Tänk på följande saker när du skriver tentan:
|
|
- Ellinor Hansson
- för 8 år sedan
- Visningar:
Transkript
1 Ämne: AI med inriktning mot kognition och design Kurskod: KOGB05 / TDBB21 Datum: Antal uppgifter: 12 Skrivtid: 09:00 15:00 Max poäng: 54 Betygsgränser: 27 x< x< x 54 5 alternativt 27 x<41 G 41 x 54 VG Lärare: Christina Olsén Hjälpmedel: Penna, Sudd och Miniräknare Tänk på följande saker när du skriver tentan: Börja på en ny sida för varje uppgift (obs inte delfrågorna!!), glöm inte att skriva namn och uppgift på varje blad!! Motivera dina svar, ett bra motivering/beskrivning ger alltid mer poäng. Alla svar måste vara välmotiverade om inte annat uttryckligen sägs. Disponera tiden mellan frågorna i förhållande till deras poäng. Frågorna kommer inte i någon svårighetsgradering utan svårare och lättare frågor är blandade med varandra. Om du är osäker på någon fråga: Gör en rimlig tolkning av uppgiften, skriv ner din tolkning och lös problemet utifrån denna. Lycka till! Christina
2 1 (2+2p) a) Vad avses med begreppet Inductive Learning samt ange vad det innebär att en hypotes är konsistent. b) Namnge två metoder för Inductive Learning? 2 ( p) Under kursen har vi studerat Neurala nätverk. a) Ge ett exempel på en funktion som INTE är linjärt separerbar? b) Ange en inlärningsalgoritm som används för sådana neurala nätverk (från svaret i a). Beskriv principen för hur denna inlärning går till. c) Beskriv hur man kan hantera neurala nätverks benägenhet för överträning. d) Redogör för den fundamental skillnaden mellan neurala och bayesiska nätverk? 3 (1+3 p) Betrakta följande graf för ett tvåpersonersspel. MINIMAX metoden ska användas för att bestämma vilket drag som spelare MAX ska göra genom att söka två drag framåt. Den heuristiska funktion, h(x), som ska användas är definierad enligt följande för sluttillstånden. h(e) = 2 h(f) = 12 h(g) = 4 h(h) = 3 h(i) = 1 h(j) = 6 h(k) = 2 a) Vilket drag kommer MAX att välja (B, C eller D)? b) Vilka delar av trädet (noder) kommer inte att besökas (om någon) om α β beskärning (pruning) används? Beskär trädet enligt principen, var noga med att beskriva varje steg. Markera tydligt beskurna delar! 2
3 4 (2+2+2p) Under kursen har vi bland annat studerat tre olika typer av agenter, reaktiva, resonerande (planerande) och lärande. Beskriv dessa och förklara skillnaden mellan dem. 5 (1 p) I situationskalkylen (situation calculus) finns vissa svårigheter, som kallas ramproblemet (frame problem). Vad är det för svårigheter? 6 (2+2p) a) Sökstrategin A är optimal och komplett om evalueringsfunktionen f(n) innehåller en admissble heuristisk funktion. Vad innebär en admissble heuristisk funktion? Redogör för beviset att A är optimal givet att evalueringsfunktionen f(n) innehåller en admissble heuristisk funktion. b) A(h 2 ) sägs vara bättre informerad än A(h 1 ) om h >h 2 >h 1. Redogör för vad detta innebär samt ge exempel på en h 2 och en h 1. 7 (2+2p) a) Vilka två typer av kvantifierare har vi i första ordningens logik? b) Ge två exempel på uttryck och skriv om dem så att den andra kvantifieraren används. 8 (2+2p) På kursen har vi studerat lokala sökningsalgoritmer. Ett problem med lokala sökningsalgoritmer är att de kan fastna i lokal optima, ange två sätt att hantera detta samt förklara grundprinciperna för de två. 3
4 9 (3+3p) Givet följande regler: 1. if (B or C) then A 2. if (D and E) then B 3. if (H or I) then D 4. if K then E 5. if (F and G) then C 6. if (D and I) then G och följande fakta: I, F a) Använd backward chaining för att bevisa att A är sant. b) Använd forward chaining för att bevisa att A är sant. I båda deluppgifterna är det viktigt att du kommenterar varje steg i slutdragningsprocessen (vilken regel som använts etc.). 10 (1 + 1 p) Förklara syftet med och uppläggningen av ett Turing-test. 11 ( p) Vilka fyra syntaxiska egenskaper definierar ett bayesiskt nätverk? 4
