och vanliga lägesord för att beskriva geometriska objekts egenskaper, läge och inbördes relationer (punkter, linjer, fyrhörningar, trianglar och cirklar). Kan avbilda enkla geometriska objekt Kan göra enkla mätningar av längder (t.ex. m, cm) och volymer(t.ex. l, dl). Kan göra enkla mätningar av tider (t.ex. timmar, halv-timmar, dagar). Kan följa matematiska resonemang om slumpmässiga händelser. Kan vid olika slag av undersökningar i välkända situationer avläsa och skapa enkla tabeller och diagram för att redovisa resultat. Kan lösa enkla problem i elevnära situationer genom att välja och använda någon strategi. Årskurs 3 Matematik Centralt innehåll Taluppfattning och tals användning Naturliga tal och deras egenskaper samt hur talen kan delas upp och hur de kan användas för att ange antal och ordning. Hur positionssystemet kan användas för att beskriva naturliga tal. Symboler för tal och symbolernas utveckling i några olika kulturer genom historien. Del av helhet och del av antal. Hur delarna kan benämnas och uttryckas som enkla bråk samt hur enkla bråk förhåller sig till naturliga tal. Naturliga tal och enkla tal i bråkform och deras användning i vardagliga De fyra räknesättens egenskaper och samband samt användning i olika Kunskapskrav Kan jämföra och dela upp tal. (0-1000). Kan beskriva några matematiska begreppens egenskaper med hjälp av symboler och konkret material eller bilder. Kan beskriva positionssystemet med hjälp av matematiska uttrycksformer. Visar grundläggande kunskaper om tal i bråkform genom att dela upp helheter i olika antal delar samt jämföra och namnge delarna som enkla bråk. Har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i vanligt förekommande sammanhang på ett i huvudsak (t.ex. positionssystemet, de fyra räknesätten) Kan ge exempel på hur några matematiska begrepp relaterar till varandra 3

Centrala metoder för beräkningar med naturliga tal, vid huvudräkning och överslagsräkning och vid beräkningar med skriftliga metoder och miniräknare. Metodernas användning i olika Rimlighetsbedömning vid enkla beräkningar och uppskattningar. Algebra Matematiska likheter och likhetstecknets betydelse. Hur enkla mönster i talföljder och enkla geometriska mönster kan konstrueras, beskrivas och uttryckas. Geometri Grundläggande geometriska objekt, däribland punkter, linjer, fyrhörningar, trianglar, cirklar, klot, cylindrar och rätblock samt deras inbördes relationer. Grundläggande geometriska egenskaper hos dessa objekt. Konstruktion av geometriska objekt. Vanliga lägesord för att beskriva föremåls och objekts läge i rummet. Symmetri, till exempel i bilder och i naturen. Jämförelser och uppskattningar av matematiska storheter. Mätning av längd, massa, volym och tid med vanliga nutida måttenheter. Sannolikhet och statistik (de fyra räknesätten). i huvudsak fungerande matematiska metoder med viss att göra enkla beräkningar med naturliga tal och lösa enkla rutinuppgifter med tillfredställande resultat. Kan föra och följa matematiska resonemang om val av metoder och räknesätt genom att ställa och besvara frågor som i huvudsak hör till ämnet. Kan använda huvudräkning för att genomföra beräkningar med de fyra räknesätten när talen och svaren ligger inom heltalsområdet 0-20, samt för beräkningar av enkla tal i ett utvidgat talområde. Kan välja och använda skriftliga räknemetoder vid addition och subtraktion med tillfredställande resultat när talen och svaren ligger inom heltalsområdet 0-200. Kan beskriva och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då konkret material, bilder, symboler och andra matematiska uttrycksformer sammanhanget. Kan föra och följa matematiska resonemang om resultats rimlighet genom att ställa och besvara frågor som i huvudsak hör till ämnet. Kan hantera enkla matematiska likheter och använder då likhetstecknet på ett fungerande sätt (de fyra räknesätten). Kan föra och följa matematiska resonemang om geometriska mönster och mönster i talföljder genom att ställa och besvara frågor som i huvudsak hör till ämnet. Kan använda grundläggande geometriska begrepp och vanliga lägesord för att beskriva geometriska objekts egenskaper, läge och inbördes relationer (punkter, linjer, fyrhörningar, trianglar, cirklar, klot, cylindrar och rätblock). Kan även avbilda och, utifrån instruktioner, konstruera enkla geometriska objekt inklusive uttrycka symmetri. Kan göra enkla mätningar, jämförelser och uppskattningar av längder (t.ex. m, cm), massor (kg, g), volymer (l, dl) och använder vanliga måttenheter för att uttrycka resultatet Kan göra enkla mätningar, jämförelser och uppskattningar av tider och använder vanliga måttenheter (timmar, minuter) för att uttrycka resultatet. Kan föra och följa matematiska resonemang om slumpmässiga händelser, 4

