int (*fp) (char, char*) //pekare till funktion som tar //argumenten (char, char*) och //returnerar int
|
|
- Susanne Lundqvist
- för 7 år sedan
- Visningar:
Transkript
1 Pekare char v[10]; //array med 10 characters char* p; //pekare till characters //p pekar på v's fjärde element p = &v[3] p & är "adressen-av" operatorn. För de flesta typer T gäller att T* är typpekare. En variabel av typen T* kan alltså hålla adressen till ett objekt av typen T. int* pi; char** cpp; //pekare till pekare av char int (*vp)[10] //pekare till en array av 10 heltal int (*fp) (char, char*) //pekare till funktion som tar //argumenten (char, char*) och //returnerar int Fundamental operation på en pekare - avreferering (dereferencing), innebär att man refererar till objektet som pekaren pekar på. char c1 = 'a'; char* p = &c1; char c2 = *p; //avreferering int* k; *k = 4; //ej tillåtet, //inget minnesutrymme int j = 4; //skapa minne int* k = &j; //adressen av j *k = 2; //OK, ändrat på j int* k, j = 5; k = &j; cout << k << " " << *k;//ok //ok void* ptr; //pekare till okänd typ //kräver kastning
2 Funktionspekare När väl en funktion är kompilerad och laddad i minnet för att exekveras har den en minnes plats. Minnet och även funktionen, har en adress. Precis som man kan använda pekare till variabler kan man använda dem till funktioner. Man definierar ex. en funktionspekare enligt följande: void (*funcptr)(); Variabeln funcptr är en pekare (*), som kan peka på funktioner (), som tar noll argument, och som returnerar void. void *funcptr(); //Ingen funktionspekare, //funktion som returnerar void* //bör skrivas void* funcptr(); // Komplicerade definitions.cpp /* 1. */ int * (*(*fp1)(int))[10]; /* 2. */ float (*(*fp2)(int,int,float))(int); /* 3. */ typedef double (*(*(*fp3)())[10])(); fp3 a; /* 4. */ int (*(*f4())[10])(); #1: fp1 är en pekare till en funktion som tar ett heltalsargument och returnerar en pekare till en array av 10 intpekare. #2: fp2 är en pekare till en funktion som tar tre argument (int, int, and float) och returnerar en pekare till en funktion som tar ett heltalsargument och som i sin tur returnerar ett flyttal. #3: Om man skapar komplicerade definitioner, så kan man använda typedef. Fp3 är en pekare till en funktion tar noll argument och returnerar en pekare till en array med 10 pekare till funktioner som tar noll argument och returnerar double. A är en fp3 typ. #4: Detta är en funktionsdeklaration, inte en funktionspekare. F4 är en funktion som returnerar en pekare till en array med 10 stycken pekare till funktioner som returnerar heltal.
3 Använda en funktionspekare När man väl har definierat en funktionspekare ska man tilldela den en funktionsadress innan man kan använda den. Precis som adressen till en array arr[10] är namnet utan hårdparenteserna arr, så är adressen till en funktion func() funktionsnamnet utan argumenten, (func). void func() { cout << "func() called..." << endl; void main() { void (*fp)(); // Define a function pointer fp = func; // Initialize it (*fp)(); // Dereferencing calls the function void (*fp2)() = func; // Define and initialize (*fp2)(); Array av pekare till funtioner Möjligt att skapa arrayer av funktionspekare. Anrop till en funktion i arrayen - indexera arrayen och avreferera pekaren. Koncept stödjer 'tabelldriven kod'; istället för att använda sig av villkor och case statements, väljer man funktionen som ska exekvera utifrån indexvariabeln. Designen är användbar då man ofta tar bort och lägger till funktioner från tabellen. Ex: Körschema Varje funktion utför specifika operationer Funktionspekare lagras i en array Ändras körschemat => ändra funktionspekarna Följande exempel skapar en 'dummy' funktion genom ett preprocessor macro.
4 #include <iostream> // A macro to define dummy functions: #define DF(N) void N(int i) { \ cout << "function " #N " called...with argument " << i << endl; DF(a); DF(b); DF(c); DF(d); DF(e); DF(f); DF(g); // { a, b, c, d, e, f, g = function address void (*func_table[])(int) = { a, b, c, d, e, f, g ; int main() { int num = 0; while(1) { num++; cout << "press a key from 'a' to 'g' " "or q to quit" << endl; char c, cr; cin.get(c); cin.get(cr); // second one for return if ( c == 'q' ) break; //... out of while(1) if ( c < 'a' c > 'g' ) continue; (*func_table[c - 'a'])(num); a(1); b(2); New och delete New new operatorn används för att skapa nya objekt dynamiskt. Anropar aktuell konstruktor i objektet. New operatorn returnerar en pekare till det nyskapade objektet. Typ* a = new Typ; Typ* a = new Typ[5]; Livstiden av ett objekt skapat med new är inte bundet till det scope { det skapas i. När objektet är en array kommer en pekare till första elementet att returneras. Ex: Både new int och new int[10] returnerar en int*.