5 12 ( (1.5) p) Nedan finns 6 slumpmässigt valda frågor från de tentamensfrågor ni konstruerat till era projektarbeten. Välj 3 av dessa och besvara dem tydligt. Skulle din grupps fråga finnas med får du välja denna, men den frågan är i så fall bara värd 1.5 poäng. Svaret ska tydligt framgå för att få full poäng per fråga. a) Beskriv översiktligt hur en agent hanterar osäkerhet med hjälp av conditional planning. b) Nämn en fördel respektive nackdel med approximativa bayesiska nätverk. c) Vad har Bellman ekvationen för central roll i den aktiva reinforcement learning? d) När man sätter upp regler för generalisering, vad bör man tänka på och varför? Ge ett lätt exempel! e) Du har fått problemet att färglägga Australiens regioner genom att använda färgerna röd, grön och blå, utan att några närliggande regioner får samma färg. Du ska formulera detta problem som ett Constraint Satisfaction Problem. Vad väljer du som variabler, vilka är deras domäner och vilka begränsningar finns i problemet? f) Vilket av följande beskriver bäst definitionen av ett Nash Ekvilibrium? A. Låt en individuell spelare utvärdera alla strategikombinationer separat, och för var och en av dessa kombinationer välja den strategi som ger spelaren bäst utdelning. Om för var och en av dessa kombinationer spelaren väljer att använda en och samma strategi, utgör denna strategi ett Nash Ekvilibrium. B. Finns en mängd strategier med den egenskapen att ingen spelare kan tjäna på att ändra sin strategi medan övriga spelare behåller sina strategier oförändrade, så utgör denna mängd strategier med sammanhörande payoffs Nash Ekvilibrium. C. När varje spelare har en dominant strategi, och spelar enligt den strategin, kallas kombinationen av dessa ett Nash Ekvilibrium. D. Mixade strategier specificerar att ett drag kan väljas slumpmässigt från en mängd av rena strategier med olika sannolikhet. En kombination av alla kombinerade mixade strategier tillsammans med deras sannolikheter utgör ett Nash Ekvilibrium. 5
6 Några formler som kan vara till hjälp (α β) (β α) (α β) (β α) ((α β) γ) (α (β γ)) ((α β) γ) (α (β γ)) ( α) α (α β) ( β α) (α β) ( α β) (α β) ((α β) (β α)) (α β) ( α β) (α β) ( α β) (α (β γ)) ((α β) (α γ)) (α (β γ)) ((α β) (α γ)) α β,α β α β α α β, β γ α γ 6
Antag att b är förgreningsfaktorn, d sökdjupet, T (d) tidskomplexiteten och M(d) minneskomplexiteten.
OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervalsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet
Läs merde var svåra att implementera och var väldigt ineffektiva.
OBS! För flervalsfrågorna gäller att flera alternativ eller inget alternativ kan vara korrekt. På flervalsfrågorna kan man bara ha rätt eller fel, dvs frågan måste vara helt korrekt besvarad. Totalt kan
Läs merArtificiell Intelligens
Omtentamen Artificiell Intelligens Datum: 2014-02-20 Tid: 14.00 18.00 Ansvarig: Resultat: Hjälpmedel: Gränser: Anders Gidenstam Redovisas inom tre veckor Inga G 8p, VG 12p, Max 16p Notera: Skriv läsbart!
Läs merI en deterministisk omgivning beror nästa tillstånd bara av agentens handling och nuvarande tillstånd.
OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervalsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet
Läs merAntag att följande träd genereras i ett spelförande program om vi applicerar evalueringsfunktionen
1. Komplexiteten hos en agent beror mycket på vilken omgivning den skall verka i. Vad innebär det att en omgivning är stokastisk, episodisk och dynamisk? Ge exempel på en omgivning som är stokastisk, episodisk
Läs merTAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y. Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 27 augusti 2013 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
Läs merAntag att b är förgreningsfaktorn, d sökdjupet, T (d) tidskomplexiteten och M(d) minneskomplexiteten.