Slumpmässiga händelser i experiment och spel. Enkla tabeller och diagram och hur de kan användas för att sortera data och beskriva resultat från enkla undersökningar. Samband och förändringar Olika proportionella samband, däribland dubbelt och hälften. Problemlösning Strategier för matematisk problemlösning i enkla Matematisk formulering av frågeställningar utifrån enkla vardagliga genom att ställa och besvara frågor som i huvudsak hör till ämnet. Kan vid olika slag av undersökningar i välkända situationer avläsa och skapa enkla tabeller och diagram för att sortera och redovisa resultat. Kan använda och ge exempel på enkla proportionella samband i elevnära Kan lösa enkla problem i elevnära situationer genom att välja och använda någon strategi problemets karaktär. 5

Årskurs 4 Matematik Centralt innehåll Taluppfattning och tals användning Rationella tal och deras egenskaper (0 10.000). Positionssystemet för tal i decimalform (tiondel) Tal i bråk- och decimalform och deras användning i vardagliga Centrala metoder för beräkningar med naturliga tal vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och miniräknare. Metodernas användning i olika Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga Algebra Hur mönster i talföljder och geometriska mönster kan konstrueras. Geometri Grundläggande geometriska objekt däribland polygoner, cirklar och rätblock samt deras inbördes relationer. Konstruktion av geometriska objekt. Symmetri i vardagen. Metoder för hur omkrets hos olika tvådimensionella geometriska figurer kan bestämmas. Jämförelse, uppskattning och mätning av längd (m, dm, cm), massa (kg, g) och tid (veckor, dagar, timmar, minuter, sekunder) med vanliga måttenheter. Sannolikhet och statistik Tabeller och diagram för att beskriva resultat från undersökningar. Tolkning av data i tabeller och diagram. Problemlösning Strategier för matematisk problemlösning i vardagliga Kunskapskrav Har kunskaper om rationella tal (0-10.000) och visar det genom att använda dem i olika sammanhang. Kan beskriva positionssystemet (inkl. tiondel)med hjälp av matematiska uttrycksformer. Kan beskriva tal i bråk och decimal form. matematiska metoder för beräkningar med naturliga tal vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och miniräknare. Kan diskutera resultatens rimlighet Kan konstruera mönster i talföljder och geometriska mönster. Har kunskaper om grundläggande geometriska objekt och kunna konstruera dem. Kan använda metoder för hur omkrets hos olika tvådimensionella geometriska figurer kan bestämmas och uppskattas. Kan jämföra, uppskatta och mäta längd, massa, och tid med vanliga måttenheter. Kan använda tabeller och diagram för att tolka och beskriva resultat från undersökningar. Kan lösa enkla problem i elevnära 6