5 New operatorn kommer att anropa funktionen ::operator new() för att allokera minne. Ett första argument sizeof(t) kommer skickas med när man allokerar minne för ett objekt av typen T. Om operator new() misslyckas kommer den att returnera 0 och ett undantag kastas (bad_alloc). Ex: new T resulterar i ett anrop till ::operator new(sizeof(t)) Ett objekt kan skapas med new endast om klassen har en konstruktor. Inga initialiserare kan specificeras för en array. Implicerar att en array av objekt endast kan skapas om det finns en defaultkonstruktor. Då kommer defaultkonstruktorn att anropas för varje element i arrayen. Initialisering sker endast om new returnerar icke noll. Ett exempel av allokering av en array new (int (*[10]) () ); Allokerar en array av 10 stycken pekare till funktioner som inte tar några argument och returnerar int Delete Delete operatorn frigör ett objekt skapat av new operatorn. delete objektpekarvariabel; Resultatet är av typen void. Operanden (objekt-variabel) måste vara en pekare returnerad av new. Resultatet av att applicera delete på en pekare som inte härstammar från new är odefinierat (programmet kan krascha). Att ta delete på en pekare med värdet null är däremot OK. Att accessa ett borttaget objekt är odefinierat. Ett anrop till delete kommer anropa destruktorn för objektet som pekaren avser. Ett delete-anrop leder till att funktionen ::operator delete() anropas. För ett objekt av klassen T kommer T::operator delete() anropas i första hand, annars kommer den globala ::operator delete() anropas. Att använda ::delete försäkrar att den globala versionen av ::operator delete() anropas även om T::operator delete() existerar. Ex: delete [] objekt-varibel;
6 Används för att ta bort arrayer. Uttrycket pekar på en array och destruktorn för objekten i arrayen anropas. Att ta bort en array med enkelt delete utan [] är odefinierat så även att ta bort ett objekt med delete []. class A{ A(); ~A(); void function(){ A* a = new A; delete a; A* b = new A[10]; delete [] b; void main(){ function(); Det är möjligt att omdefiniera operatorerna new och delete för att möjliggöra en fri minneshantering. En användardefinierad operator new måste returnera en void* och måste även ha en size_t som första argument (typedef unsigned int size_t). En användardefinierad operator delete måste ha void som retur typ och void* som första argument. Ett andra argument av typen size_t är möjligt. Anger storleken på objektet som ska tas bort. Endast en operator delete() kan definieras för en klass vilket implicerar att den inte kan överlagras med olika antal argument. Size_t är definierad i stddef.h som unsigned int. Ex: #include <iostream.h> #include <new.h> class myclass{ public: void* myclass::operator new(size_t size) {cout << "new " << size << endl; return new char[size]; void myclass::operator delete(void* p, size_t size) { if(p) delete[] p; cout << "delete " << size << endl;
7 void* myclass::operator new[](size_t size) {cout << "new[] " << size << endl; return new char[size]; void myclass::operator delete[](void* p, size_t size) {if(p) delete[] p; cout << "delete[] " << size << endl; ; void f(){ myclass* m = new myclass; delete m; myclass* n = new myclass[4]; delete[] n; int main(){ f(); return 0; Const Const - "minnesplats som inte kan ändras". Const kan tillsynes vara en efterföljare till preprocessor direktivet #define. Men det har fått en rad fler användningsområden för pekare, funktioner, klassfunktioner. Const - värden Const kan användas på alla inbyggda typer och deras invarianter. Det rekommenderas att använda const före #define. #define BUFFERSIZE 100 const int BUFFERSIZE = 100; Initierar man en variabel en gång i sitt program och den inte ändras bör man ändra den till en const, vilket också innebär att man inte av misstag ändrar värdet på den => säkerhet. /*#define NUMBER 32 not used in C++*/ const int MyNumber = 32; void main(){ const int a = MyNumber; a = 3; //error: cannot modify constant object int *b = &MyNumber
8 //error: different types const int *c = &MyNumber; //fine! Const - pekare Två sätt att använda const tillsammans med pekare: Ex: appliceras på det pekaren pekar på eller adressen i pekaren. void main(){ const char *str_1 = "AAAA!!!!!!!!"; //ERROR: cannot modify string str_1[1] = 'a'; //fine str_1 = "OOOOOOOOOOOO"; char* const str_2 = "BBBBB!!!!!!"; //fine str_2[1] = 'a'; //ERROR: cannot modify pointer str_2 = "OOOOOOOOOOOO"; //everything protected: string & pointer const char* const str = "Hello"; char const* const str = "Hello"; int x = 5; int* const d = &x; int* const e = &x; //ERROR: cannot modify constant object d = e; //fine, pointer const, not value *d = 8; Const - funktioner (argument / returtyper) Det är möjligt att specificera konstanta argument till en funktion och även konstanta returtyper från funktionen. Om man skickar en parameter by-value kommer specifikationen med const, ur ett perspektiv, vara överflödig (Lokala variabler).
9 Om man returnerar en användardefinierad typ by-value som en const, innebär det att returvärdet inte kan ändras. Om man skickar och returnerar som alias kommer const förebygga att innehållet i aliaset inte förändras. void func(const int& i){ i++; //ERROR Konstanta returtyper från en funktion. const int func(); Här sker en försäkran om att returvärdet inte kan ändras. // Returning consts by value // has no meaning for built-in types int f3() { return 1; const int f4() { return 1; int main() { const int j = f3(); // Works fine int k = f4(); // But this works fine too! När man skickar och returnerar referenser och pekare spelar const en större roll. // Constant pointer arg/return void t(int*) { void u(const int* cip) { //! *cip = 2; // Illegal -- modifies value int i = *cip; // OK -- copies value //! int* ip2 = cip; // Illegal: non-const const char* v() { // Returns address of static character array: return "result of function v()"; const int* const w() {
10 static int i; return &i; //valid after the function returns only because it is static. int main() { int x = 0; int* ip = &x; const int* cip = &x; t(ip); // OK //! t(cip); // Not OK u(ip); // OK u(cip); // Also OK //! char* cp = v(); // Not OK const char* ccp = v(); // OK //! int* ip2 = w(); // Not OK const int* const ccip = w(); // OK const int* cip2 = w(); // OK //! *w() = 1; // Not OK Const - klasser Skydda förändring av medlemmar i en klassfunktion: #include <iostream> #include <conio> class A{ private: int aa, bb, cc; public: A(int a, int b,int c); A(int a = 2){A::aa = a; cout << A::aa;; int a() const; ; int A::a() const { //aa = 1;//error cannot modify const object ((A*)(this))->aa = 1; //works, but it s not a good way to do it return aa; void main(){ A* abba = new A(); cout << abba->a() << endl; A* baab = new A(4); cout << baab->a() << endl; delete abba;
11 delete baab; getch(); Extern Extern talar om för kompilatorn att en variabel eller funktion existerar även om inte den har upptäckt variabeln tidigare i filen. Variabeln eller funktionen kan definieras i en annan fil (.cpp) eller längre ned i samma fil. Ex: // This is not actually external, but the // compiler must be told it exists somewhere: extern int i; extern void func(); int main() { i = 0; func(); // The data definition int i; // The function definition void func() { i++; cout << i; När kompilatorn påträffar deklarationen av extern int i - definition av i existerar någonstans som en global variabel. När kompilatorn når definitionen av i mappas i mot deklarationen med extern. Volatile Data som kan ändras utanför processens vetskap, genom trådar, interupt etc. - ska deklareras som volatile. En volatile variabel avläses varje gång den används även om den användes raden innan. Om man har deklarerat en volatile variabel som modifieras av en tråd eller annan process, förhindrar man kompilatorn att av effektivitetsskäl ta bort multipla läsningar av variabeln. En vanlig variabel som avläses behöver nödvändigtvis inte läsas från minnet varje gång den används. Samma syntax som för const objekt.
