Svar till SSM på begäran om förtydligande angående krypmodell för OFPkoppar och implementering av modellen i ABAQUS

Relevanta dokument
Svar till SSM på frågor i protokollet från kapselavstämningsmötet 25 juni 2014

Information technology Open Document Format for Office Applications (OpenDocument) v1.0 (ISO/IEC 26300:2006, IDT) SWEDISH STANDARDS INSTITUTE

Svar till SSM på begäran om komplettering rörande kriticitet

Isometries of the plane

Documentation SN 3102

Isolda Purchase - EDI

Module 6: Integrals and applications

Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:

12.6 Heat equation, Wave equation

Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm

Methods to increase work-related activities within the curricula. S Nyberg and Pr U Edlund KTH SoTL 2017

SVENSK STANDARD SS-EN ISO 19108:2005/AC:2015

Styrteknik: Binära tal, talsystem och koder D3:1

Grafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions:

LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik

8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)

CHANGE WITH THE BRAIN IN MIND. Frukostseminarium 11 oktober 2018

Module 1: Functions, Limits, Continuity

2015:52. Technical Note. Review of SKB s creep model, its implementation into ABAQUS and an evaluation of SKB s analyses of the copper canister

Grafisk teknik. Sasan Gooran (HT 2006)

This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum

Pre-Test 1: M0030M - Linear Algebra.

Support for Artist Residencies

Tentamen i Matematik 2: M0030M.

The Finite Element Method, FHL064

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

SKB anger i det följande när svar på delfrågorna 1-4 kommer att lämnas. För delfråga 5 ges svar i form av kompletterande information till ansökan.

SVENSK STANDARD SS-EN ISO :2009/AC:2010

Analys och bedömning av företag och förvaltning. Omtentamen. Ladokkod: SAN023. Tentamen ges för: Namn: (Ifylles av student.

State Examinations Commission

Rastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version

FORSKNINGSKOMMUNIKATION OCH PUBLICERINGS- MÖNSTER INOM UTBILDNINGSVETENSKAP

DVG C01 TENTAMEN I PROGRAMSPRÅK PROGRAMMING LANGUAGES EXAMINATION :15-13: 15

Examensarbete Introduk)on - Slutsatser Anne Håkansson annehak@kth.se Studierektor Examensarbeten ICT-skolan, KTH

Adding active and blended learning to an introductory mechanics course

Materialplanering och styrning på grundnivå. 7,5 högskolepoäng

EXPERT SURVEY OF THE NEWS MEDIA

Second handbook of research on mathematics teaching and learning (NCTM)

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik

RADIATION TEST REPORT. GAMMA: 30.45k, 59.05k, 118.8k/TM1019 Condition D

Kursutvärderare: IT-kansliet/Christina Waller. General opinions: 1. What is your general feeling about the course? Antal svar: 17 Medelvärde: 2.

Webbregistrering pa kurs och termin

Vågkraft. Verification of Numerical Field Model for Permanent Magnet Two Pole Motor. Centrum för förnybar elenergiomvandling

Hållbar utveckling i kurser lå 16-17

Beslut om bolaget skall gå i likvidation eller driva verksamheten vidare.

Kristina Säfsten. Kristina Säfsten JTH

Uttagning för D21E och H21E

Hur fattar samhället beslut när forskarna är oeniga?

Eurokod 3: Dimensionering av stålkonstruktioner Del 4-3: Rörledningar. Eurocode 3 Design of steel structures Part 4-3: Pipelines

SAMMANFATTNING AV SUMMARY OF

x 2 2(x + 2), f(x) = by utilizing the guidance given by asymptotes and stationary points. γ : 8xy x 2 y 3 = 12 x + 3

S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A

Collaborative Product Development:

Svar till SSM på begäran om tidplan för kvarstående kompletteringar av Miljökonsekvensbeskrivningen

denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell

Discovering!!!!! Swedish ÅÄÖ. EPISODE 6 Norrlänningar and numbers Misi.se

Workplan Food. Spring term 2016 Year 7. Name:

Chapter 2: Random Variables

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version

Aborter i Sverige 2008 januari juni

Beijer Electronics AB 2000, MA00336A,

Webbreg öppen: 26/ /

Questionnaire for visa applicants Appendix A

Gradientbaserad Optimering,

Om oss DET PERFEKTA KOMPLEMENTET THE PERFECT COMPLETION 04 EN BINZ ÄR PRECIS SÅ BRA SOM DU FÖRVÄNTAR DIG A BINZ IS JUST AS GOOD AS YOU THINK 05