Årskurs 5 Matematik Centralt innehåll Taluppfattning och tals användning Rationella tal och deras egenskaper. (0-100.000) Positionssystemet för tal i decimalform. (tiondel, hundradel) Tal i bråk- och decimalform och deras användning i vardagliga Centrala metoder för beräkningar med naturliga tal och enkla tal i decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och miniräknare. Metodernas användning i olika Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga Algebra Obekanta tal och deras egenskaper. Hur mönster i talföljder och geometriska mönster kan konstrueras, beskrivas och uttryckas. Geometri Grundläggande geometriska objekt däribland polygoner, cirklar, klot, pyramider och rätblock samt deras inbördes relationer. Grundläggande geometriska egenskaper hos dessa objekt. Konstruktion av geometriska objekt. Symmetri i vardagen, i konsten och i naturen. Metoder för hur omkrets och area hos olika tvådimensionella geometriska figurer kan bestämmas och uppskattas. Jämförelse, uppskattning och mätning av längd (m, dm, cm), volym (cm 3, dl, l), massa (kg, g) area (cm 2 )och tid (veckor, dagar, timmar, minuter, sekunder) och vinkel med vanliga måttenheter. Sannolikhet och statistik Sannolikhet, chans och risk grundat på observationer eller experiment. Kunskapskrav Har kunskaper om rationella tal (0 100.000)och visar det genom att använda dem i olika sammanhang. Kan beskriva positionssystemet med hjälp av matematiska uttrycksformer. Kan beskriva tal i bråk och decimal form med hjälp av matematiska uttrycksformer. matematiska metoder för beräkningar med naturliga tal och enkla tal i decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och miniräknare. Kan redogöra för och samtala om tillvägagångssätt och använder då bilder, symboler och andra matematiska uttrycksformer. För resonemang om resultatens rimlighet Har kunskaper om obekanta tal och deras egenskaper och visar det genom att använda dem. matematiska metoder för att göra enkla beräkningar och lösa enkla rutinuppgifter inom algebra. Kan konstruera, beskriva och uttrycka mönster i talföljder och geometriska mönster. Har kunskaper om grundläggande geometriska objekt och visar det genom att använda egenskaper hos dessa objekt och kunna konstruera dem. Kan använda metoder för hur omkrets och area hos olika tvådimensionella geometriska figurer kan bestämmas och uppskattas. Kan jämföra, uppskatta och mäta längd, volym, massa, area, tid och vinkel med vanliga måttenheter. Kan göra beräkningar och lösa uppgifter inom sannolikhet och statistik. Kan använda tabeller och diagram för att tolka och beskriva resultat från 7

Tabeller och diagram för att beskriva resultat från undersökningar. Tolkning av data i tabeller och diagram. Lägesmåttet medelvärde. Samband och förändring Koordinatsystem och strategier för gradering av koordinataxlar. Problemlösning Strategier för matematisk problemlösning i vardagliga Matematisk formulering av frågeställningar utifrån vardagliga undersökningar. Kan redogöra för och samtala om tillvägagångssätt vid bruk av koordinatsystemet. Kan lösa enkla problem i elevnära situationer genom att välja och använda passande strategier och metoder. 8

Årskurs 6 Matematik Centralt innehåll Kunskapskrav för betyget E Kunskapskrav för betyget C Kunskapskrav för betyget A Taluppfattning och tals användning Rationella tal och deras egenskaper. (0 1 000 000) Positionssystemet för tal i decimalform. Det binära talsystemet och talsystem som använts i några kulturer genom historien, till exempel den babyloniska. Tal i bråk- och decimalform och deras användning i vardagliga Tal i procentform och deras samband med tal i bråk- och decimalform. Centrala metoder för beräkningar med naturliga tal och enkla tal i decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och miniräknare. Metodernas användning i olika Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga Algebra Obekanta tal och deras egenskaper samt situationer där det finns behov av att beteckna ett obekant tal med Kan lösa enkla problem i elevnära situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder problemets karaktär. Beskriver tillvägagångssätt på ett i huvudsak fungerande sätt och för enkla och till viss del underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt Har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak hjälp av matematiska uttrycksformer på ett i huvudsak Kan växla mellan olika uttrycksformer i beskrivningarna samt föra enkla resonemang kring hur begreppen relaterar till varandra. i huvudsak Kan lösa enkla problem i elevnära situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär. Beskriver tillvägagångssätt på ett relativt väl fungerande sätt och för utvecklade och relativt väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt Har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl hjälp av matematiska uttrycksformer på ett relativt väl Kan växla mellan olika Kan lösa enkla problem i elevnära situationer på ett välfungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär. Beskriver tillvägagångssätt på ett välfungerande sätt och för välutvecklade och väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa Har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl hjälp av matematiska uttrycksformer på ett väl Kan, växla mellan olika uttrycksformer 9