12 Att skapa ett const volatile objekt - kan inte ändras av programmet utan istället förändras av utomstående processer. #include <iostream> #include <conio> //Class to represent a piece of communication hardware class Comm { const volatile unsigned char byte; volatile unsigned char flag; enum { bufsize = 100 ; unsigned char buf[bufsize]; int index; public: Comm(); void isr() volatile; char read(int index) const; ; Comm::Comm() : byte(0), flag(0), index(0) { //interrupt service routine: void Comm::isr() volatile { cout << "isr()\n"; flag = 0; buf[index++] = byte; // Wrap to beginning of buffer: if(index >= bufsize) index = 0; char Comm::read(int index) const { cout << "read(" << index << ")\n"; if(index < 0 index >= bufsize) return 0; return buf[index]; int main() { volatile Comm port; port.isr(); // OK port.read(0); // Error, read() not volatile getch(); Likt const - kan använda volatile på objekts data medlemmar, funktioner och objekten själva. Kan endast anropa volatile-medlemsfunktioner från ett volatile-objekt.
Introduktion. Klasser. TDP004 Objektorienterad Programmering Fö 2 Objektorientering grunder
Introduktion TDP004 Objektorienterad Programmering Fö 2 Objektorientering grunder OO är den mest använda programmeringsparadigmen idag, viktigt steg att lära sig och använda OO. Klasser är byggstenen i
Minnestilldelning (allokering) och frigörande (avallokering) av minne
Pekare i C++ Pekare används mycket i C++. De är bra både för att de tillåter dynamisk minnesallokering och för att de är referenser. En pekarvariabel innehåller en adress till ett element, den pekar på
Det finns många flaggor till g++,
C++, Övning 1 Jonas Sjöbergh, jsh@nada.kth.se Inge Frick, inge@nada.kth.se Alexander Baltsatsis hur man kompilerar och kör make preprocessor minnesallokering, pekare grundläggande C++, funktioner m.m.
TDIU01 - Programmering i C++, grundkurs
TDIU01 - Programmering i C++, grundkurs Sammanfattning period 1 Eric Elfving Institutionen för datavetenskap 1 oktober 2013 Översikt Ett C++-programs uppbyggnad Variabler Datatyper Satser Uttryck Funktioner
TDIU20 - Objektorienterad programmering i c++ - föreläsning 4
TDIU20 - Objektorienterad programmering i c++ - föreläsning 4 Pontus Haglund Department of Computer and information science 1 Vad gjorde vi förra gången? Felhantering Operatorer Typkonvertering 2 Grundläggande
Programmering i C++ EDA623 Mer om klasser. EDA623 (Föreläsning 6) HT 2013 1 / 26
Programmering i C++ EDA623 Mer om klasser EDA623 (Föreläsning 6) HT 2013 1 / 26 Mer om klasser Innehåll Konstanta objekt Statiska medlemmar Pekaren this Vänner (friends) Överlagring av operatorer EDA623
Kapitel 6 - Undantag
Kapitel 6 Undantag Kapitel 6 - Undantag Undantag (exceptions), returvärden throw, try och catch new, bad_alloc, nothrow Undantag och std::auto_ptr throw() i funktionsdeklaration try som funktionskropp
TDDC76 - Programmering och Datastrukturer
TDDC76 - Programmering och Datastrukturer Pekare och Listor Eric Elfving Institutionen för datavetenskap 1 / 20 Översikt Internminne Pekare Dynamiska datastrukturer (Enkellänkade) listor 2 / 20 Internminne
TDIU01 - Programmering i C++, grundkurs
TDIU01 - Programmering i C++, grundkurs Pekare och Listor Eric Elfving Institutionen för datavetenskap 31 oktober 2014 Översikt 2/41 Internminne Pekare Dynamiska datastrukturer (Enkellänkade) listor Arbeta
Innehåll. Pekare Exempel
Innehåll EDAF30 Programmering i C++ Avslutning. Sammanfattning och frågor 1 Syntax, förklaringar Sven Gestegård Robertz Datavetenskap, LTH 2017 2 Stack-allokering Heap-allokering: new och delete 3 Avslutning.
TDIU01 - Programmering i C++, grundkurs
TDIU01 - Programmering i C++, grundkurs Underprogram - Funktioner Eric Elfving Institutionen för datavetenskap 18 september 2014 Översikt 2/22 Återblick till satsblocken Funktioner - Namngivna satsblock
Grundläggande C-programmering del 2 Pekare och Arrayer. Ulf Assarsson
Grundläggande C-programmering del 2 Pekare och Arrayer Ulf Assarsson Läromoment: Pekare Absolutadressering (portar): typedef, volatile, #define Arrayer av pekare, arrayer av arrayer Hemuppgifter: v2. Föregående
grundläggande C++, funktioner m.m.
