m hur synkrotonljustekniken har och kommer att förändra vår bild av världen. Filosoficirkeln 6 September 2016 Mikael Eriksson, MAX IV 1
4 stora som ändrat vår världsbild Nicolaus Copernicus 1473-1543 Heliocentriskt solsystem Johannes Kepler 1571-1630 Keplers planetlagar Charles Darwin 1809-1882 Arternas uppkomst och utveckling Georges Lemaitre 1894-1966 Big Bangs fader 2
Experiment, instrument Galileo Galilei 1564-1643 Galilei-kikaren, bservationer Tycho Brahe 1546-1601 Exakta astronomiska mätningar Johann Mendel 1822-1884 Genetikens fader Marie Curie 1867-1934 Radioaktivitet 3
The Scale of Things Nanometers and More Things Natural Things Manmade 10-2 m Fly ash ~ 10-20 mm Microwave Microworld Human hair ~ 60-120 mm wide 10-4 m 10-5 m Red blood cells (~7-8 mm) 10-6 m Nanoworld 10-7 m 10-8 m 0.01 mm 10 mm 1,000 nanometers = 1 micrometer (mm) Atoms of silicon spacing ~tenths of nm 10-10 m Self-assembled, Nature-inspired structure Many 10s of nm S S S S S S S S Nanotube electrode Carbon buckyb all ~1 nm Carbon nanotube diameter ~1.3 nm diameter 1 nanometer (nm) 0.1 nm Fabricate and combine nanoscale building blocks to make useful devices, e.g., a photosynthetic reaction center with integral semiconductor storage. ATP synthase 10-9 m Zone plate x-ray lens uter ring spacing ~35 nm 0.1 mm 100 nm 0.01 mm 10 nm P Pollen grain Red blood cells Soft x-ray ~10 nm diameter 0.1 mm 100 mm Infrared 200 mm MicroElectroMecha nical (MEMS) devices 10-100 mm wide Visible Dust mite The Challenge Head of a pin 1-2 mm 1,000,000 nanometers = 10-3 m 1 millimeter (mm) Ultraviolet Ant ~5 mm 1 cm 10 mm 4 Quantum corral of 48 iron atoms on copper surface positioned one at a time with an STM tip
Steep rise in brightness Diffraction limit MAX IV 1021 Undulators 1015 Wiggler s Bending magnets Moore s Law for semiconductors Rotating anode 109 Bertha Roentgen s hand 1900 1900 1950 1950 2000 2000 5
1st and 2nd gen storage rings Courtesy: R. Bartolini - John Adams Institute 3rd gen storage rings SR from the crab nebula Predicted by Hannes Alfvén and Nikolaj Herlofsson 1953 6
7
Diffraction Coherent beam of wavelength l focused to spot size Dx will diffract with angle D = ~l/dx K-J Kim in Characteristics of Undulator Radiation, AIP 1989 Airy disk Courtesy: Robert Hettel, SLAC 8
Diffraction Limited Storage Rings Courtesy: Robert Hettel, SLAC 9
MAX IV overview 300m LINAC: Injects the rings & drives femtosecond X-ray source - 2014 1.5 GeV ring (96m) - 2016 ~30 beamlines when fully equipped 3 GeV ring (528m) - 2015 World s brigthest ring based light source 10
Free Electron Laser 11
The MAX IV injector linac 12
Vad har man uppnått hittills med synkrotron ljus? (Axplock) Karakterisering och framtagning av nya material t ex halvledare, läkemedel, nano-material, metallurgi, massminnen, korrosion.. Miljö: karakterisering av utsläpp, undersökning av inverkan av nya ämnen, atmosfär-vatten-mark undersökningar, nano-partiklar Energi: Energilagring (t ex batterier, solceller), nya energi-processer Kulturella arvet: Undersökning av historiska skrifter, material Medicin: Karakterisering av processer i levande material, strukturbestämningar av makromolekyler, vacciner Dynamiska processer: kemiska reaktioner, hållfasthet, materialförändringar Nya företag mm 13
UsersLCLSby Facility at the Light Sources 2009 12000 APS 1996 11000 10000 9000 8000 Number of Users 7000 6000 5000 4000 3000 2000 1000 0 Fiscal Year Forskning inom ytfysik, katalytisk kemi, protein kristallografi, amorfa material, spårämnesanalys, biokemi, mikroskopi, litografi, topografi, medicin, strukturbestämningar, elektronspektroskopi etc. SSRL 1974 & 2004NSLS 1982 ALS 1993 14
