mattetankar Reflektion kring de olika svaren

Relevanta dokument
Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal

Utmanande uppgifter som utvecklar. Per Berggren och Maria Lindroth

jämföra/storleksordna talen jämföra/storleksordna talen Jag kan jämföra/storleksordna talen

Per Berggren och Maria Lindroth

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte i årskurs 3

Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation

Lokal pedagogisk planering

Inledning. Polydronmaterialet. Tio områden. Lgr11-koppling

Per Berggren och Maria Lindroth

Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll.

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8

Matematik. Ämnesprov, läsår 2013/2014. Bedömningsanvisningar Delprov B, C, D, E. Årskurs

Inlärningsnivåer i matema0k och en varierad undervisning

Observationsschema Problemlösningsförmåga

Varierad undervisning

ARBETSPLAN MATEMATIK

2-7: Bråk-förlängning Namn:.. Inledning

Matematik. Ämnesprov, läsår 2014/2015. Bedömningsanvisningar. Årskurs

Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera.

Svar och lösningar. Kängurutävlingen 2009 Cadet för gymnasiet

ESN lokala kursplan Lgr11 Ämne: Matematik

22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:

Extramaterial till Matematik Y

Labora&v matema&k - för en varierad undervisning

Lokala mål i matematik

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper.

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt

Språkstart Matematik Facit. Matematik för nyanlända. Jöran Petersson

PRIMA MATEMATIK EXTRABOK 1 FACIT

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer

Lokal studieplan matematik åk 1-3

Ämnesprovet i matematik årskurs 3, 2017

Algebraskogen. Tema: Taluppfattning och tals användning, algebra och problemlösning

Del ur Lgr 11: kursplan i matematik i grundskolan

MATEMATIK 3.5 MATEMATIK

Södervångskolans mål i matematik

Matematik. Namn: Datum:

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Studenter i lärarprogrammet GF(11GF20) 46 p G: 28 p VG: 38 p

Kunskapskrav. Materialet består av flera olika komponenter.

Förslag den 25 september Matematik

Dagens innehåll Bedömning för lärande i matematik. PRIM-gruppen. Katarina Kjellström Inger Ridderlind Anette Skytt

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Bedömning för lärande i matematik

Inlärningsnivåer i matema0k och en varierad undervisning

Facit åk 6 Prima Formula

PLANERING MATEMATIK - ÅK 7. Bok: X (fjärde upplagan) Kapitel : 5 Geometri Kapitel : 6 Bråk och procent. Elevens namn: Datum för prov HÄLLEBERGSSKOLAN

Centralt innehåll. I årskurs 1.3

Enhet / skola: Lindens skola i Lanna Åk: 3

Matematik 92MA41 (15hp) Vladimir Tkatjev

Innehåll och förslag till användning

2-4: Bråktal addition-subtraktion. Namn:.

Träningsuppgifter, gamla nationella prov i matematik(del B1) från Taluppfattning. Hashem Rezai, S:t Ilians skola, Västerås

Kursplan Grundläggande matematik

,5 10. Skuggat. Svart ,2 4. Randigt. b) 0,4 10. b) 0,3 10. b) 0,08. b) 0, ,7 0, ,17 0,95 0,15 0,2 + 0,7

Matematik. Ämnesprov, läsår 2014/2015. Bedömningsanvisningar Delprov B, C, D, E. Årskurs

Ämnesplan i matematik för Häggenås, Bringåsen och Treälven

KRAVNIVÅER. Åtvidabergs kommuns grundskolor MATEMATIK

Delprov A, muntligt delprov Lärarinformation

Svar och korta lösningar Benjamin 2006

Fundera tillsammans. Victor är 5 år och Åsa är 8 år. Hur gammal kommer Victor att vara när Åsa är dubbelt så gammal som hon är nu?

1. Skriv = eller i den tomma rutan, så att det stämmer. Motivera ditt val av tecken.

Inlärningsnivåer i matema0k och en varierad undervisning

Inlärningsnivåer i matema0k och en varierad undervisning

Arbetsområde: Från pinnar till tal

Centralt innehåll. Problemlösning. Taluppfattning och tals användning. Tid och pengar. Sannolikhet och statistik. Geometri.

MATEMATIK 3.5 MATEMATIK

1 Josefs bil har gått kilometer. Hur långt har den gått när han har kört (3) tio kilometer till? km

formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,

Namn: Hundradelar. 4 tiondelar 0, 4 17 tiondelar 1, tiondelar 298 hundradelar. Hundradelar. 98 hundradelar 875 hundradelar

Del B, C och D samt gruppuppgifter

Extramaterial till Matematik X

Att förstå bråk och decimaltal

matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall

matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall

Skolverkets förslag till kursplan i matematik i grundskolan. Matematik

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Gunnar Hyltegren. Ämnet matematik 2011 i grundskolan

Kunskapsmål och betygskriterier för matematik

MATEMATIK 5.5 MATEMATIK

Terminsplanering årskurs 6 Matematik Ärentunaskolan

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Röda tråden. Skyttorps skola, Vattholmaskolan, Pluggparadiset, Storvretaskolan och Ärentunaskolan Reviderad:

Hanna Almström Pernilla Tengvall. matematik. Koll på. Läxbok

Förord. Innehåll. 1 Tal 4. 4 Algebra Bråk och procent Statistik och sannolikhet Tid, hastighet och skala 60.

LPP Matematik åk 4 Vt-14

a) 1 b) 4 a) b) c) c) 6 a) = 4 b) = 6 c) = 6 1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? 4. Beräkna. 3. Hur många?

