ÖVNINGSUPPGIFTER KAPITEL 6

Relevanta dokument
ÖVNINGSUPPGIFTER KAPITEL 6

ATT KONTROLLERA FÖR BAKOMLIGGANDE FAKTORER

ATT KONTROLLERA FÖR BAKOMLIGGANDE FAKTORER

ÖVNINGSUPPGIFTER KAPITEL 4

Kapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA

ÖVNINGSUPPGIFTER KAPITEL 8

Kapitel 15: INTERAKTIONER, STANDARDISERADE SKALOR OCH ICKE-LINJÄRA EFFEKTER

ÖVNINGSUPPGIFTER KAPITEL 7

Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN

ÖVNINGSUPPGIFTER KAPITEL 12

ÖVNINGSUPPGIFTER KAPITEL 3

Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING

HYPOTESPRÖVNING sysselsättning

Sänkningen av parasitnivåerna i blodet

ÖVNINGSUPPGIFTER KAPITEL 9

InStat Exempel 4 Korrelation och Regression

ÖVNINGSUPPGIFTER KAPITEL 13

ÖVNINGSUPPGIFTER KAPITEL 10

ÖVNINGSUPPGIFTER KAPITEL 10

ÖVNINGSUPPGIFTER KAPITEL 2

ÖVNINGSUPPGIFTER KAPITEL 10

ÖVNINGSUPPGIFTER KAPITEL 9

Tentamen på. Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 2

Tentamen på. Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 2

Tentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 16 e januari 2015

ÖVNINGSUPPGIFTER KAPITEL 2

Laboration 2. Omprovsuppgift MÄLARDALENS HÖGSKOLA. Akademin för ekonomi, samhälle och teknik

Linjär regressionsanalys. Wieland Wermke

Multipel Regressionsmodellen

Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT

Föreläsning 9. NDAB02 Statistik; teori och tillämpning i biologi

Tentamen på. Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 5. Poäng. Totalt 40. Betygsgränser: G 20 VG 30

Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi

Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi

Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 4

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

Tentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 23 e mars Ten 1, 9 hp

STOCKHOLMS UNIVERSITET VT 2007 Statistiska institutionen Johan Andersson

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.

ÖVNINGSUPPGIFTER KAPITEL 9

ordinalskala kvotskala F65A nominalskala F65B kvotskala nominalskala (motivering krävs för full poäng)

Lösningsförslag till tentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 13 e mars 2015

Regressionsanalys med SPSS Kimmo Sorjonen (2010)

Richard Öhrvall, 1

Statistik B Regressions- och tidsserieanalys Föreläsning 1

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson

Föreläsning 10, del 1: Icke-linjära samband och outliers

Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:

Tentamen består av 12 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 32 poäng för att få väl godkänt.

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson

Bilaga 1. Kvantitativ analys

Föreläsning G60 Statistiska metoder

Fråga nr a b c d 2 D

1. a) F4 (känsla av meningslöshet) F5 (okontrollerade känlsoyttringar)

Gör uppgift 6.10 i arbetsmaterialet (ingår på övningen 16 maj). För 10 torskar har vi värden på variablerna Längd (cm) och Ålder (år).

Föreläsning G60 Statistiska metoder

Tentamen består av 12 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 32 poäng för att få väl godkänt.

Tentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Tisdagen den 10 e januari Ten 1, 9 hp

KOM IHÅG ATT NOTERA DITT TENTAMENSNUMMER NEDAN OCH TA MED DIG TALONGEN INNAN DU LÄMNAR IN TENTAN!!

Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta. Tentamensresultaten anslås med hjälp av kodnummer.

OBS! Vi har nya rutiner.

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Tentamen på. Statistik och kvantitativa undersökningar STA100, 15 HP. Ten1 9 HP. 19 e augusti 2015

EXAMINATION KVANTITATIV METOD vt-11 (110204)

Tentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 13 e mars Ten 1, 9 hp

import totalt, mkr index 85,23 100,00 107,36 103,76

Läs noggrant informationen nedan innan du börjar skriva tentamen

Delgrupper. Uppdelningen görs efter kön, ålder, antal barn i hushållet, utbildningsnivå, födelseland och boregion.

1. Lära sig plotta en beroende variabel mot en oberoende variabel. 2. Lära sig skatta en enkel linjär regressionsmodell

Kapitel 22: KLUSTRADE SAMPEL OCH PANELDATA

OBS! Vi har nya rutiner.

STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson

Utrikes föddas arbetsmarknadssituation

Rapport om VD löner inkomståren

Den svenska arbetslöshetsförsäkringen

Försök att skriva svaren inom det utrymme på sidan som finns. Skriv tydligt! Svara sammanhängande och med enkla, tydliga meningar.

Resursfördelningsmodellen

Justeringar och tillägg till Svar till numeriska uppgifter i Andersson, Jorner, Ågren: Regressions- och tidsserieanalys, 3:uppl.

Arbetslöshetsrisken för sysselsatta understiger befolkningens genomsnittliga nivå

Rapport om VD löner inkomståren

Beskriv, resonera och reflektera kring ovanstående fråga med hänsyn taget till social bakgrund, etnicitet och kön.

1b) Om denna överstiger det kritiska värdet förkastas nollhypotesen. 1c)

Försök att skriva svaren inom det utrymme på sidan som finns. Skriv tydligt! Svara sammanhängande och med enkla, tydliga meningar.

STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh

STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström. Omtentamen i Regressionsanalys

a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1.

Tentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 24 e mars Ten 1, 9 hp

INNEHÅLL DEL II: STATISTISK INFERENS SLUMPMÄSSIGA SAMPEL

OBS! Vi har nya rutiner.

Tentamen Metod C vid Uppsala universitet, , kl

Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8

STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Statistik och epidemiologi T5

STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson

KOM IHÅG ATT NOTERA DITT TENTAMENSNUMMER NEDAN OCH TA MED DIG TALONGEN INNAN DU LÄMNAR IN TENTAN!!

Läs noggrant informationen nedan innan du börjar skriva tentamen

Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta. Tentamensresultaten anslås med hjälp av kodnummer.

Föreläsning 4. Kap 5,1-5,3

Transkript:

ÖVNINGSUPPGIFTER KAPITEL 6 ATT KONTROLLERA FÖR BAKOMLIGGANDE FAKTORER 1. Regressionen nedan visar hur kvinnors arbetsmarknadsdeltagande varierar beroende på om de har småbarn eller inte. Datamaterialet gäller 753 amerikanska kvinnor år 1975. Variabeln timmar mäter antalet timmar som kvinnan jobbade under året; småbarn är en dummy som antar värdet 1 om hon hade barn i åldrarna 0-5 år och annars värdet 0: timmar = 836 488småbarn a. Hur många timmar jobbade i genomsnitt en kvinna utan småbarn? En kvinna med småbarn? Vi kontrollerar nu också för kvinnans ålder och får följande resultat: timmar = 1629 651småbarn 18ålder b. Tolka koefficienten för småbarn. c. Prediktera antalet arbetstimmar för en 30-årig kvinna utan småbarn. d. Tolka koefficienten för ålder. 2. Vi mäter skillnaden i lön mellan män och kvinnor år 2010. Regressionen nedan visar att männen i samplet i genomsnitt tjänade 3000 euro, och att kvinnorna i snitt tjänade 500 euro mindre: lön 2010 = 3000 500kvinna Vi kontrollerar nu för personernas löner år 2009: lön 2010 = a + b 1 kvinna + b 2 lön 2009 Vilket av följande alternativ beskriver bäst vad som händer med koefficienten för kvinna: a. b 1 kommer fortfarande att ha värdet -500 eftersom kvinnorna i snitt tjänar 500 euro mindre än männen oavsett vad vi kontrollerar för. b. b 1 mäter nu löneskillnaden mellan kvinnor och män år 2009. c. b 1 kommer antagligen att ha ett värde närmare noll.