OS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervalsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet
Läs merLektion 8: Konstruktion av semantiska tablåer för PTL-formler
Lektion 8: Konstruktion av semantiska tablåer för PTL-formler Till denna lektion hör uppgift 2, 6 och 0 i lärobokens avsnitt.6 (sid. 255). Lös uppgift 2 genom att konstruera en semantisk tablå. Följande
Läs merFråga 5 (1 poäng) För att definiera ett sökproblem krävs...
OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervarlsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet
Läs merTentamen'('Datastrukturer,'algoritmer'och'programkonstruktion.'
Tentamen'('Datastrukturer,'algoritmer'och'programkonstruktion.' Skrivtid: 08.30 13.30 Hjälpmedel: Inga Lärare: Betygsgränser DVA104' Akademin)för)innovation,)design)och)teknik) Onsdag)2014:01:15) Caroline
Läs merTENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671
Institutionen för Matematik LINJÄR ALGEBRA OCH NUMERISK ANALYS F Göteborg --9 TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 OBS! NYA KURSEN DAG: Tisdag 9 januari TID: 8.45 -.45 SAL: V Ansvarig:
Läs merFråga 5 (1 poäng) För att definiera ett sökproblem krävs...
OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervarlsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet
Läs merAntag att b är förgreningsfaktorn, d sökdjupet, T (d) tidskomplexiteten och M(d) minneskomplexiteten.
OS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervalsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet
Läs merI en deterministisk omgivning beror nästa tillstånd bara av agentens handling och nuvarande tillstånd.
OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervalsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet
Läs merTentamenskod: Inga hjälpmedel är tillåtna
Intelligenta och lärande system 15 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Tentamen (TEN1) Artificiell intelligens (AI) 5hp 21IS1C Systemarkitekturutbildningen Tentamenskod: Tentamensdatum:
Läs merGiltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta.
KOD: Kurskod: PC1245 Kursnamn: Personlighet, hälsa och socialpsykologi Provmoment: Skriftlig tentamen 1a och skriftlig tentamen 1b (metod) Ansvarig lärare: Cecilia J Bergstad Tentamensdatum: 17 december
Läs merFÖRSÄTTSBLAD TILL TENTAMEN. ELLER (fyll bara i om du saknar tentamenskod): Datum: 16 januari Bordsnummer:
FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 16 januari 2013 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393)
Läs merNATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter utan miniräknare 5
freeleaks NpMaB vt00 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 00 Del I, 9 uppgifter utan miniräknare 3 Del II, 8 uppgifter utan miniräknare 5 Förord Uppgifter till den äldre
Läs merLösning till tentamensskrivning i Diskret Matematik, SF1610 och 5B1118, torsdagen den 21 oktober 2010, kl
Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik, SF6 och 5B8, torsdagen den 2 oktober 2, kl 4-9 Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen
Läs merTAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 16 mars 010 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Kombinatorisk
Läs merArtificial Intelligence
Omtentamen Artificial Intelligence Datum: 2013-01-08 Tid: 09.00 13.00 Ansvarig: Resultat: Hjälpmedel: Gränser: Cecilia Sönströd Redovisas inom tre veckor Inga G 10p, VG 16p, Max 20p Notera: Skriv läsbart!
Läs mer1. (3p) Bestäm den minsta positiva resten vid division av talet med talet 31.
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF1631 och SF1630, den 7 juni 2011 kl 08.00-13.00. Examinator: Olof Heden, tel. 0730547891.
Läs merTentamen i nationalekonomi, tillämpad mikroekonomi A, 3 hp (samt 7,5 hp)
Tentamen i nationalekonomi, tillämpad mikroekonomi A, 3 hp (samt 7,5 hp) 2011-08-23 Ansvarig lärare: Viktor Mejman Hjälpmedel: Skrivdon och räknare. Kurslitteratur. Maximal poängsumma: 16 För betyget G
Läs merHjalpmedel: Inga hjalpmedel ar tillatna pa tentamensskrivningen. 1. (3p) Los ekvationen 13x + 18 = 13 i ringen Z 64.