C++, Övning 1 Jonas Sjöbergh, jsh@nada.kth.se hur man kompilerar och kör make preprocessor minnesallokering, pekare grundläggande C++, funktioner m.m. ett exempel Ett enkelt program i C++, hello.cpp #include
Innehåll. Pekare Syntax
Innehåll EDAF30 Programmering i C++ Typer, pekare Sven Gestegård Robertz Datavetenskap, LTH 2015 1 Typer och arrayer Operatorn -> Typer, pekare 2/1 Påminner om referenser i Java, men en pekare är minnesadressen
Innehåll. Pekare Exempel
Innehåll EDAF30 Programmering i C++ Avslutning. Sammanfattning och frågor 1 Syntax, förklaringar Sven Gestegård Robertz Datavetenskap, LTH 2016 2 Stack-allokering Heap-allokering: new och delete 3 Avslutning.
Övriga byggstenar. Övriga byggstenar. Några tips under programutveckling. Beroenden Pekare till funktioner Typkonvertering
Övriga byggstenar Beroenden Pekare till funktioner Övriga byggstenar Beroenden er Definitioners synlighet Funktionspekare Icke-medlemsfunktioner Medlemsfunktioner 2D1387 Programsystemkonstruktion med C++
Grundläggande C-programmering del 2 Pekare och Arrayer. Ulf Assarsson
Grundläggande C-programmering del 2 Pekare och Arrayer Ulf Assarsson Läromoment: Pekare Absolutadressering (portar): typedef, volatile, #define Arrayer av pekare, arrayer av arrayer Hemuppgifter: v2. Föregående
Innehåll. Resurshantering. Resource handles. Minnesallokering. Minnesallokering Exempel: allokering på stacken. 6. Resurshantering
Innehåll EDAF30 Programmering i C++ 6. Resurshantering Sven Gestegård Robertz Datavetenskap, LTH 2017 1 Resurshantering Stack-allokering Heap-allokering: new och delete 2 Smarta pekare 3 Klasser, resurshantering
Lite om felhantering och Exceptions Mer om variabler och parametrar Fält (eng array) och klassen ArrayList.
Institutionen för Datavetenskap Göteborgs universitet HT2009 DIT011 Objektorienterad programvaruutveckling GU (DIT011) Föreläsning 3 Innehåll Lite om felhantering och Exceptions Mer om variabler och parametrar
Funktionens deklaration
Funktioner - 1 Teknik för stora program #include #include......... cout
Innehåll. Användardefinierade typer. Användardefinierade typer Kategorier. Konstruktorer. Konstruktorer Två sätt att skriva initiering av medlemmar
Innehåll EDAF30 Programmering i C++ 3. Mer om klasser. Funktionsanrop Sven Gestegård Robertz Datavetenskap, LTH 2017 1 Klasser pekaren this const för objekt och medlemmar Kopiering friend inline 2 Funktionsanrop
Klassdeklaration. Metoddeklaration. Parameteröverföring
Syntax: Class Declaration Modifier Class Body Basic Class Member Klassdeklaration class Class Member Field Declaration Constructor Declaration Method Declaration Identifier Class Associations Motsvarar
Programmera i C Varför programmera i C när det finns språk som Simula och Pascal??
Programmera i C Varför programmera i C när det finns språk som Simula och Pascal?? C är ett språk på relativt låg nivå vilket gör det möjligt att konstruera effektiva kompilatorer, samt att komma nära
2D1387, Programsystemkonstruktion med C++ Johnny Bigert, Kursens hemsida:
2D1387, Programsystemkonstruktion med C++ 00/01 1 Slide 1 2D1387, Programsystemkonstruktion med C++ Johnny Bigert, johnny@nada.kth.se Kursens hemsida: http://www.nada.kth.se/kurser/kth/2d1387 Varför vill
Ett enkelt program i C++, hello.cpp. #include <iostream> int main() { std::cout << "Hello World\n"; return 0; } C++, Övning 1
Ett enkelt program i C++, hello.cpp C++, Övning 1 Jonas Sjöbergh, jsh@nada.kth.se hur man kompilerar och kör make preprocessor minnesallokering, pekare grundläggande C++, funktioner m.m. ett exempel int
Första exemplet. Kompilator & länkare. Projekt. Övning 1, Ögrupp 4, Programsystemkonstruktion med C++, Ronnie Johansson,
Övning 1, Ögrupp 4, Programsystemkonstruktion med C++, 2003 09 11 Ronnie Johansson, rjo@nada.kth.se Vi kommer att titta på: Kompilering och länkning make och Makefile Preprocessordirektiv main() funktionen
Föreläsning 2, vecka 8: Repetition
TDA 548: Grundläggande Programvaruutveckling Föreläsning 2, vecka 8: Repetition Magnus Myréen Chalmers, läsperiod 1, 2016-2017 Idag Metoder och terminologi Referensvärden och arrays Interface och ritning
Fortsä'ning Pekare. Ulf Assarsson. Originalslides av Viktor Kämpe
Fortsä'ning Pekare Ulf Assarsson Originalslides av Viktor Kämpe Pekare och Arrayer/VK 2 Pekare och Arrayer/VK 3 Förra föreläsningen Pekare Bll data Arrayer fix storlek och adress Dynamisk minnesallokering
TENTAMEN CD5250. Objektorienterad programutveckling med C++, 5p. Datum: , Tid: 14:00-19:00
TENTAMEN CD5250 Objektorienterad programutveckling med C++, 5p Max poäng: 40 Betygsgränser: 3: 20 4: 28 5: 36 Datum: 1999-06-01, Tid: 14:00-19:00 Ansvarig: Ivica Crnkovic Upp till 5 poäng kan komma från
Övning från förra gången: readword
(9 september 2010 T4.1 ) Övning från förra gången: readword /** readword.c * * int readword(char w[], int n) { * * Läser tecken tills en bokstav påträffas. * Läser och lagrar sedan högst n-1 bokstäver
Föreläsning 6: Metoder och fält (arrays)
TDA 545: Objektorienterad programmering Föreläsning 6: Metoder och fält (arrays) Magnus Myréen Chalmers, läsperiod 1, 2015-2016 I (föregående och) denna föreläsning Läsanvisning: kap 2 & 13 meddelanden