en symbol. Enkla algebraiska uttryck och ekvationer i situationer som är relevanta för eleven. Metoder för enkel ekvationslösning. Hur mönster i talföljder och geometriska mönster kan konstrueras, beskrivas och uttryckas. Geometri Grundläggande geometriska objekt däribland polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock samt deras inbördes relationer. Grundläggande geometriska egenskaper hos dessa objekt. Konstruktion av geometriska objekt. Skala och dess användning i vardagliga Symmetri i vardagen, i konsten och i naturen samt hur symmetri kan konstrueras. Metoder för hur omkrets och area hos olika tvådimensionella geometriska figurer kan bestämmas och uppskattas. Jämförelse, uppskattning och mätning av längd, area, volym, massa, tid och vinkel med vanliga måttenheter. Mätningar med användning av nutida och äldre metoder. fungerande matematiska metoder sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredställande resultat. Kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer sammanhanget. Kan föra och följa matematiska resonemang i redovisningar och samtal genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt. uttrycksformer i beskrivningarna samt föra utvecklade resonemang kring hur begreppen relaterar till varandra. ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat. Kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med förhållandevis god anpassning till sammanhanget. Kan föra och följa matematiska resonemang i redovisningar genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt. i beskrivningar samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra. ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat. Kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med god anpassning till sammanhanget. Kan i redovisningar och samtal föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller 10

Sannolikhet och statistik Sannolikhet, chans och risk grundat på observationer, experiment eller statistiskt material från vardagliga Jämförelser av sannolikheten vid olika slumpmässiga försök. Enkel kombinatorik i konkreta Tabeller och diagram för att beskriva resultat från undersökningar. Tolkning av data i tabeller och diagram. Lägesmåtten medelvärde, typvärde och median samt hur de kan användas i statistiska undersökningar. Samband och förändring Proportionalitet och procent samt deras samband. Grafer för att uttrycka olika typer av proportionella samband vid enkla undersökningar. Koordinatsystem och strategier för gradering av koordinataxlar. Problemlösning Strategier för matematisk problemlösning i vardagliga Matematisk formulering av frågeställningar utifrån vardagliga breddar dem. 11

Årskurs 6 Matematik PRWEB Matematik ESN Årskurs 6 Kunskapskrav Kan lösa enkla problem i elevnära situationer genom att välja och använda strategier och metoder problemets karaktär. Beskriver tillvägagångssätt och för resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt Har kunskaper om matematiska begrepp och visar det genom att använda dem i sammanhang. hjälp av matematiska uttrycksformer. Kan växla mellan olika uttrycksformer i beskrivningarna samt föra resonemang kring hur begreppen relaterar till varandra. matematiska metoder med att göra beräkningar och lösa rutinuppgifter inom aritmetik. matematiska metoder med att göra beräkningar och lösa rutinuppgifter inom algebra. matematiska metoder med att göra beräkningar och lösa rutinuppgifter inom geometri. matematiska metoder med att göra beräkningar och lösa rutinuppgifter inom sannolikhet. matematiska metoder med att göra beräkningar och lösa rutinuppgifter inom statistik. matematiska metoder med att göra beräkningar och lösa rutinuppgifter inom samband och förändring. Kan redogöra för och samtala om tillvägagångssätt på ett fungerande sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer. Kan föra och följa matematiska resonemang i redovisningar och samtal genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt. Årskurs 7 Matematik Centralt innehåll Kunskapskrav för betyget E Kunskapskrav för betyget C Kunskapskrav för betyget A Taluppfattning och tals användning Reella tal och deras egenskaper samt deras användning i vardagliga och matematiska Talsystemets utveckling från Kan lösa enkla problem i elevnära situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder problemets Kan lösa enkla problem i elevnära situationer på ett relativt väl fungerande sätt genom att välja och använda Kan lösa enkla problem i elevnära situationer på ett välfungerande sätt genom att välja och använda strategier och 12