Matematiska Institutionen KTH Losning till tentamensskrivning i Diskret Matematik, SF och B8, torsdagen den oktober, kl.-.. Examinator Olof Heden. Hjalpmedel Inga hjalpmedel ar tillatna pa tentamensskrivningen.
Läs merNp MaB vt 2002 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2002
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar Provtid
Läs merAlgebra och Diskret Matematik A (svenska)
MITTUNIVERSITETET TFM Tentamen 2005 MAAA99 Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar Datum: 2 november 2005 Denna tenta omfattar 8 frågor, där varje fråga kan ge 3 poäng. Maximalt poängantal
Läs merTentamen del 1 SF1546, , , Numeriska metoder, grundkurs
KTH Matematik Tentamen del 1 SF154, 1-3-3, 8.-11., Numeriska metoder, grundkurs Namn:... Bonuspoäng. Ange dina bonuspoäng från kursomgången läsåret HT15/VT1 här: Max antal poäng är. Gränsen för godkänt/betyg
Läs merBetygsgränser: För. Skriv endast på en. Denna. Uppgift. 1. (2p) 2. (2p) Uppgift. Uppgift 1) 4. Var god. vänd.
Tentamen i Matematik, HF93 7 dec 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng. Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, 3 respektive poäng. Komplettering:
Läs merLösning till tentamensskrivning i Diskret Matematik för CINTE, CL2 och Media 1, SF1610 och 5B1118, onsdagen den 17 augusti 2011, kl
Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL och Media, SF60 och 5B8, onsdagen den 7 augusti 0, kl 4.00-9.00. Examinator: Olof Heden Hjälpmedel: Inga
Läs merJag läser kursen på. Halvfart Helfart
KOD: Omtentamen Psykologi Kurskod: PC1206, Kurs 6: Individen i ett socialt sammanhang (15 hp) och PC1245 Datum: 25/8-2012 Hel- och halvfart VT 12 Provmoment: Socialpsykologi + Metod Tillåtna hjälpmedel:
Läs merAsymptotisk analys innebär att... man försöker uppskatta vad som händer för stora indatamängder.
OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervarlsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet
Läs merMatematisk statistik TMS064/TMS063 Tentamen
Matematisk statistik TMS64/TMS63 Tentamen 29-8-2 Tid: 4:-8: Tentamensplats: SB Hjälpmedel: Bifogad formelsamling och tabell samt Chalmersgodkänd räknare. Kursansvarig: Olof Elias Telefonvakt/jour: Olof
Läs merTentamen: Programutveckling ht 2015
Tentamen: Programutveckling ht 2015 Datum: 2015-11-04 Tid: 09:00-13:00 Sal: Ansvarig: Resultat: Hjälpmedel: Maxpoäng: Betygsgränser: Anslås inom 3 veckor. Inga 40 p 20 p för G, 32 p för VG. Iakttag följande:
Läs merVad behövs för att skapa en tillståndsrymd?
OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervarlsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet
Läs merMITTUNIVERSITETET TFM. Tentamen Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar. Datum: 9 januari 2007
MITTUNIVERSITETET TFM Tentamen 2007 MAAA99 Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar Datum: 9 januari 2007 Denna tenta omfattar 8 frågor, där varje fråga kan ge 3 poäng. Maximalt poängantal
Läs merProbabilistisk logik 2
729G43 Artificiell intelligens / 2016 Probabilistisk logik 2 Marco Kuhlmann Institutionen för datavetenskap Översikt Probabilistiska modeller Probabilistisk inferens 1: Betingad sannolikhet Probabilistisk
Läs merTENTAMEN I STATISTIKENS GRUNDER 1
STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 1 2012-10-03 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:
Läs merTentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för EMM Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Läs mertentaplugg.nu av studenter för studenter
tentaplugg.nu av studenter för studenter Kurskod Kursnamn R0008N Inledande extern redovisning Datum 2013-10-31 Material Kursexaminator Betygsgränser Tentamenspoäng Tentamen Monika Kurkkio G 42; VG 56 58
Läs merTNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS
TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS Datum: 22 maj 2012 Tid: 8 12, TP56 Hjälpmedel: Ett A4-blad med text/anteckningar (båda sidor) samt miniräknare. Antal uppgifter: 5; Vardera uppgift kan ge 5p.