Objektorientering - Arv och polymorfi. Eric Elfving Institutionen för datavetenskap
Objektorientering - Arv och polymorfi Eric Elfving Institutionen för datavetenskap 1 / 25 Med hjälp av arv kan vi bryta ut saker som är gemensamt hos flera klasser. Vi får också möjlighet att referera
C++-programmets beståndsdelar
C++-programmets beståndsdelar Ett C++-program är uppdelat i headerfiler (fil.h) och implementationsfiler (fil.cpp) Programmet måste innehålla åtminstone funktionen int main() main() startar programmet
Tommy Färnqvist, IDA, Linköpings universitet
Föreläsning 9 Pekare, länkade noder, länkade listor TDDD86: DALP Utskriftsversion av föreläsning i Datastrukturer, algoritmer och programmeringsparadigm 25 september 2015 Tommy Färnqvist, IDA, Linköpings
TDDC76 - Programmering och Datastrukturer
TDDC76 - Programmering och Datastrukturer Objektorientering - Arv och polymorfi Eric Elfving Institutionen för datavetenskap 1 / 25 Med hjälp av arv kan vi bryta ut saker som är gemensamt hos flera klasser.
Byggstenar. C++-programmets beståndsdelar. C++-programmets beståndsdelar. Grundläggande datatyper
C++-programmets beståndsdelar Ett C++-program är uppdelat i headerfiler (fil.h) och implementationsfiler (fil.cpp) Programmet måste innehålla åtminstone funktionen int main() main() startar programmet
Ulf Assarsson. Grundläggande C-programmering del 2 Pekare och Arrayer. Läromoment:
Grundläggande C-programmering del 2 Pekare och Arrayer Ulf Assarsson Läromoment: Pekare Absolutadressering (portar): typedef, volafle, #define Arrayer av pekare, arrayer av arrayer Hemuppgi9er: v2. Föregående
C++ Objektorientering - Klasser. Eric Elfving
C++ Objektorientering - Klasser Eric Elfving 1 / 20 Återblick struct struct är bra att ha för att skapa aggregat - slå ihop flera data till en ny datatyp. Ett problem med struct är åtkomst... 2 / 20 Följande
Datatyper och kontrollstrukturer. Skansholm: Kapitel 2) De åtta primitiva typerna. Typ Innehåll Defaultvärde Storlek
De åtta primitiva typerna Java, datatyper, kontrollstrukturer Skansholm: Kapitel 2) Uppsala Universitet 11 mars 2005 Typ Innehåll Defaultvärde Storlek boolean true, false false 1 bit char Tecken \u000
Programmeringsteknik med C och Matlab
Programmeringsteknik med C och Matlab Kapitel 2: C-programmeringens grunder Henrik Björklund Umeå universitet Björklund (UmU) Programmeringsteknik 1 / 32 Mer organisatoriskt Imorgon: Datorintro i lab Logga
Kompilering och exekvering. Föreläsning 1 Objektorienterad programmering DD1332. En kompilerbar och körbar java-kod. Kompilering och exekvering
Föreläsning 1 Objektorienterad programmering DD1332 Introduktion till Java Kompilering, exekvering, variabler, styrstrukturer Kompilering och exekvering Ett program måste översättas till datorns språk
Föreläsning 2 Objektorienterad programmering DD1332. Typomvandling
metoder Föreläsning 2 Objektorienterad programmering DD1332 Array [modifierare] String metodnamn (String parameter) Returtyp (utdata typ) i detta fall String Indata typ i detta fall String 1 De får man
Classes och Interfaces, Objects och References, Initialization
Classes och Interfaces, Objects och References, Initialization Objekt-orienterad programmering och design (DIT953) Niklas Broberg/Johannes Åman Pohjola, 2018 Abstract class En abstract class är en class
Att använda pekare i. C-kod
Att använda pekare i C-kod (Bör användas av de som känner sig lite hemma med C-programmering!) Rev 1, 2005-11-23 av Ted Wolfram www.wolfram.se Syfte: Man kan tycka att det är komplicerat att använda pekare
Pekare och arrayer. Indexering och avreferering
Pekare och arrayer En array är ett sammanhängande minnesområde rymmande ett antal element av en viss typ. Arraynamnet kan ses som adressen till arrayens början, dvs. dess första element. En pekare är en
Dynamiskt minne. Vad är dynamiskt minne Motivering Hur gör man i C Övningar
Dynamiskt minne Agenda Vad är dynamiskt minne Motivering Hur gör man i C Övningar Minne Datorns primärminne används till olika ändamål De flesta system partitionerar minnet efter användningen: Programkoden
Enkla datatyper minne
Enkla datatyper minne 143.56 sant Sonja A falskt 18 1999-10-29 Bertil Gralvik, KTH Ingenjörsskolan 1 Addera två tal Algoritmen Summera tal Mata in två tal Beräkna Skriv ut resultat Mata in tal 1 Mata in
Föreläsning 5 (6) Metoder. Metoder Deklarera. Metoder. Parametrar Returvärden Överlagring Konstruktorer Statiska metoder tostring() metoden javadoc
Föreläsning 5 (6) Metoder Metoder Parametrar Returvärden Överlagring Konstruktorer Statiska metoder tostring() metoden javadoc Metoder Deklarera public void setnamn(string n) Åtkomstmodifierare Returtyp
DD2387 Programsystemkonstruktion med C++ Tentamen 1 Torsdag 7 januari 2016, 14:00-18:00
DD2387 Programsystemkonstruktion med C++ Tentamen 1 Torsdag 7 januari 2016, 14:00-18:00 Introduktion Skriv dina svar på separata papper, dessa scannas in efter inlämning. Du kan skriva på både fram- och
TDIU01 Programmering i C++