Bilaga 5 till rapport 1 (5)

1. Varje bevissteg ska motiveras formellt (informella bevis ger 0 poang)

SVENSK STANDARD SS :2010

Support Manual HoistLocatel Electronic Locks

Klassificering av brister från internaudit

Komponenter Removed Serviceable

Eternal Employment Financial Feasibility Study

Surfaces for sports areas Determination of vertical deformation. Golvmaterial Sportbeläggningar Bestämning av vertikal deformation

Stiftelsen Allmänna Barnhuset KARLSTADS UNIVERSITET

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

2(x + 1) x f(x) = 3. Find the area of the surface generated by rotating the curve. y = x 3, 0 x 1,

LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik. SIGNALBEHANDLING I MULTIMEDIA, ETI265 Inlämningsuppgift 1 (av 2), Task 1 (out of 2)

Preschool Kindergarten

Sammanfattning hydraulik

Lösenordsportalen Hosted by UNIT4 For instructions in English, see further down in this document

Svar till SSM på begäran om förtydligande rörande krypdeformation för kapseln

Measuring child participation in immunization registries: two national surveys, 2001

Solutions to exam in SF1811 Optimization, June 3, 2014

FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR

Calculate check digits according to the modulus-11 method

SVENSK STANDARD SS

2.1 Installation of driver using Internet Installation of driver from disk... 3

Forms for Security background check and register control check for work at Ringhals

Consumer attitudes regarding durability and labelling

1. Unpack content of zip-file to temporary folder and double click Setup

STANDARD. UTM Ingegerd Annergren UTMS Lina Orbéus. UTMD Anders Johansson UTMS Jan Sandberg

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version

District Application for Partnership

En bild säger mer än tusen ord?

Svar till SSM på begäran om komplettering rörande tillverkningsaspekter för ingående delar i kapseln

MISSIV Dok.Id Postadress Besöksadress Telefon Telefax Expeditionstid Box 1104

f(x) =, x 1 by utilizing the guidance given by asymptotes and stationary points. cos(x) sin 3 (x) e sin2 (x) dx,

Transkript:

Strålsäkerhetsmyndigheten Att: Ansi Gerhardsson 171 16 Stockholm DokumentID 1496935 Ärende Handläggare Jan Sarnet Rolf Sandström Jan Hernelind Er referens SSM2011-2426-233 Kvalitetssäkrad av Christina Lilja Mikael Jonsson Kristina Skagius Allan Hedin Godkänd av Helene Åhsberg Kommentar Sida 1(7) Datum 2015-10-02 Ert datum 2015-09-24 Kvalitetssäkrad datum Godkänd datum Svar till SSM på begäran om förtydligande angående krypmodell för OFPkoppar och implementering av modellen i ABAQUS Strålsäkerhetsmyndigheten, SSM, har i skrivelse till, SKB, begärt förtydligande av ansökan om slutförvaring av använt kärnbränsle och kärnavfall angående krypmodell för OFP-koppar och implementering av modellen i ABAQUS. SSM:s frågor är uppdelade i två bilagor vilka även detta svarsbrev speglar. SSM:s frågor återges nedan i kursiv text och besvaras punkt för punkt. Frågorna är ställda på engelska och besvaras därför också på engelska. Med vänlig hälsning Avdelning Kärnbränsle Helene Åhsberg Projektledare Tillståndsprövning KBS-3 Box 250, 101 24 Stockholm Besöksadress Blekholmstorget 30 Telefon 08-459 84 00 Fax 08-579 386 10 www.skb.se 556175-2014 Säte Stockholm

