Bio4Energy Thermo-chemical platform Status 2013-05-13 Platform leader: Rikard Gebart, LTU Co-PI: Rainer Backman, UmU
Bakgrund 2 Sverige har naturliga förutsättningar för att vara självförsörjande med energi Transportsektorn måste inte vara ett undantag men idag är den till 98% beroende av importerad olja Kungliga Vetenskapsakademin konstaterar i rapporten Biodrivmedel nu och i framtiden att: Hållbart producerad skogsbiomassa kan försörja både existerande skogsindustri och transportsystemet Processer som bygger på förgasning är det bästa alternativet för omvandling av skogsbiomassa till drivmedel Metanol och DME är de drivmedel som ger bästa utnyttjandet av råvaran Politiska styrmedel krävs för att fasa ut billiga men miljöfarliga fossila bränslen
Drivmedel från skogen Utgå från biprodukter och rester från skogsindustrin samt integrera nya processer med existerande skogsindustri Minsta förlusterna uppstår vid förgasning samt syntes av metan (gas), metanol (vätska) och DME (vätska @ 5 bar) Metanol och DME ger renare avgaser än bensin och diesel vid användning i förbränningsmotorer CO2-utsläppen minskar med nära 100% jämfört med bensin och diesel 3
Vision av vägen till fossilfria transporter Nat. Gas Waste Biomass CO 2 H 2 O Elec. Methanol Plant Solvolysis *LOW: Liquified Organic Waste Inorganic byproduct Gasification (LOW* / Pyrol. Oil) MeOH Pyrolysis Gasification Black Liq./ Pyrol. Oil) Biomass (Pulp Wood) Pulp Mill Biomass Biomass gasification MeOH SOEC* MeOH Fossil MeOH MeOH Renewable MeOH Chemical Industry *Solid Oxide Electrolysis Cell Harbors 1 2 n nn DME DME Industry Use M e t h a n o l Distribution 4 Bunker fuel in ships HD vehicles
LTU Green Fuels pilot plant Powder Torrefied Mtrl Pyrolysis oil LOW EF gasifier Cleaning 4 ton product per 24h Others BioMeOH Black Liquor Membranes 25-30 bar > 100 bar BioDME DP-1 Plant Active C Abs WG Shift Amine Wash MeOH Synth. DME Synth. Distillation O 2 H 2 CO Catalytic Process Development Existing facilities Electrolysis CO 2 Future development Fuel Cells The Renewable Syngas Highway 5
6 8 DME-adapted HD trucks operate in commercial service during 2013. Two of them run in Piteå
7 Forskning som leder mot drivmedel från skogen Bio4Energy Grundläggande forskning från frö till drivmedel Svenskt Förgasningscentrum 10-årigt program tillsammans med 9 universitet/institut och 25 företag (fas 2 beviljad med 58.5 milj./år) Forskning på tre olika förgasningstekniker Bio4Energy Termokemiska plattform utgör medfinansiering LTU Biosyngas Program Processoptimering för metanol och DME från svartlut Fältförsök med tunga lastbilar (Volvo) Förstudie med samförgasning av svartlut och pyrolysolja samt förvätskat organiskt avfall
Planerade industriella tester 2013-2015 Ersättning av LPG med DME för värmning av sprutboxar vid Volvo Umeverken Tester av biometanol i hjälpmotor för en av Stenas färjor Tester av biometanol i Perstorps processer Fortsatta fältförsök med BioDME i Euro5 motorer Fältförsök med BioDME i nyutvecklade Euro6 motorer Eventuellt försök med biometanol i MD95- bränsle 8
Några av våra forskningspartners och finansiärer W2C 9 SFC: totalt 25 företag; LTU Biosyngas: c:a 10 företag
Bio4Energy Thermochemical platform Focus on fundamentals of gasification and pyrolysis High temperature chemistry Fuel particle kinetics Mathematical modeling Containment materials Integrated in Bio4Gasification Total budget increased with a factor of 3 Underpinning projects = Bio4Energy Thermochem Applied projects: pilot scale experiments Problem oriented projects: close collaboration with partner companies
Recruitments Kentaro Umeki, LTU: fuel conversion and modeling Eynas Amer, LTU: optical methods for fuel characterisation Rikard Gebart, LTU: program manager for SFC and modeling Rainer Backman, UmU: high temperature ash chemistry, modeling, materials Florian Schmidt, UmU: laser absorption spectroscopy
UP1: Thermochemistry Project leader: Rainer Backman, UmU Collaboration between LTU and UmU Budget 2013-2017: 970 + 6500 kkr Achievements: Development of new thermodynamic database Viscosity model for slag with particles TGA-study of melting in CaCO 3 -K 2 CO 3 Model for two melts: silica rich and carbonate rich
UP1: New data The new thermodynamic database: Modeling shows that both liquid slag and liquid carbonate can be present simultaneously depending on two melts - total pressure - amount of silicate in fuel. At low CO 2 -pressure a silicate rich slag phase forms. At higher pressures a carbonate melt forms. The region of co-existence of the two melts depends on Si content and extent of attack on wall material
UP1: Trace metals BFB-gasification of waste Konttinen, Backman 2013 At gasifying conditions all trace metals are likely to be gaseous at temperatures above 900 o C. Thus they will not enrich in the gasifier, but follow the exit gas and condense in downstream gas conditioning equipment. Depending on bubbling conditions in the quench, some of the metals can dissolved in the quench water.