naturliga tal till reella tal. Metoder för beräkningar som använts i olika historiska och kulturella sammanhang. Potensform för att uttrycka små och stora tal samt användning av prefix. Centrala metoder för beräkningar med tal i bråk- och decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digital teknik. Metodernas användning i olika Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och matematiska situationer och inom andra ämnesområden. Algebra Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. Algebraiska uttryck, formler och ekvationer i situationer som är relevanta för eleven. Metoder för ekvationslösning. Geometri Geometriska objekt och deras inbördes relationer. Geometriska egenskaper hos dessa objekt. Avbildning och konstruktion av geometriska objekt. Skala vid karaktär. Beskriver tillvägagångssätt på ett i huvudsak fungerande sätt och för enkla och till viss del underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt Har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak hjälp av matematiska uttrycksformer på ett i huvudsak Kan växla mellan olika uttrycksformer i beskrivningarna samt föra enkla resonemang kring hur begreppen relaterar till varandra. i huvudsak fungerande matematiska metoder sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredställande resultat. Kan redogöra för och samtala om strategier och metoder med förhållandevis god anpassning till problemets karaktär. Beskriver tillvägagångssätt på ett relativt väl fungerande sätt och för utvecklade och relativt väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt Har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl hjälp av matematiska uttrycksformer på ett relativt väl Kan växla mellan olika uttrycksformer i beskrivningarna samt föra utvecklade resonemang kring hur begreppen relaterar till varandra. ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra enkla beräkningar metoder med god anpassning till problemets karaktär. Beskriver tillvägagångssätt på ett välfungerande sätt och för välutvecklade och väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa Har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl hjälp av matematiska uttrycksformer på ett väl Kan, växla mellan olika uttrycksformer i beskrivningar samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra. ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra enkla beräkningar 13

förminskning och förstoring av tvåoch tredimensionella objekt. Likformighet och symmetri i planet. Metoder för beräkning av area, omkrets och volym hos geometriska objekt, samt enhetsbyten i samband med detta. Geometriska satser och formler och behovet av argumentation för deras giltighet. Sannolikhet och statistik Likformig sannolikhet och metoder för att beräkna sannolikheten i vardagliga Hur kombinatoriska principer kan användas i enkla vardagliga och matematiska problem. Tabeller, diagram och grafer samt hur de kan tolkas och användas för att beskriva resultat av egna och andras undersökningar, till exempel med hjälp av digitala verktyg. Hur lägesmått och spridningsmått kan användas för bedömning av resultat vid statistiska undersökningar. Bedömningar av risker och chanser utifrån statistiskt material. Samband och förändring Procent för att uttrycka förändring och förändringsfaktor samt beräkningar med procent i vardagliga situationer och i situationer inom olika tillvägagångssätt på ett i huvudsak fungerande sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer sammanhanget. Kan föra och följa matematiska resonemang i redovisningar och samtal genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt. och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat. Kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med förhållandevis god anpassning till sammanhanget. Kan föra och följa matematiska resonemang i redovisningar genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt. och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat. Kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med god anpassning till sammanhanget. Kan i redovisningar och samtal föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem. 14

ämnesområden. Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband. Problemlösning Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder. Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden. Enkla matematiska modeller och hur de kan användas i olika PRWEB matematik ESN Årskurs 7 Kunskapskrav Kan lösa enkla problem i elevnära situationer på ett i Beskriver tillvägagångssätt på ett Har kunskaper om matematiska begrepp. fungerande matematiska metoder för att göra enkla beräkningar inom aritmetik. i fungerande matematiska metoder för att göra enkla beräkningar inom algebra. i fungerande matematiska metoder för att göra enkla beräkningar inom geometri. i fungerande matematiska metoder för att göra enkla beräkningar inom sannolikhet. i fungerande matematiska metoder för att göra enkla beräkningar inom statistik. i fungerande matematiska metoder för att göra enkla beräkningar inom samband och förändring. Kan redogöra för och samtala om tillvägagångssätt på ett 15