2 (7) Bilaga 1 Questions to SKB regarding the eep model used in SKB s FE analyses of the copper canister Questions below are related to the eep model desibed in reference [1]. [1] Rolf Sandström and Henrik C.M. Andersson, Creep in phosphorus alloyed copper during power-law breakdown, J. Nuc. Mat., 372 (2008) 76-88. (same as Sandström and Andersson (2008a) ) General In the paper by Sandström and Andersson (2008a) several eep models are presented. The answers below primarily refer to the eep model used by Hernelind in FEM calculations for SKB on the copper canister. The model is specified in SKBdoc 1482373. The eep model is also desibed in the publications by Sandström and Andersson (2008b), Jin and Sandström (2009) and Raiko et al. (2010). In the text below the original questions from SSM are given in italics and SKB s answers in normal text. The equation numbers in both the questions and the answers refer to Sandström and Andersson (2008a). QUESTIONS 1. How should g rate be understood? Is it a scale factor dependent only on temperature that relates initial eep strain rate with the minimum eep strain rate? The models for primary eep in Sandström and Andersson (2008a) are based on the so called model (Wu et al. 2004) that gives an exponential dependence for both the time and strain dependence of the primary eep rate. One form of the model has been known since the 1930s and has been extensively used in FEM-based eep calculations in industry. When the precision in the eep testing was improved in the 1990ties, it was demonstrated that the model could desibe the time and strain dependence of the eep rate in the primary stage to the accuracy of the experiments for martensitic steels, stainless steels and copper. Later it has been shown that it is consistent with a basic model for primary eep of copper (Sandström 2012). The initial eep rate during primary eep is much larger than during the secondary stationary stage. The ratio between these two eep rates is expressed as g rate. The expression for g rate is derived from the model. tmin 2 /(12 ) grate ( ) t init Since the time to the minimum eep rate t min is related to the rupture time (t R /3) in the model, it depends on both temperature and stress, and as a consequence so does g rate.

3 (7) In the expression for g rate there are three parameters 2, t init and t min and in the expression for, equation (12), there are three more parameters B, n b, and p b. The values of t init = 1 h and t min = t R /3 have been selected to make a comparison to experiments easy to handle. The remaining four parameters 2, B, n b, and p b have then been fitted to experimental eep curves and slow strain stress curves. 2. What is the value of N in equation (14), i.e. equation (9). N g ( 1 rate ) 1 i1? Is N given by N is the Norton (eep) exponent. It is given by log N log min The final form of N depends on the eep model. See also the answer to question 6. 3. Does determination of g rate based on equations (13)/(14) or (29)/(30) give the same g rate? Equations (13)/(14) are more general than (29)/(30) and can be used for different models. It is recommended to use the expression derived directly from the model (eqs. (29) and (30)). tmin 2 /(12 ) grate ( ) t init 4. In the application of the eep model in SKB s FE analyses of the copper canister, technological stress is used. In the ABAQUS user subroutine, true stress is reduced eff according to true e. Should in equation (22) and (43) be technological stress? If yes, how is this explained? σ in equations (22) and (43) is a stress that is a correction to the true stress due to stage IV work hardening. In the uniaxial case it happens to be equal to the technological stress. Stage IV work hardening in copper has a very large effect both on stress strain curves and eep curves. It gives a linear stress (true stress) dependence as a function of strain. This is illustrated in Figs. 4 and 7 in Sandström and Andersson (2008a). Since the consequence of stage IV work hardening is exactly the same as if you replace true stresses with engineering stress in the uniaxial case, they were called engineering stresses in Sandström and Andersson (2008a). In retrospective this was unfortunate, because it gave the impression that FEM computations should be made with engineering stresses. However, the factor e eff is vital to take stage IV work hardening into account. The effect of stage IV work hardening was analysed in detail in Sandström and Hallgren (2012).

4 (7) 5. Does the following equation hold for eep in Cu-OFP: tot ( stationary non stationary ) t where stationary is given by equation (22) and nonstationary is given by equation (43). The answer is model dependent. In the model that Hernelind has used, the non-stationary solution does not automatically include the stationary one and then the two parts should be added. On the other hand, in the primary eep model presented more recently (Sandström 2012), the non-stationary solution already includes the stationary part, and then the nonstationary part gives the complete solution. 6. Is the expression in (23), i.e equation (9) and (20) N 2Q 3 eff RT i max 2 correctly derived based on The general expression for the Norton exponent is the one given above log N log min If the expression is applied to equation (20) or (22) it gives 2 2Qeff N 3 RT i max The contribution from the factor exp(b 3 /k B T) in eqs. (20) and (22) is neglected since it is small. If the Norton exponent is evaluated in the model in equation (7), it gives the result in equation (9).