3. Studenter som går på många föreläsningar har i snitt bättre tentresultat. Men hjälper verkligen föreläsningarna eller är det istället de duktigaste studenterna som går på flest föreläsningar? Du vill nu undersöka detta. Du har tillgång till ett datamaterial som innehåller följande variabler: Studentens poäng på kurstenten (variabeln poäng), antalet föreläsningar som studenten deltog i (variabeln deltagande) och studentens poäng på inträdesförhöret till universitetet (variabeln inträde). Data samlas in för 100 studenter på deras första grundkurs vid ÅA. a. Hur skulle du mäta om föreläsningarna hjälper? Ställ upp en regressionsekvation som visar vilken variabel som är beroende, och vilken eller vilka variabler som är oberoende. b. Se fråga a: Vilket resultat kan du förvänta dig att se om det är så att föreläsningarna hjälper? Använd här din regressionsekvation från uppgift a: Vilket tecken (positivt/negativt/noll) skulle den relevanta koefficienten anta? 4. Det finns ett klart samband mellan hur länge föräldrar har gått i skolan och hur länge deras barn går i skolan. Spridningsdiagrammet nedan visar sambandet för 30-åriga amerikaner år 1976. På y-axeln har vi individens utbildning mätt i antal år (utb); på x-axeln har vi föräldrarnas genomsnittliga utbildningsmängd (forutb). Vi har också ritat in regressionslinjen i diagrammet, där utb = 10,11 + 0,40forutb a. Anta att hela sambandet kan förklaras av att barn till högutbildade i genomsnitt är smartare än barn till lågutbildade, och att högintelligenta personer i sin tur utbildar sig längre. Vi kontrollerar nu för iq och kör regressionen: utb = a + b 1 forutb + b 2 iq

Ungefär vilket värde antar koefficienten b 1? b. Här är det egentliga resultatet: utb = 3,58 + 0,28forutb + 0,08iq Prediktera antalet utbildningsår för en person vars föräldrar har 10 års utbildning och där personen själv har en iq på 100. c. Se uppgift b: Tolka koefficienten för forutb. d. Vi kontrollerar nu också för om personen bodde nära ett universitet i tonåren (variabeln nära som antar värdet 1 för dem som bodde nära ett universitet och 0 för övriga): utb = 3,55 + 0,27forutb + 0,07iq + 0,22nära En av personerna i data har 12 års utbildning. Personen har en iq på 103 poäng, föräldrarnas utbildning är 13 år och personen bodde inte nära ett universitet i tonåren. Hur stor är residualen för den här personen? 5. Vi kör en regression som beskriver hur utfallsvariabeln varierar beroende på kön och en annan oberoende variabel: y = a + b 1 kvinna + b 2 x, där kvinna är en dummy som antar värdet 1 för kvinnor och 0 för män. Spridningsdiagrammet nedan illustrerar data grafiskt. Vilket av följande fyra påståenden är sanna: a. b 1 har ett negativt värde och b 2 har ett negativt värde b. b 1 har ett negativt värde och b 2 har ett positivt värde c. b 1 har positivt värde och b 2 har ett negativt värde d. b 1 har ett positivt värde och b 2 har ett positivt värde 6. Hur stiger VD:ns lön med antalet år på posten? För att besvara denna fråga använder vi ett sampel för 177 amerikanska företag år 1990. I regressionen

nedan mäter variabeln lön VD:ns lön i tusentals dollar; erfarenhet mäter antalet år på posten och vinst mäter företagets vinst i miljoner dollar: lön = 646,43 + 12,45erfarenhet + 0,588vinst R 2 = 0,178 a. Hur mycket ökar lönen i snitt då vinsten ökar med 5 miljoner dollar och då vi kontrollerar för VD:ns erfarenhet? b. Förklaringsgraden är 0,178. Tolka! 7. Tabellen på nästa sida är klippt ur artikeln Stature and Status: Health, Ability and Labor Market Outcomes. Utfallsvariabeln är loggad lön (den naturliga logaritmen). a. Se samplet British Cohort Study (1970) och MEN age 30. Tolka koefficienten för height at age 30, där längden mäts i tum. Använd då resultatet från regressionen där man inte kontrollerat för testresultat i ung ålder eller övriga kontrollvariabler (extended controls). b. Abstraktet nedan är klippt ur samma artikel. Läs och ta fasta på det som är understruket i rött. Förklara hur resultaten i tabellen stödjer detta uttalande. (Använd då samplet British Cohort Study (1970).)