TDIU01 Programmering i C++ Föreläsning 6 - Klasser Eric Elfving, eric.elfving@liu.se Institutionen för datavetenskap (IDA) Avdelningen för Programvara och system (SaS) Klasser När vi skapade vår lista
Del2 Klasser, medlemmar och arv Ämnesområden denna föreläsning:
2D1387, Programsystemkonstruktion med C++ 00/01 1 Del2 Klasser, medlemmar och arv Ämnesområden denna föreläsning: Klasser, åtkomst Medlemmar, medlemsfunktioner, inline Slide 1 Konstruktorer Destruktorer
Tillämpad programmering
Tillämpad programmering C++ objekt Johan Montelius 1 struct struct Person { string name; int age; ; Person p; p.name = Joe ; p.age = 42; cout
TDDC76 - Programmering och Datastrukturer
TDDC76 - Programmering och Datastrukturer Pekare och Listor Eric Elfving Institutionen för datavetenskap 1 / 21 Översikt Internminne Pekare Dynamiska datastrukturer (Enkellänkade) listor 2 / 21 Internminne
Programsystemkonstruktion med C++: Övning 1. Karl Palmskog september 2010
Programsystemkonstruktion med C++: Övning 1 Karl Palmskog palmskog@kth.se september 2010 Programuppbyggnad Klassens uppbyggnad en C++-klass består av en deklaration och en definition deklaration vanligtvis
Kapitel 1. C++-programmets beståndsdelar. C++-programmets beståndsdelar. Kapitel 1 grunderna i C++
Kapitel 1 Grunderna i C++ Kapitel 1 grunderna i C++ C++-programmets beståndsdelar Datatyper Funktioner och funktionsanrop Sammansatta datatyper Pekare, aritmetik och referenser Minneshantering, preprocessorn
Föreläsning 8 Programmeringsteknik och Matlab 2D1312/2D1305. Klass Object, instans av klass public/private Klassvariabler och klassmetoder
Föreläsning 8 Programmeringsteknik och Matlab 2D1312/2D1305 Klass Object, instans av klass public/private Klassvariabler och klassmetoder 1 Array och ArrayList Arrayer och ArrayList är till för att innehålla
Funktionspekare, inledning: funktionsanropsmekanismen. Anrop via pekare
Funktionspekare, inledning: funktionsanropsmekanismen Vid funktionsanrop läggs aktuella argumentvärden och återhoppsadressen på stacken, därefter sker ett hopp till adressen för funktionens första instruktion.
Innehåll. Pekaren this Självreferens. Klasser Resurshantering, representation. Överlagring av operatorer. Överlagring av operatorer
Innehåll EDAF30 Programmering i C++ 8. Klasser; resurshantering och polymorfism Sven Gestegård Robertz Datavetenskap, LTH 2016 1 Klasser 2 Operatorer 3 Klasser, resurshantering Rule of three Move semantics
Innehåll. Introduktion till objektorientering. OOP (objektorienterad programmering) Objekt, instanser, klasser
Föreläsning 1 Innehåll Introduktion till objektorientering OOP (objektorienterad programmering) Objekt, instanser, klasser C++ OO i C++ Standardbibliotek Utökningar från C (syntaktiskt socker) Introduktion
Idag. Javas datatyper, arrayer, referenssemantik. Arv, polymorfi, typregler, typkonvertering. Tänker inte säga nåt om det som är likadant som i C.
Idag Javas datatyper, arrayer, referenssemantik Klasser Arv, polymorfi, typregler, typkonvertering Strängar Tänker inte säga nåt om det som är likadant som i C. Objectorienterad programmering Sida 1 Ett
Programmering A. Johan Eliasson johane@cs.umu.se
Programmering A Johan Eliasson johane@cs.umu.se 1 Jag Undervisar mest grundläggande programmering på Institutionen för datavetensakap Applikationsutveckling för iphone Applikationsutveckling i Java Datastrukturer
Programsystemkonstruktion med C++
Programsystemkonstruktion med C++ Övning 1 Daniel Aarno bishop@kth.se Översikt övning 1 Kompilering och länkning Makefile Preprocessordirektiv Funktioner Funktionen main() Datatyper Minneshantering Pekare
Programmering i C++ EDA623 Arv. EDA623 (Föreläsning 6) HT 2013 1 / 42
Programmering i C++ EDA623 Arv EDA623 (Föreläsning 6) HT 2013 1 / 42 Arv Innehåll Härledda klasser Konstruktorer och destruktorer vid arv Tillgänglighet Polymorfism och dynamisk bindning Abstrakta klasser
TDDC76 - Programmering och Datastrukturer
TDDC76 - Programmering och Datastrukturer Klasser - speciella medlemsfunktioner Eric Elfving Institutionen för datavetenskap En klass ansvarar ofta för en resurs. Ibland är resursen så enkel som en datamedlem
TDP004. Minne och pekare. Eric Elfving Institutionen för datavetenskap
TDP004 Minne och pekare Eric Elfving Institutionen för datavetenskap 1 / 23 Översikt Internminne Pekare Dynamiska datastrukturer (Enkellänkade) listor 2 / 23 Internminne - RAM Datorns internminne (RAM,
Hantering av textsträngar och talsträngar. William Sandqvist
Hantering av textsträngar och talsträngar Strängen Hello world! PIC-processorerna lagrar strängkonstanter med bokstäverna inbakade i en följd av instruktioner (en tabell). Man hämtar en bokstav genom att
Synlighet. Namespace Scope-operatorn Klasser Vänner
Synlighet Namespace Scope-operatorn Klasser Vänner Synlighet Ett problem med moduler i C är att alla variabel- och funktionsnamn ligger globalt synliga. C++ botar detta genom att införa det mycket användbara
Föreläsning 11. Arrayer. Arrayer. Arrayer. Lagrar flera värden av samma typ Kan vara primitiva typer eller objekt. Kan ha en array av t.