MAX-lab (pre MAX IV facility) ntries u o c 25 15
Emittance in today s rings 4GSR Z. Zhao, SSRF 16
A new trend in ring design R. Bartolini 17
18
19
20
21
22
MAX IV - An integrated Solution Compact Magnet Design. High precision, High vibration frequencies Multipurpose Strong Magnets Full Energy Injector LINAC: Short Pulses Large Number of Magnets robust, high stability. large momentum aperture Small Magnet Apertures Narrow vacuum Chambers 100 % NEG Coating Low Vacuum Conductance Low RF frequency MBA Lattice IBS WakeFields High Heat Load Density Long Bunches Landau Cavities Copper Chambers 23
Civil Engineering Shear Wave Velocities Concrete, 0.3m, >2400 m/s Stabilized UGM, 0.3m, 1300 m/s Low Baltic Clay Till, 2-8m layer, 250-300 m/s North-East Clay Till, 8-13m layer, 400-650 m/s Lime Stabilized Soil, 4m in average, >900m/s Large Footprint, No Isolated Foundations for Roofs etc. Poisson s Ratio = 0.48 Shale/Mudstone, 1100-1200 m/s www.ekdahlgeo.se 24
Vad kan vi göra med diffraktions-begränsade ljuskällor i Röntgen-området? Allt vi kunde göra tidigare, men snabbare, med bättre statistik och högre upplösning. Mikroskopi: Atomär upplösning. (?) Snabba förlopp. (kemiska reaktioner, läkemedel) Amorfa material. Reaktioner på elektronnivå (t ex effektivare solceller) Nya skräddarsydda material (Billiga, effektiva och miljövänliga batterier, starka lätta material med helt nya egenskaper, nano-material, nya datormaterial ) Processer på elektron-nivå (Artificiell effektiv fotosyntes) Kemiska snabba reaktioner mm. 25
bb MAX IV Making the invisible visible! Thanks for listening! 26 A national user laboratory hosted by Lund University
De 5 stora utmaningarna (BESAC 2007 (1) How do we control material processes at the level of electrons? pave the way for artificial photosynthesis and other highly efficient energy technologies, and could revolutionize computer technologies. How do we design and perfect atom- and energy-efficient synthesis of revolutionary new forms of matter with tailored properties? low-cost photovoltaics, self-repairing and self-regulating devices, integrated photonic (light-based) technologies, and nano-sized electronic and mechanical devices. How do remarkable properties of matter emerge from complex correlations of the atomic or electronic constituents and how can we control these properties? an entirely new generation of materials that supersede present-day semiconductors and superconductors. 27
De 5 stora utmaningarna (BESAC 2007 (2) How can we master energy and information on the nanoscale to create new technologies with capabilities rivaling those of living things? clear the way towards profound advances in a great many scientific fields, including energy and information technologies. How do we characterize and control matter away especially very far away from equilibrium? it could yield dramatic new energy-capture and energy storage technologies, greatly improve our predictions for molecular-level electronics, and enable new mitigation strategies for environmental damage. 28
Distribution of Users at the ~30 SC Facilities 2013 JGI ARM DIII-D Alcator 29 SSRL Nearly ¾ of EMSL users do their work at ASCR or BES TJNAF ALS FES ATLAS Bio & Enviro Facilities Basic Energy Sciences Advanced Scientific Research Computing facilities High Energy Physics Nuclear Physics Biological & Environmental Research Fusion Energy Sciences RHIC Nuclear physics facilities B-Factory APS Light Sources Tevatron High energy physics facilities ALCF LCF NSLS Computing Facilities Neutron Sources Nano Centers HFIR Lujan SNS Does not include LHC; HEP supports about 1,700 scientists, technicians, and engineers at the LHC. NERSC NSRCs LCLS