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013

Kängurun Matematikens hopp

Gruppledtrådar. Gruppledtrådarna ingår i lärarhandledningen till Prima Formula 6 Får kopieras! Bo Sjöström, Jacob Sjöström och Gleerups Utbildning AB

Boken Förstå och använda tal en handbok behandlar 22 områden av elevers

Målet i sikte åk 1 3. Målet i sikte 1 3. kartläggning i matematik. Lgr11

Formativ bedömning - en väg till bättre lärande. Formativ bedömning - en väg till bättre lärande. Tre centrala processer för formativ bedömning

Sammanfattningar Matematikboken X

Extra-bok nummer 3B. i matematik

STARTAKTIVITET 2. Bråkens storlek

matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall

Transkript:

Reflektion kring de olika svaren Taluppfattning och tals användning 15 Skriv trehundrasju Reflektion: 31007 tyder på att eleven tolkar talet som 3, 100, 7 3007 tyder på att eleven tolkar talet som 300, 7 16 Bråk där 1/8 är färglagd Reflektion: Svaret 1/3 tyder på att eleven utgår från att högersidan är indelad i tre delar. Svaret 1/4 tyder på att eleven inte förstår att varje del i bråket måste vara lika stor utan endast utgår från hur många bitar cirkeln är delad i. Svaret 1/6 kan vara ett svar som tyder på samma missuppfattning men där eleven tänkt att även vänstersidan skulle kunna delas i tre delar. Algebra 17 Hur tror du att mönstret ska fortsätta 1,2,4,5 Reflektion: Det första svaret tyder på att eleven bortser från att talet tre saknas. Det andra svaret tyder på att eleven uppfattar att mönstret är att addera ett, sedan två och att upprepa detta. Det tredje svaret är typiskt för de elever som endast ser mönster som en upprepning. 18 4 = - 6 Reflektion: Det här är troligen den svåraste formen av öppen utsaga. Elev 1 vänder troligen subtraktionen och läser från höger till vänster, vilket ger talet 6 2 = 4. Elev 2 har förstått uppgiften och likhetstecknets innebörd. Elev 3 tar 4 6 och kommer fram till svaret 2. Elev 4 tar troligen 4 6 och svarar 0. Hur tänker eleverna själva när de löser uppgiften Här gäller det att identifiera den första termen, hur stor måste den vara för att vi ska ha 4 kvar efter att 6 tagits bort Situationen kan exemplifieras med att Polly har gett Milton sex kakor och nu har hon fyra kvar. Hur många hade hon från början Prima matematik Bedömning

Reflektion kring de olika svaren Geometri 19 Hur många hörn har stjärnan Reflektion: De elever som svarar fem räknar antalet uddar medan de elever som svarar 10 räknar alla hörn. Upprepa gärna med en sexuddig stjärna. 20 Hur hänger omkrets och area ihop Reflektion: Testa med några konkreta exempel. Kan eleverna argumentera för sin åsikt och kan de ge exempel Sannolikhet och statistik 21 Vilka påståenden stämmer Reflektion: Hitta på fler påståenden och fundera på om de stämmer. I det första exemplet använder eleven begreppet dubbelt på ett felaktigt sätt. Det sista exemplet kan tyda på att eleven tolkar delen som en fjärdedel för att det är en av fyra delar i diagrammet. Samband och förändring 22 Isak får tre kronor. Johanna får dubbelt så mycket. Hur mycket får hon Reflektion: Svaret 5 tyder på att eleven tänker dubbelt som + 2, vilket är en vanlig missuppfattning. Svaret 9 tyder på att eleven tänker att dubbelt så mycket betyder att man ska lägga på tre två gånger. Dessa elever uppfattar inte begreppen dubbelt och dubbelt så mycket som synonyma. Svaret 7 tyder på samma tankefel men att eleven istället har lagt på 2 två gånger. Problemlösning 23 Det finns 5 bullar i varje påse och det är 16 barn i klassen. Hur många påsar bullar behöver jag köpa Reflektion: Den elev som svarar 3 tar det antal som hamnar närmast 15 trots att bullarna då inte kommer att räcka. Prima matematik Bedömning

Prima matematik Bedömning 14

Skriv trehundrasju. 3007 31007 307 Prima matematik Bedömning 15

1 3 1 4 1 6 1 8 Prima matematik Bedömning 16

Hur tror du att mönstret ska fortsätta 1, 2, 4, 5 1, 2, 4, 5, 6, 7 1, 2, 4, 5, 7, 8 1, 2, 4, 5, 1, 2 Prima matematik Bedömning 17

4 = - 6 2 10-2 0 Prima matematik Bedömning 18

Hur många hörn har stjärnan 5 10 Prima matematik Bedömning 19

Hur hänger omkrets och area ihop Två figurer kan ha samma omkrets men olika area. Omkretsen är alltid större än arean. Arean är alltid större än omkretsen. Två figurer kan ha samma area men olika omkrets. Prima matematik Bedömning 20

Vilka påståenden stämmer Favoritfärg Det är dubbelt så många som gillar gult som rött. De som gillar gult är lika många som de som gillar grönt och blått tillsammans. Hälften gillar rött mest. En fjärdedel gillar blått. Prima matematik Bedömning 21

Isak får tre kronor. Johanna får dubbelt så mycket. Hur mycket får hon 5 6 9 7 Prima matematik Bedömning 22

Det finns 5 bullar i varje påse och det är 16 barn i klassen. Hur många påsar bullar behöver jag köpa 3 4 Prima matematik Bedömning 23