Föreläsning 11 Arrayer Arrayer Lagrar flera värden av samma typ Kan vara primitiva typer eller objekt int[] tal = new int[3]; Kan ha en array av t.ex: Heltal (int) Tecken (char) Personer (objekt av klassen
Programmering i C++ EDA623 Typer. EDA623 (Föreläsning 4) HT / 33
Programmering i C++ EDA623 Typer EDA623 (Föreläsning 4) HT 2013 1 / 33 Typer Innehåll Heltalstyper Flyttalstyper Pekare Minnesallokering Funktionspekare Typdeklarationer med typedef Typomvandlingar (casting)
Kapitel 3. Synlighet. Kapitel 3 - Klassanvändning, operatorer och pekare. Synlighet
Kapitel 3 Klassanvändning Operatorer Pekare Kapitel 3 - Klassanvändning, operatorer och pekare Vänner till klasser och funktioner Virtuella funktioner och polymorfi Abstrakta basklasser och strikt virtuella
Del3 Klassanvändning, operatorer och pekare Ämnesområden denna föreläsning:
2D1387, Programsystemkonstruktion med C++ 00/01 1 Del3 Klassanvändning, operatorer och pekare Ämnesområden denna föreläsning: Synlighet Överlagring av operatorer Slide 1 Vänner till klasser och funktioner
Objekt och klasser - Introduktion
Objekt och klasser - Introduktion Begreppet objekt Hur klasser används för att skapa objekt Fördefinierade klasser Metoder och parameteröverföring Definiera klasser Modifierare Statiska variabler och metoder
Tentamen EDAF30 Programmering i C++
LUNDS TEKNISKA HÖGSKOLA 1(5) Institutionen för datavetenskap Tentamen EDAF30 Programmering i C++ 2017 04 20, 14:00 19:00 Hjälpmedel: En valfri C++-bok. Andra papper med anteckningar eller utskrifter är
Objektorienterad programmering i Java
Objektorienterad programmering i Java Föreläsning 4 Täcker i stort sett kapitel 6 i kursboken Java Software Solutions 1 Läsanvisningar Den här föreläsningen är uppbyggd som en fortsättning av exemplet
*Pekarvärden *Pekarvariabler & *
*Pekarvärden *Pekarvariabler & * Motivering Pekare är ett fundamentalt koncept i C (och C++) Multipla returvärden från funktioner. Arrayer hanteras via pekare Dynamiskt minne (kommer i slutet av kursen)
KLASSER. Inkapsling Abstrakt datatyp Public och private. Klassmedlemmar Datamedlemmar Exempel Funktionsmedlemmar
KLASSER Inkapsling Abstrakt datatyp Public och private Klassmedlemmar Datamedlemmar Funktionsmedlemmar Initiering av objekt Konstruktor Ta del av objektets tillstånd Förändra objektets tillstånd Avinitiera
Nedan skapar vi klassen Person innehållande datamedlemmar för förnamn, efternamn, ålder, längd och vikt:
8. Objektorientering Skälet till att C++ är ett av de mest använda programspråken är att det är objektorienterat. Detta bygger vidare på begreppet struct (ursprungligen från språket C som inte är objektorienterat),
Föreläsning 3-4 Innehåll. Diskutera. Metod. Programexempel med metod
Föreläsning 3-4 Innehåll Diskutera Vad gör programmet programmet? Föreslå vilka satser vi kan bryta ut till en egen metod. Skriva egna metoder Logiska uttryck Algoritm för att beräkna min och max Vektorer
En klass behöver både deklaration och definition. Daniel Aarno Globala funktioner och variabler är OK.
2 1 0 / ) - & 9 > ; 7 * ( ) ) En klass behöver både deklaration och definition Deklaration i h (hh) och definition i cc (cpp) Private är förvalt Student::learn() Student::Student() Student::~Student()
Klasser. Kapitel 2. Kapitel 2 - Klasser, medlemmar och arv. Klasser. Klasser Medlemmar Arv
Kapitel 2 Klasser Medlemmar Arv, medlemmar och arv Klasser, åtkomst Medlemmar, medlemsfunktioner, inline och destruktorer this-pekaren Arv, åtkomst Multipelt arv, virtuell basklass Konstanta funktioner
1 Funktioner och procedurell abstraktion
1 Funktioner och procedurell abstraktion Det som gör programkonstruktion hanterlig och övergripbar och överhuvudtaget genomförbar är möjligheten att dela upp program i olika avsnitt, i underprogram. Vår
Programmering i C++ EDA623 Objektorienterad programutveckling. EDA623 (Föreläsning 5) HT 2013 1 / 33
Programmering i C++ EDA623 Objektorienterad programutveckling EDA623 (Föreläsning 5) HT 2013 1 / 33 Objektorienterad programutveckling Innehåll Grundläggande begrepp Relationer mellan objekt Grafisk representation
LÖSNINGSFÖRSLAG Programmeringsteknik För Ing. - Java, 5p
UMEÅ UNIVERSITET Datavetenskap 010530 LÖSNINGSFÖRSLAG Programmeringsteknik För Ing. - Java, 5p Betygsgränser 3 21,5-27 4 27,5-33,5 5 34-43 Uppgift 1. (4p) Hitta de fel som finns i nedanstående klass (det
Tentamen OOP 2015-03-14
Tentamen OOP 2015-03-14 Anvisningar Fråga 1 och 2 besvaras på det särskilt utdelade formuläret. Du får gärna skriva på bägge sidorna av svarsbladen, men påbörja varje uppgift på ett nytt blad. Vid inlämning
Föreläsning 3-4 Innehåll
Föreläsning 3-4 Innehåll Skriva egna metoder Logiska uttryck Algoritm för att beräkna min och max Vektorer Datavetenskap (LTH) Föreläsning 3-4 HT 2017 1 / 36 Diskutera Vad gör programmet programmet? Föreslå
Programsystem konstruktion med C++ (2D1387) Innehåll. övning 2 klasser och arv
Programsystem konstruktion med C++ (2D1387) övning 2 klasser och arv Ronnie Johansson rjo@nadakthse grupp 4 2003 09 25 Innehåll Klasskonstruktorer och initieringslistor Klassdestruktorer Åtkomstkontroll
Kapitel 6. Hakparenteser fšr att ange index MŒnga všrden av samma typ
Organisation En array Šr en ordnad lista av všrden Varje všrde har ett numeriskt index - deklaration & anvšndning som parametrar flerdimensionella fšlt N element indexeras med 0 till N-1 0 1 2 3 4 5 6
Programmering med Java. Grunderna. Programspråket Java. Programmering med Java. Källkodsexempel. Java API-exempel In- och utmatning.