Läs merAlgoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 10 Anton Grensjö grensjo@csc.kth.se 9 november 2017 1 Idag En konstruktionsreduktion Fler bevis av NP-fullständighet 2 Teori Repetition Ett problem tillhör
Läs merkl Tentaupplägg
Tentaupplägg TIPS 1: Läs igenom ALLA uppgifterna. Välj den du känner är lättast först. Det kan gärna ta 10-20 minuter. Försök skriva saker som kan vara problem i uppgifterna. Är det något du absolut kommer
Läs merAtt studera matematik på universitetsnivå Tips för att lyckas i kursen Endimensionell Analys och andra matematikkurser
Att studera matematik på universitetsnivå Tips för att lyckas i kursen Endimensionell Analys och andra matematikkurser Sara Maad Sasane Matematikcentrum Lunds universitet 25 september 2017 För att få godkänt
Läs merTentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 29 oktober, 2016 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:
Läs merTentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering
KTH Matematik Tentamen del 2 SF1511, 2018-03-16, kl 8.00-11.00, Numeriska metoder och grundläggande programmering Del 2, Max 50p + bonuspoäng (max 4p). Rättas ast om del 1 är godkänd. Betygsgränser inkl
Läs merTAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Läs mer1. En kortlek består av 52 kort, med fyra färger och 13 valörer i varje färg.
Tentamenskrivning för TMS63, Matematisk Statistik. Onsdag fm den 1 juni, 16, Eklandagatan 86. Examinator: Marina Axelson-Fisk. Tel: 7-88113. Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte
Läs merb) (2p) Bestäm alla lösningar med avseende på z till ekvationen Uppgift 3. ( 4 poäng) a ) (2p) Lös följande differentialekvation ( y 4) y
TENTAMEN Datum: 6 april 00 TEN: Differentialekvationer, komplea tal och Taylors formel Kurskod HF000, HF00, 6H0, 6H000, 6L000 Skrivtid: 8:5-:5 Hjälpmedel: Bifogat formelblad och miniräknare av vilken typ
Läs merTAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP6/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: januari 2016 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
Läs merTAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
Läs merLösningar till tentamen i Matematisk Statistik, 5p
Lösningar till tentamen i Matematisk Statistik, 5p LGR98 27 oktober, 2001 kl. 9.00 13.00 Kursansvarig: Eric Järpe Maxpoäng: 30 Betygsgränser: 12p: G, 22p: VG Hjälpmedel: Miniräknare samt tabell- och formelsamling
Läs merSkriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, HT2012
Statistiska Institutionen Patrik Zetterberg Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, HT2012 2013-01-18 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller
Läs merSTOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström. Omtentamen i Regressionsanalys
STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström Omtentamen i Regressionsanalys 2009-01-08 Skrivtid: 9.00-14.00 Godkända hjälpmedel: Miniräknare utan lagrade formler. Tentamen består
Läs merTentamen i K0001N Kvalitetsutveckling
Institutionen för industriell ekonomi och samhällsvetenskap Datum: 2018-08-28 Tid: 09.00-14.00 Hjälpmedel: Miniräknare Formelsamling K0001N Version 4.3 Jourhavande lärare Erik Lovén, tel 0920-49 24 02
Läs merLokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
Läs mertentaplugg.nu av studenter för studenter
tentaplugg.nu av studenter för studenter Kurskod Kursnamn T0008N Operations management Datum 2013-03-27 Material Kursexaminator Tentamen Anders Bystedt Betygsgränser G3= 30-39,5; 4 = 40-49; 5 = 50-60 Tentamenspoäng
Läs mer(a) på hur många sätt kan man permutera ordet OSANNOLIK? (b) hur många unika 3-bokstavskombinationer kan man bilda av OSANNO-
Tentamenskrivning för TMS6, Matematisk Statistik. Onsdag fm den 1 maj, 217. Examinator: Marina Axelson-Fisk. Tel: 1-7724996 Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte (bifogas).