REGRESSIONER MED FAKTORVARIABLER 8. Tabellen nedan beskriver genomsnittligt antal sjukdagar per år i tre olika yrkesgrupper. Yrke Medelvärde # obs. Lärare 15 563 Kassabiträde 20 368 Bibliotekarie 10 247 Vilken eller vilka regressionsekvationer beskriver dessa skillnader? a. sjukdagar = 10 + 15lärare + 20kassabiträde + 10bibliotekarie b. sjukdagar = 10 + 5lärare + 10kassabiträde 5bibliotekarie c. sjukdagar = 15 + 20kassabiträde + 10bibliotekare d. sjukdagar = 15 + 5kassabiträde 5bibliotekare e. sjukdagar = 10 + 5lärare + 10kassabiträde (I alla regressioner ovan är lärare en dummy som antar värdet 1 för lärare och 0 för övriga; kassabiträde är en dummy som antar värdet 1 för kassabiträden och 0 för övriga; bibliotekarie är en dummy som antar värdet 1 för bibliotekarier och 0 för övriga.) 9. Regressionen nedan visar hur genomsnittligt sparande varierar beroende på åldersklass. Variabeln sparande mäter hur stor procent av inkomsterna som sätts på sparande. Åldersklass mäts genom fyra kategorier: 20 29-åringar, 30-39-åringar, 40-49-åringar och 50-plussare. I regressionen nedan är ålder30 en dummy för 30-39-åringar; ålder40 en dummy för 40-49-åringar; ålder50 är en dummy för 50-plussare. Referensgruppen är 20-29-åringarna. sparande = 2,8 + 2,2ålder30 + 4,3ålder40 + 4,7ålder50 Vilken eller vilka av följande påståenden är sanna: a. 20 29-åringarna sparar i genomsnitt 2,8 procent av inkomsterna. b. 50-plussare sparar i genomsnitt 4,7 procent av inkomsterna. c. 30 39-åringarna sparar i genomsnitt 5 procent av inkomsterna. d. 40 49-åringarna sparar i genomsnitt 9,3 procent av inkomsterna. e. 50-plussare sparar i genomsnitt 4,7 procentenheter mer än 20 29- åringarna. f. 40-49-åringarna sparar i genomsnitt 4,3 procentenheter mer än 30-39- åringarna.

10. Du vill ta reda på om studeranden med rika pappor tar mindre studielån än sådana med fattigare pappor. För ett sampel finlandssvenska studerande har du tillgång till data för mängden studielån de tog under senaste läsår (variabeln studielån, mätt i euro) och pappans inkomst (variabeln farsinkomst, mätt i euro). Du kör följande regression: studielån = a + b farsinkomst Du vill nu ännu kontrollera för studieort. Anta att alla personer i data studerar i antingen Åbo, Vasa eller Helsingfors. Formulera en regressionsekvation som kontrollerar för studieort. (Använd regressionsekvationen ovan och utvidga med lämpliga oberoende variabler. Namnge dessa själv och beskriv också hur variablerna är kodade.) 11. Du vill mäta sambandet mellan skatteprocent och arbetslöshetsgrad i världens länder: arbetslöshet = a + b skatteprocent Du vill nu ännu kontrollera för världsdel, där alla länder i data ligger i antingen Afrika, Asien, Europa, Nordamerika eller Sydamerika. Formulera en regressionsekvation som kontrollerar för världsdel. (Använd regressionsekvationen ovan och utvidga med lämpliga oberoende variabler. Namnge dessa själv och beskriv också hur variablerna är kodade.) 12. Regressionen nedan visar hur bmi varierar beroende på etnicitet och ålder. Bmi är ett mått som antar högre värden ju mer man väger i förhållande till sin längd (ett bmi på 18,5-25 räknas som normalviktig; lägre värden som underviktig och högre värden som överviktig). Etnicitet mäts genom tre kategorier (vit, svart och övriga). I regressionen nedan är svart en dummy för svarta och övrig en dummy som antar värdet 1 för personer som varken är vita eller svarta och värdet 0 för dem som är vita eller svarta. Referensgruppen är vita personer. Ålder mäter personernas åldrar i antal år. Data kommer från en amerikansk enkätstudie med 10 351 respondenter. bmi = 23,1 + 1,4svart 1,2övrig + 0,05ålder a. Prediktera bmi för en vit person som är 30 år gammal. b. Vilken etnisk grupp väger i snitt som mest då vi kontrollerat för ålder? Vilken etnisk grupp väger i snitt som minst då vi kontrollerat för ålder? c. Förklaringsgraden är 0,038. Tolka! d. Visa hur man kan illustrera sambandet mellan bmi och etncitet genom ett profildiagram (använd mallen nedan). Diagrammet ska visa hur

genomsnittlig bmi varierar beroende på etnicitet för en genomsnittlig person som är 48 år gammal. 29 28 27 26 25 24 23 22 vita svarta övriga