Programmering med Java Programmering med Java Programspråket Java Källkodsexempel Källkod Java API-exempel In- och utmatning Grunderna Ann Pan panda@nada.kth.se Rum 1445, plan 4 på Nada 08-7909690 Game.java
Operatoröverlagring. endast operatorsymboler definierade i C++ kan överlagras = += -= *= /= %= ^= &= = <<= >>= < > <= >= ==!= && > ->*, [ ] ( )
TDDC76 PoD OH Föreläsning C++ 83 Operatoröverlagring endast operatorsymboler definierade i C++ kan överlagras + - * / % ^ & ~! > = += -= *= /= %= ^= &= = = < > = ==!= && ++ -- -> ->*, [ ]
TDDC77 Objektorienterad Programmering
TDDC77 Objektorienterad Programmering Föreläsning 5 Sahand Sadjadee IDA, Linköpings Universitet Hösttermin 2018 Outline Arrayer Metoder Räckvidd och Livslängd Arrayer Vända om inlästa värdena Vända om
Pekare. Pekare. Varför använder vi pekare? Vad är en pekare? Pekare. Deklaration/initiering av pekare
Vad är en pekare? Varför använder vi pekare? Hur används pekare? Hur deklarerar vi pekare i C? Hur kommer vi åt pekarvärdet? DAVA07/08 JE,MG,MG,PS 2 DAVA07/08 JE,MG,MG,PS Vad är en pekare? En pekare är
Grunderna i C++ T A. Skapad av Matz Johansson BergströmLIMY
Grunderna i C++ ARK 385: Virtuella Verktyg i en Materiell värld AT Arkitektur & Teknik Chalmers Tekniska Högskola 2009 - Kursen skapades (3 förel.) 2010-6 förel. + 2 projekt 2011-8 förel. Helt omarbetade
1 Namnkontroll (NameControl)
1 Namnkontroll (NameControl) När en ny variabel, ett objekt, en konstant o s v introduceras måste programmeraren namnge denna. Allting identifieras m h a namn. När ett program består av väldigt många komponenter
Föreläsning 5-6 Innehåll. Exempel på program med objekt. Exempel: kvadratobjekt. Objekt. Skapa och använda objekt Skriva egna klasser
Föreläsning 5-6 Innehåll Exempel på program med objekt Skapa och använda objekt Skriva egna klasser public class DrawSquare { public static void main(string[] args) { SimpleWindow w = new SimpleWindow(600,
Arv: Fordonsexempel. Arv. Arv: fordonsexempel (forts) Arv: Ett exempel. En klassdefinition class A extends B {... }
En klassdefinition class A extends B {... Arv definierar en klass A som ärver av B. Klassen A ärver alla fält och metoder som är definierade för B. A är en subklass till B. B är en superklass till A. class
Programmering av inbyggda system. Kodningskonventioner. Viktor Kämpe
Kodningskonventioner Viktor Kämpe Varför kodningskonventioner? Förståelse för Skillnaden mellan lokala/globala variabler. Funktionsargument. Returvärde. Möjliggör Mix av assembler och C. Kodningskonventioner/VK
(Man brukar säga att) Java är... Denna föreläsning. Kompilering av Java. Historik: Java. enkelt. baserat på C/C++ Allmänt om Java
(Man brukar säga att) Java är... Denna föreläsning Allmänt om Java Javas datatyper, arrayer, referenssemantik Klasser Strängar enkelt baserat på C/C++ objekt-orienterat från början dynamiskt utbyggbart
C++ Objektorientering - Klasser. Eric Elfving Institutionen för datavetenskap
C++ Objektorientering - Klasser Eric Elfving Institutionen för datavetenskap 1 / 23 Återblick struct struct är bra att ha för att skapa aggregat - slå ihop flera data till en ny datatyp. Ett problem med
Typkonvertering. Java versus C
Typer Objektorienterad programmering E Typkonvertering Typkonvertering Satser: while, for, if Objekt Föreläsning 2 Implicit konvertering Antag att vi i ett program deklarerat int n=3; double x = 5.2; Då
Föreläsning 5-6 Innehåll
Föreläsning 5-6 Innehåll Skapa och använda objekt Skriva egna klasser Datavetenskap (LTH) Föreläsning 5-6 HT 2017 1 / 32 Exempel på program med objekt public class DrawSquare { public static void main(string[]