Läs merOMTENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER
STOCKHOLMS UNIVERSITET Statistiska institutionen Termeh Shafie OMTENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2012-04-16 Skrivtid: 15.00-20.00 Hjälpmedel: Miniräknare utan lagrade formler eller text,
Läs mertentaplugg.nu av studenter för studenter
tentaplugg.nu av studenter för studenter Kurskod Kursnamn N0012N Tillämpad Makroekonomi Datum LP4 13-14 Material Tentamen Kursexaminator Betygsgränser G 30; VG 40 Tentamenspoäng 40 Övrig kommentar Luleå
Läs merTentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic
Tentamen i Matematik, HF9 4 okt 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive poäng Komplettering:
Läs merp /\ q r DD1350 Logik för dataloger Kort repetition Fö 3 Satslogikens semantik
DD1350 Logik för dataloger Fö 3 Satslogikens semantik 1 Kort repetition Satslogik formellt språk för att uttrycka påståenden med variabler och konnektiv /\, \/,, t.ex. p /\ q r 1 Kort repetition Naturlig
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 216-8-19 Sal (1) (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal som
Läs merTAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: 0 oktober 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i
Läs merTDDB56 DALGOPT Algoritmer och Optimering Tentamen , 8 13
Linköpings Tekniska Högskola 00-08-0 Institutionen för Datavetenskap David Broman / Jan Maluszynski / Kaj Holmberg TDDB6 DALGOPT Algoritmer och Optimering Tentamen 00-08-0, 8 Examinator Jan Maluszynski
Läs merFöreläsning 8: Intro till Komplexitetsteori
Föreläsning 8: Intro till Komplexitetsteori Formalisering av rimlig tid En algoritm som har körtid O(n k ) för någon konstant k är rimligt snabb. En algoritm som har körtid Ω(c n ) för någon konstant c>1
Läs merKursprov i matematik, kurs E vt Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 6
freeleaks NpMaE vt00 lämpliga för Ma4 1(9) Innehåll Förord 1 Kursprov i matematik, kurs E vt 00 Del I: Uppgifter utan miniräknare 3 Del II: Uppgifter med miniräknare 6 Förord Kom ihåg Matematik är att
Läs merMa7-Åsa: Statistik och Sannolikhetslära
Ma7-Åsa: Statistik och Sannolikhetslära Efter påsklovet börjar det femte arbetsområdet som handlar om statistik och sannolikhetslära. Det kommer också att bli tid för att arbeta vidare med målen för begrepp
Läs merELLER (fyll bara i om du saknar tentamenskod): Datum: 32 maj Bordsnummer: Kontrollera att du fått rätt tentamensuppgifter
FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 32 maj 4711 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393 DEMO)
Läs merFörsök att skriva svaren inom det utrymme som finns på sidan. Skriv tydligt! Svara sammanhängande och med enkla, tydliga meningar.
KOD: Kurskod: PC1307, PC1546 Kursnamn: Samhällsvetenskaplig forskningsmetodik, Forskningsmetodik och fördjupningsarbete. Provmoment: Forskningsmetodik Ansvarig lärare: Uta Sailer Tentamensdatum: 2013-10-25
Läs merTentamen Datastrukturer D DAT 035/INN960
Tentamen Datastrukturer D DAT 035/INN960 21 december 2007 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.) Betygsgränser,
Läs merTentamen i Linjär algebra, HF1904 exempel 3 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic
Tentamen i Linjär algebra, HF1904 exempel Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic För godkänt betyg krävs 10 av max 24 poäng Betygsgränser: För betyg A, B, C, D, E krävs 22, 19, 16,
Läs merEkonomistyrning (2FE255) Tentamen lördag 26 november 2016, kl
Ekonomistyrning (2FE255) 1 Tentamen lördag 26 november 2016, kl. 09.00-12.00 Tillåtna hjälpmedel: Miniräknare (dock inte i mobiltelefon) och ordbok (engelsk-svensk, svenskengelsk alternativt engelsk-hemlandsspråk)
Läs merTAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 28 augusti 2015 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Läs merFörsättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2010-08-19 Sal KÅRA Tid 14-18 Kurskod TSFS06 Provkod TEN1 Kursnamn Diagnos och övervakning Institution ISY Antal uppgifter
Läs merTENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.