UP2: Experimental characterisation of fuel conversion processes Project leader: Marcus Broström, UmU Collaboration between LTU, ETC and UmU Budget 2013-2017: 5440 + 2400+ 2600 kkr Achievements: New method with laser heating of fuel particles implemented Drop tube furnace experiments at Monash University New flexible gasifier at ETC Raman holography development started Laser absorption development started TGA development started
UP2: Example results Reactivity of torrefied wood, modeling of compositional changes and estimation of oxidation reactivity
UP2: Example results New flame dynamics reactor with visual access Detailed studies of powder flames with high speed photography and optic methods One of four entrained flow reactors Three idealised for fuel particle studies One non-idealised for studies of complex phenomena Joint study UmU-LTU with high speed shadowgraphy planned
UP3: Theoretical sub-models/reactions for thermochemical biomass conversion Project leader: Kentaro Umeki, LTU Collaboration between LTU, ETC and UmU Budget 2013-2017: 1790+ 2400+ 660 kkr Achievements: Prototype model for char gasification describing catalytic activity of ash was developed. Several literature reviews have been carried out: pyrolysis models predicting product gas evolution, transformation of particle morphology, particle scale pyrolysis and char gasification models. Simple and detailed particle scale models (chemical reactions and transport phenomena) were developed. A first study and publication on devolatilization and oxidation kinetics of torrefied wood.
Char conversion vs conversion rate for different biomass species Biomasses with low Si in ash Poor predictability. Negative rate coefficient Biomasses with high Si in ash Good model predictability!! Governing deactivation mechanism Reaction of alkali metal with Si?
UP4: Interaction between product streams and containment materials Project leader: Rainer Backman, UmU Participants: UmU Budget 2013-2017: 3240 kkr Achievements: Exposure experiments ash - refractory materials Calculation model for ash-refractory interaction in reducing conditions Evaluation of chemical analysis of ash samples from the PEBG pilot gasifier
UP4: One week exposure tests c b a The reactions between ash and a mullite-based fire proof stone (Vibron 1650H) was studied by laboratory exposure tests. Two distinctive layers (20-60 µm) are formed on a mullite particle indicating potasssium attack. The outer layer has higher potassium than the inner layer. Carlborg 2013 Cracks in both layers stop at the particle surface. This effect may be due to differences in density between layers and original particle.
UP4: Chemical changes The reactions between ash and mullite-based fire proof stones cause new phases to form. The phases indicated in red are new products formed during exposure of K, Ca and Si rich ashes. Mainly potassium alumino-silicates are formed. Calcium is found in only one case as wollastonite. This indicate that potassium is by far the most important player in the chemical attack of the fire proof bricks in biomass gasification. One week tests Carlborg 2013
Other achievements PhD dissertations: Per Carlsson, ETC (2011), Large Scale Experiments and Modeling of Black Liquor Gasification Sonja Enestam, Åbo Akademi University (2011), Corrosivity of hot flue gases in the fluidized bed combustion of recovered waste wood. Guest professor: Kevin Whitty, Univ. of Utah Post doc: Dan Sweeney, Univ. of Utah (Fulbright) New pilot for fast pyrolysis @ETC New atmospheric entrained flow gasifier geared for research @ETC Four new fuel characterisation reactors at LTU, ETC and UmU (drop tubes and a flame reactor)
UP1: Plan for the continuation 1. Development of thermodynamic database for biomass gasification 2. Development of slag-salt deposition model 3. Models for non-newtonian liquids and suspensions. 4. Employment of PhD student (UmU) UP2: 1. Fast heating rate measurements (Hi-TGA, droptube) 2. Development of laser measurements of alkali, phosphorus and zinc in flue gases 3. Continued development of the laser heating-laser diagnostic method for fuel characterisation UP3: 1. Implementation of ETC model in OpenFoam 2. Refinement of models for intrinsic and apparent char gasification reactivity 3. Model developments: (1) transformation of particle morphology, (2) gas evolution during devolatilization, and (3) gas-phase reactions related to tar/soot formation UP4: 1. Development of model for ash-refractory materials 2. Evaluation of with first results from PEBG 3. Exposure experiments in laboratory 4. Employment of PhD student (UmU)
UP2: Publications Broström, M. et al., Influence of torrefaction on the devolatilization and oxidation kinetics of wood, J. of Analytical and Applied Pyrolysis, 2012 Lycksam, H. et al., High-speed interferometric measurement and visualisation of the conversion of a black liquor droplet during laser heating, Optics and Lasers in Engineering, 2012 Carlsson, P. et al., High speed imaging of biomass particles heated with a laser, J. Analytical and Applied Pyrolysis, 2013
UP3: Publications Broström, M. et al., Influence of torrefaction on the devolatilisation and oxidation kinetics of wood, J. Analytical and Applied Pyrolysis 96 (2012) 100-109 Umeki, K. et al., Fuel conversion and char morphology from the pyrolysis of pulverized woody biomass, Industrial and Engineering Chemistry Research 51 (2012) 13973-13979 Umeki, K. et al., A model of biomass char gasification describing the change in catalytic activity of ash, Chemical Engineering Journal 207-208 (2012) 616-624