Årskurs 8 Matematik Centralt innehåll Kunskapskrav för betyget E Kunskapskrav för betyget C Kunskapskrav för betyget A Taluppfattning och tals användning Reella tal och deras egenskaper samt deras användning i vardagliga och matematiska Talsystemets utveckling från naturliga tal till reella tal. Metoder för beräkningar som använts i olika historiska och kulturella sammanhang. Potensform för att uttrycka små och stora tal samt användning av prefix. Centrala metoder för beräkningar med tal i bråk- och decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digital teknik. Metodernas användning i olika Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och matematiska situationer och inom andra ämnesområden. Algebra Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. Algebraiska uttryck, formler och Kan lösa enkla problem i elevnära situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder problemets karaktär. Beskriver tillvägagångssätt på ett i huvudsak fungerande sätt och för enkla och till viss del underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt Har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak hjälp av matematiska uttrycksformer på ett i huvudsak Kan växla mellan olika uttrycksformer i beskrivningarna samt föra enkla resonemang kring hur begreppen relaterar till varandra. i huvudsak fungerande matematiska metoder Kan lösa enkla problem i elevnära situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär. Beskriver tillvägagångssätt på ett relativt väl fungerande sätt och för utvecklade och relativt väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt Har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl hjälp av matematiska uttrycksformer på ett relativt väl Kan växla mellan olika uttrycksformer i beskrivningarna Kan lösa enkla problem i elevnära situationer på ett välfungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär. Beskriver tillvägagångssätt på ett välfungerande sätt och för välutvecklade och väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa Har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl hjälp av matematiska uttrycksformer på ett väl Kan, växla mellan olika uttrycksformer i beskrivningar samt föra 16

ekvationer i situationer som är relevanta för eleven. Metoder för ekvationslösning. Geometri Geometriska objekt och deras inbördes relationer. Geometriska egenskaper hos dessa objekt. Avbildning och konstruktion av geometriska objekt. Skala vid förminskning och förstoring av tvåoch tredimensionella objekt. Likformighet och symmetri i planet. Metoder för beräkning av area, omkrets och volym hos geometriska objekt, samt enhetsbyten i samband med detta. Geometriska satser och formler och behovet av argumentation för deras giltighet. Sannolikhet och statistik Likformig sannolikhet och metoder för att beräkna sannolikheten i vardagliga Hur kombinatoriska principer kan användas i enkla vardagliga och matematiska problem. Tabeller, diagram och grafer samt hur de kan tolkas och användas för att beskriva resultat av egna och andras undersökningar, till exempel med hjälp av digitala verktyg. Hur lägesmått och spridningsmått kan användas för bedömning av resultat sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredställande resultat. Kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer sammanhanget. Kan föra och följa matematiska resonemang i redovisningar och samtal genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt. samt föra utvecklade resonemang kring hur begreppen relaterar till varandra. ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat. Kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med förhållandevis god anpassning till sammanhanget. Kan föra och följa matematiska resonemang i redovisningar genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt. välutvecklade resonemang kring hur begreppen relaterar till varandra. ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat. Kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med god anpassning till sammanhanget. Kan i redovisningar och samtal föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem. 17

vid statistiska undersökningar. Bedömningar av risker och chanser utifrån statistiskt material. Samband och förändring Procent för att uttrycka förändring och förändringsfaktor samt beräkningar med procent i vardagliga situationer och i situationer inom olika ämnesområden. Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband. Problemlösning Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder. Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden. Enkla matematiska modeller och hur de kan användas i olika PRWEB Matematik ESN Årskurs 8 Kunskapskrav Kan lösa enkla problem i elevnära situationer på ett fungerande sätt genom att välja och använda strategier och metoder. Beskriver tillvägagångssätt på ett fungerande sätt och för resonemang om resultatens rimlighet i förhållande till problemsituationen. Har kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang. 18