1 (8) TENTMEN: lgoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. örja varje uppgift på ett nytt blad. Skriv inga lösningar i tesen. Skriv ditt idnummer
Läs merMIKROTEORI N \: ~ 1-ou
INSTITUTIONEN FÖR NATIONALEKONOMI MED STATISTIK Handelshögskolan vid Göteborgs universitet FK MIKROTEORI N \: ~ 1-ou 2012-03- 22 Kl: 08.00-14.00 Denna tentamen består av 6 st frågor om sammanlagt 60 poäng.
Läs merEXAMINATION I MOMENTET ARBETSFYSIOLOGI ht-09 (091116)
ÖREBRO UNIVERSITET Hälsoakademin Idrott A, MSR ht-09 Delkurs 3, Idrottsfysiologi EXAMINATION I MOMENTET ARBETSFYSIOLOGI ht-09 (091116) Examinationen består av 12 frågor, några med tillhörande följdfrågor.
Läs merGrundläggande logik och modellteori (5DV102)
Tentamen 2014-01-10 Grundläggande logik och modellteori (5DV102) M. Berglund och K. Markström Totalt antal uppgifter 10 Maximalt antal poäng 30 Krav för 3 i betyg 1 Krav för 4 i betyg 19 poäng, vara minst
Läs merKurskod: GRNMAT2 Verksamhetspoäng: 600
Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 lust att utforska matematiken som sådan. Matematisk verksamhet är till sin lad till den samhälleliga, sociala och tekniska utvecklingen. Kunskaper
Läs merForskningsmetoder i offentlig förvaltning
Forskningsmetoder i offentlig förvaltning Provmoment: Ladokkod: Tentamen ges för: Tentamen (B) 21FO1C Administratörprogrammet 15 högskolepoäng TentamensKod: Tentamensdatum: 2017-09-22 Tid: 9.00-13.00 Hjälpmedel:
Läs merArtificial Intelligence
Omtentamen Artificial Intelligence Datum: 2014-08-27 Tid: 09.00 13.00 Ansvarig: Resultat: Hjälpmedel: Gränser: Anders Gidenstam Redovisas inom tre veckor Inga G 8p, VG 12p, Max 16p Notera: Skriv läsbart!
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2015-03-17 Sal (1) Egypten, Asgård, Olympen (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal
Läs merTENTAMEN Tillämpad Systemanalys 5hp
TETAME Tillämpad Systemanalys 5hp Tid: 2012-12-17, 14.00-17.00. OBS: kort skrivtid! Plats: Bergsbrunnagatan 15, Sal 1. Ansvarig lärare: Håkan Lanshammar,. Håkan kommer och svarar på frågor ungefär kl 15.30.
Läs merAlgebra och Diskret Matematik A (svenska)
MITTUNIVERSITETET TFM Tentamen 2007 MAAA99 Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar Datum: 7 juni 2007 Denna tenta omfattar 8 frågor, där varje fråga kan ge 3 poäng. Maximalt poängantal
Läs merlog(6). 405 så mycket som möjligt. 675
MMA Matematisk grundkurs TEN Datum: 8 augusti Skrivtid: timmar Hjälpmedel: Penna, linjal och radermedel Denna tentamen TEN består av nio stycken om varannat slumpmässigt ordnade uppgifter som vardera kan
Läs merProvmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1
Matematik med didaktisk inriktning för grundlärare i förskoleklass och grundskolans a rskurs 1-3, III, VT18 7,5 högskolepoäng Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1 Ladokkod:
Läs merTENTAMEN TDDB53. Programmering i Ada för MI (provkod TEN2) den 7 april 2010 kl Institutionen för datavetenskap, IDA Olle Willén mars 2010
Linköpings universitet Institutionen för datavetenskap, IDA Olle Willén mars 2010 Tentamen TDDB53 TENTAMEN TDDB53 (provkod TEN2) den 7 april 2010 kl 8 12 Jour: Emil Nielsen, tel 070 499 89 88 Hjälpmedel:
Läs merTENTAMEN. HiG sal 51:525A B eller annan ort. Lärare: Tommy Waller ( tel: eller )
TENTMEN Kurs: Plats: Dataanalys och statistik 2 distans 7,5 hp HiG sal 5:525 B eller annan ort Datum: 2 6 9 Tid: 9: 4: Lärare: Tommy Waller ( tel: 26-64 89 65 eller 74 3 86 3 ) Hjälpmedel: Miniräknare
Läs merHjälpmedel: Miniräknare, skrivmateriel (ex. linjal, gradskiva, passare) och Lgr 11
Matematik och matematikdidaktik för 7,5 högskolepoäng grundlärare med inriktning mot arbete i förskoleklass och grundskolans årskurs 1-3, 7.5 hp VT17 Provmoment: Tentamen Matematik och matematikdidaktik,
Läs merMaximalt antal poäng för hela skrivningen är 22 poäng. För Godkänt krävs minst 13 poäng. För Väl Godkänt krävs minst 18 poäng.