5 (7) Bilaga 2 Questions to SKB regarding the implementation of the eep model into ABAQUS Questions below are related to the implementation of the eep model desibed in reference [1] into ABAQUS. [1] Rolf Sandström and Henrik C.M. Andersson, Creep in phosphorus alloyed copper during power-law breakdown, J. Nuc. Mat., 372 (2008) 76-88. (same as Sandström and Andersson (2008a) ) General Creep simulations in copper have been performed for the copper shell of the KBS-3 canister in the final repository of spent nuclear fuel. The FE-code ABAQUS (ABAQUS 2014) has been used for the simulations and when including eep in the simulation a user defined subroutine has been used. The subroutine is based on the theory for phosphorus alloyed copper presented by Sandström and Andersson (2008a) and a report (SKBdoc 1482373) desibing how the routine shall be used. There exist a lot of predefined subroutine interfaces which could be used for ABAQUS (ABAQUS 2014), and for eep two possibilities are available, subroutine interface CREEP and the subroutine interface UMAT. The CREEP interface is the easiest way to implement traditional eep theory and assumes that the magnitude of the eep strain is driven by Mises effective stress. This method is used to implement the eep material model used for the simulations involving eep in copper (SKBdoc 1482373). QUESTIONS 1. It is unclear how is derived in the user subroutine. Can this be further explained? min 2 /(12 ) grate ( ) is calculated based on Andersson-Östling and Sandström, (2007) init using Equations (19) and (22) together with the text defining t min and t init. The time ratio g rate in Eq. (22) can be estimated by assuming that t init ~ 1 h and t min ~ t R /3 where t R is the rupture time. It is evident from Fig. 5b that the eep strain in the primary stage does not vary dramatically with time and hence the exact choice of the parameters t init and t min is not itical. t t 2. In the user subroutine, the technological stresses = is used in equation (22) and = ( ) is used in equation (43). What motivates the use of technological stress? How is the factor derived?

6 (7) The question about technological stresses has been answered above in question 4 to appendix (Bilaga) 1. The factor e eff is calculated based on =. ABAQUS is using logarithmic strain = => =. Thus = Since elastic strains are small, the effective eep strain can be used in this expression. 3. According to equation (35) in [1], the Mises stress ( ) shall be derived based on the stress tensor and the back stress tensor. In the user subroutine, ( ) is instead derived as. Thus, is not considered when calculating the Mises stress. How is this deviation from the eep model motivated? What impact does the deviation have on the numerical results? Using the CREEP interface, the eep is defined by scalars (no tensors are available). For multi-axial usage this is handled directly by ABAQUS which calculates the strain components using the equivalent (uniaxial) deviatoric eep inement returned from CREEP and using the deviatoric stress gradient. = 1 3 + So, by using CREEP, it s not possible to use tensors. However, for the applications where the eep material model have been used, the loading mostly is monotonic which means that the difference should be small (using tensor formulation makes it possible to simulate the Bauschinger effect which occur at cyclic loading). SKB considers this simplification to be reasonable. A comparison between a scalar and tensor formulation has not been performed. 4. For the multiaxial case in [1], the evolution of the back stress tensor is given by equation (39), i.e. =. In the user subroutine, the evolution of the back stress is instead given by the scalar equation (5), i.e. = ( ). How is this deviation from the eep model motivated? What impact does the deviation have on the numerical results? The subroutine CREEP is based on USE OF EFFECTIVE STRESS and is thus not following MULTIAXIAL FORMULATION. Bold expressions refer to the headlines in Sandström and Andersson (2008b). SKB considers also this simplification to be reasonable. A comparison between a scalar and tensor formulation has not been performed.

7 (7) References ABAQUS, 2014. ABAQUS manuals. Version 6.13.1. Dassault Systèmes Simulia Corp. Jin L Z, Sandström R, 2009. Non-stationary eep simulation with a modified Armstrong Frederick relation applied to copper canisters. Computational Materials Science 46, 339 346. Raiko H, Sandström R, Rydén H, Johansson M, 2010. Design analysis report for the canister. SKB TR-10-28,. Sandström R, 2012. Basic model for primary and secondary eep in copper. Acta Materialia 60, 314 322. Sandström R, Andersson H C M, 2008a. Creep in phosphorus alloyed copper during power- law breakdown. Journal of Nuclear Materials 372, 76 88. Sandström R, Andersson H C M, 2008b. Creep during power-law breakdown in phosphorus alloyed copper. In Jaske C E (red.) Proceedings of the ASME Pressure Vessels And Piping Conference, Vol 9. San Antonio, Texas, 22 26 July 2007. New York: The American Society of Mechanica Engineers, 419 426. Sandström R, Hallgren J, 2012. The role of eep in stress strain curves for copper. Journal of Nuclear Materials 422, 51 57. Wu R, Sandström R, Seitisleam F, 2004. Influence of extra coarse grains on the eep properties of 9 percent CrMoV (P91) steel weldment. Journal of Engineering Materials and Technology 126, 87 94. Unpublished documents SKBdoc id, version Title Issuer, year 1482373 ver 1.0 Documentation of subroutine for copper eep. SKB, 2015