hjälp av matematiska uttrycksformer. Kan växla mellan olika uttrycksformer i beskrivningarna. fungerande matematiska metoder med enkla rutinuppgifter inom aritmetik. fungerande matematiska metoder med enkla rutinuppgifter inom algebra. fungerande matematiska metoder med enkla rutinuppgifter inom geometri. fungerande matematiska metoder med enkla rutinuppgifter inom sannolikhet. fungerande matematiska metoder med enkla rutinuppgifter inom statistik. fungerande matematiska metoder med enkla rutinuppgifter inom samband och förändring. Kan redogöra för och samtala om tillvägagångssätt på ett fungerande sätt och använder då bilder, symboler, tabeller och grafer med anpassning till sammanhanget. Kan föra och följa matematiska resonemang i redovisningar och samtal genom att ställa frågor som för resonemangen framåt. 19

Årskurs 9 Matematik Centralt innehåll Kunskapskrav för betyget E Kunskapskrav för betyget C Kunskapskrav för betyget A Taluppfattning och tals användning Reella tal och deras egenskaper samt deras användning i vardagliga och matematiska Talsystemets utveckling från naturliga tal till reella tal. Metoder för beräkningar som använts i olika historiska och kulturella sammanhang. Potensform för att uttrycka små och stora tal samt användning av prefix. Centrala metoder för beräkningar med tal i bråk- och decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digital teknik. Metodernas användning i olika Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och matematiska situationer och inom andra ämnesområden. Algebra Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. Kan lösa enkla problem i elevnära situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder problemets karaktär. Beskriver tillvägagångssätt på ett i huvudsak fungerande sätt och för enkla och till viss del underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt Har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak hjälp av matematiska uttrycksformer på ett i huvudsak Kan växla mellan olika uttrycksformer i beskrivningarna Kan lösa enkla problem i elevnära situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär. Beskriver tillvägagångssätt på ett relativt väl fungerande sätt och för utvecklade och relativt väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt Har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl hjälp av matematiska uttrycksformer på ett relativt väl Kan växla mellan olika uttrycksformer i beskrivningarna Kan lösa enkla problem i elevnära situationer på ett välfungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär. Beskriver tillvägagångssätt på ett välfungerande sätt och för välutvecklade och väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa Har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt. hjälp av matematiska uttrycksformer på ett väl Kan växla mellan olika uttrycksformer i beskrivningar samt 20

Algebraiska uttryck, formler och ekvationer i situationer som är relevanta för eleven. Metoder för ekvationslösning. Geometri Geometriska objekt och deras inbördes relationer. Geometriska egenskaper hos dessa objekt. Avbildning och konstruktion av geometriska objekt. Skala vid förminskning och förstoring av tvåoch tredimensionella objekt. Likformighet och symmetri i planet. Metoder för beräkning av area, omkrets och volym hos geometriska objekt, samt enhetsbyten i samband med detta. Geometriska satser och formler och behovet av argumentation för deras giltighet. Sannolikhet och statistik Likformig sannolikhet och metoder för att beräkna sannolikheten i vardagliga Hur kombinatoriska principer kan användas i enkla vardagliga och matematiska problem. Tabeller, diagram och grafer samt hur de kan tolkas och användas för att beskriva resultat av egna och andras undersökningar, till exempel med hjälp av digitala verktyg. Hur lägesmått och spridningsmått kan samt föra enkla resonemang kring hur begreppen relaterar till varandra. i huvudsak fungerande matematiska metoder sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik med tillfredställande resultat. i huvudsak fungerande matematiska metoder sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom algebra, med tillfredställande resultat. i huvudsak fungerande matematiska metoder sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom geometri med tillfredställande resultat. i huvudsak fungerande matematiska metoder sammanhanget för att göra enkla beräkningar och lösa enkla samt föra utvecklade resonemang kring hur begreppen relaterar till varandra. ändamålsenliga matematiska metoder med relativt god enkla rutinuppgifter inom aritmetik med gott resultat. ändamålsenliga matematiska metoder med relativt god enkla rutinuppgifter inom algebra med gott resultat. ändamålsenliga matematiska metoder med relativt god enkla rutinuppgifter inom geometri med gott resultat. ändamålsenliga matematiska metoder med relativt god föra välutvecklade resonemang kring hur begreppen relaterar till varandra. ändamålsenliga och effektiva matematiska metoder med god enkla rutinuppgifter inom aritmetik med mycket gott resultat. ändamålsenliga och effektiva matematiska metoder med god enkla rutinuppgifter inom algebra med mycket gott resultat. ändamålsenliga och effektiva matematiska metoder med god enkla rutinuppgifter inom geometri med mycket gott resultat. ändamålsenliga och effektiva matematiska metoder med god 21