Försättsblad KOD: Kurskod: PC1307/PC1546 Kursnamn: Kurs 7: Samhällsvetenskaplig forskningsmetodik/forskningsmetodik och fördjupningsarbete Provmoment: Statistik, 5 hp Ansvarig lärare: Sara Landström Tentamensdatum:
Läs merFöreläsning 9: NP-fullständighet
Föreläsning 9: NP-fullständighet Olika typer av problem: 1. Beslutsproblem: A(x) =Ja. 2. Optimeringsproblem: A(x) =m Vanligen max/min. 3. Konstruktionsproblem: A(x) =En struktur. Vanligen lösningen till
Läs merJag läser kursen på. Halvfart Helfart
KOD: Kurskod: PC1245 Personlighet, hälsa och socialpsykologi Datum: 23/5-2015 Hel- och halvfart VT15 Provmoment: Socialpsykologi + Metod Tillåtna hjälpmedel: Miniräknare Ansvarig lärare: Niklas Fransson
Läs merTentamen TEN1 HI
Tentamen TEN1 HI1029 2015-03-17 Skrivtid: 8.15-13.00 Hjälpmedel: Referensblad (utdelas), papper (tomma), penna Logga in med tentamenskontot ni får av skrivvakten. Det kommer att ta tid att logga in ha
Läs merChalmers tekniska högskola Datum: kl Telefonvakt: Carl Lundholm MVE475 Inledande Matematisk Analys
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 6825 kl. 8.3 2.3 Tentamen Telefonvakt: Carl Lundholm 5325 MVE475 Inledande Matematisk Analys Tentan rättas och bedöms anonymt. Skriv tentamenskoden
Läs merUppgift 1. (3p) a) Bestäm definitionsmängden till funktionen f ( x) c) Bestäm inversen till funktionen h ( x)
Tentamen TEN, (analysdelen) HF9, Matematik atum: aug 9 Skrivtid: : - 8: Eaminator: Armin Halilovic 8 79 8 Jourhavande lärare: Armin Halilovic 8 79 8 För godkänt betyg krävs av ma poäng Betygsgränser: För
Läs merMeningslöst nonsens. December 14, 2014
December 4, 204 Fråga. Hur visar man att sin(x) x tan(x)? Fråga. Hur visar man att sin(x) x tan(x)? Fråga 2. Hur visar man att a > lim n a n =? Fråga 2. Hur visar man att a > lim n a n =? Röd: Det är ett
Läs merTAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 1 april 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Läs merNATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 10 uppgifter utan miniräknare 3. Del II, 9 uppgifter med miniräknare 6
freeleaks NpMaB vt2001 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2001 2 Del I, 10 uppgifter utan miniräknare 3 Del II, 9 uppgifter med miniräknare 6 Förord Skolverket har endast
Läs merMITTUNIVERSITETET TFM. Modelltenta Algebra och Diskret Matematik. Skrivtid: 5 timmar. Datum: 1 oktober 2007
MITTUNIVERSITETET TFM Modelltenta 2007 MA014G Algebra och Diskret Matematik Skrivtid: 5 timmar Datum: 1 oktober 2007 Den obligatoriska delen av denna (modell)tenta omfattar 8 frågor, där varje fråga kan
Läs merSökning. Sökning. Köoperationer. Generell sökalgoritm
Sökning Sökning! Datastrukturer och operationer! Värdering av sökstrategier! Blind sökning! Heuristisk sökning! Constraint satisfaction! Spelförande program Datastruktur: nod = [tillstånd, förälder, operator,
Läs mer