användas för bedömning av resultat vid statistiska undersökningar. Bedömningar av risker och chanser utifrån statistiskt material. Samband och förändring Procent för att uttrycka förändring och förändringsfaktor samt beräkningar med procent i vardagliga situationer och i situationer inom olika ämnesområden. Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband. Problemlösning Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder. Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden. Enkla matematiska modeller och hur de kan användas i olika rutinuppgifter inom sannolikhet med tillfredställande resultat. i huvudsak fungerande matematiska metoder sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom statistik med tillfredställande resultat. i huvudsak fungerande matematiska metoder sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom samband och förändring med tillfredställande resultat. Kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer sammanhanget. enkla rutinuppgifter inom sannolikhet med gott resultat. ändamålsenliga matematiska metoder med relativt god enkla rutinuppgifter inom statistik med gott resultat. ändamålsenliga matematiska metoder med relativt god enkla rutinuppgifter inom samband och förändring med gott resultat. Kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med förhållandevis god anpassning till sammanhanget. enkla rutinuppgifter inom sannolikhet med mycket gott resultat. ändamålsenliga och effektiva matematiska metoder med god enkla rutinuppgifter inom statistik samt samband och förändring med mycket gott resultat. ändamålsenliga och effektiva matematiska metoder med god enkla rutinuppgifter inom samband och förändring med mycket gott resultat. Kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med god anpassning till sammanhanget. Kan föra och följa matematiska resonemang i redovisningar och samtal genom att ställa frågor och framföra och bemöta matematiska Kan föra och följa matematiska resonemang i redovisningar genom att ställa frågor och framföra och bemöta matematiska argument på Kan i redovisningar och samtal föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument 22

argument på ett sätt som till viss del för resonemangen framåt. ett sätt som för resonemangen framåt. på ett sätt som för resonemangen framåt och fördjupar eller breddar dem. PRWEB Matematik ESN Årskurs 9 Kunskapskrav Kan lösa enkla problem i elevnära situationer genom att välja och använda strategier och metoder problemets karaktär. Beskriver tillvägagångssätt och för resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativt Har kunskaper om matematiska begrepp och visar det genom att använda dem i ett sammanhang. hjälp av matematiska uttrycksformer. Kan växla mellan olika uttrycksformer i beskrivningarna samt föra resonemang kring hur begreppen relaterar till varandra. matematiska metoder med att göra beräkningar och lösa rutinuppgifter inom aritmetik. Kan välja och använda matematiska metoder med att göra beräkningar och lösa rutinuppgifter inom algebra. Kan välja och använda matematiska metoder med att göra beräkningar och lösa rutinuppgifter inom geometri. Kan välja och använda matematiska metoder med att göra beräkningar och lösa rutinuppgifter inom sannolikhet.. Kan välja och använda matematiska metoder med att göra beräkningar och lösa rutinuppgifter inom statistik. matematiska metoder med att göra beräkningar och lösa rutinuppgifter inom samband och förändring. Kan redogöra för och samtala om tillvägagångssätt på ett fungerande sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med anpassning till sammanhanget. Kan föra och följa matematiska resonemang i redovisningar och samtal genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt. 23