ÖVNINGSTENTAMEN: Statistisk modellering för I3, TMS160 Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på kursen använd ordlista och typgodkänd
|
|
- Leif Arvidsson
- för 6 år sedan
- Visningar:
Transkript
1 ÖVNINGSTENTAMEN: Statistisk modellering för I3, TMS160 Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på kursen använd ordlista och typgodkänd räknedosa. Poängberäkning: Uppgifterna är av flervalstyp, där endast ett alternativ är rätt. Korrekt besvarad uppgift ger 2 poäng, obesvarad uppgift (vet ej) ger 0 poäng och felaktigt besvarad uppgift ger -0.5 poäng (flera ifyllda alternativ ger automatiskt -1/2 poäng). Inlämnade lösningar kommer ej tas hänsyn till vid rättningen. Fyll i och lämna in denna sida. Svar: Läggs ut i studieportalen efter tentamens slut. Uppgift a b c d e f vet ej Poäng 1 Λ Λ Λ Λ Λ Λ Λ 2 Λ Λ Λ Λ Λ Λ Λ 3 Λ Λ Λ Λ Λ Λ Λ 4 Λ Λ Λ Λ Λ Λ Λ 5 Λ Λ Λ Λ Λ Λ Λ 6 Λ Λ Λ Λ Λ Λ Λ 7 Λ Λ Λ Λ Λ Λ Λ 8 Λ Λ Λ Λ Λ Λ 9 Λ Λ Λ Λ Λ Λ Λ 10 Λ Λ Λ Λ Λ Λ Λ 11 Λ Λ Λ Λ Λ Λ Λ 12 Λ Λ Λ Λ Λ Λ Λ 13 Λ Λ Λ Λ Λ Λ Λ 14 Λ Λ Λ Λ Λ Λ Λ 15 Λ Λ Λ Λ Λ Λ Λ 1
2 1 I ett laboratorium vill man bestämma ett konfidensintervall för en mätmetod. Man har mycket stor erfarenhet av metoden och vet att den är mycket stabil, men att spridningen beror på en komponent som ofta byts ut. För att bestämma spridningen måste man därför göra ett antal mätningar på ett referensämne varje gång komponenten bytts ut. Man vet att spridningen är oberoende av väntevärdet av mätningarna och alltså bara beror på komponenten. Först gör man 25 mätningar på referensämnet och beräknar standardavvikelsen till 1.07 g/ml. Därefter gör man 12 mätningar av halten i det prov man verkligen är intresserad av. Medelvärdet av dessa mätningar blev och standardavvikelsen blev 1.13 g/ml Det mest korrekta 95%- iga konfidensintervallet för halten i provet ges då av: r 1:13 2 a Λ 101:12 ± t 11;0:95 12 r 1:13 2 [g/ml] b Λ 101:12 ± t 11;0:975 c Λ 101:12 ± t 35;0:95 d Λ 101:12 ± t 35;0:975 e Λ 101:12 ± t 11;0:975 f Λ vet ej r r r [g/ml] 24 1: : : : : : [g/ml] [g/ml] [g/ml] 2
3 2 I en multivariat regression får vi ett p-värde för F-teststorheten som är mindre än Senare upptäcker vi i datorutskriften att en av variablernas t-teststorheter har ett p-värde större än 0.1. Vad kan man säga om detta. a Λ detta är inget förvånande b Λ det är fel på programmvaran ty F-testet och t-testet mäter ungefär samma sak. c Λ om toleransvärdet är större än 0.1 så är detta normalt. d Λ om toleransvärdet är mindre än 0.1 så är detta normalt. e Λ inget av det ovanstående. f Λ vet ej. 3
4 3 Om vi låter r vara Pearson korrelationskoefficient kan vi tolka r 2 i enkel linjär regression på följande sätt: a Λ om r 2 är litet har vi en beskrivande modell b Λ r 2 beskriver den totala variationen c Λ r 2 mäter hur mycket som regressionen reducerar osäkerheten vid prediktion d Λ r 2 är summan av alla residualer och alltså ett mått på osäkerheten i modellen. e Λ inget av de ovanstående. f Λ vet ej. 4
5 4 I en intervjuvundersökning av läsarna till tidskriften Fortune fann man att 46% hade andelar i aktiefonder, 63% ägde andelar i andra fondtyper och 74% ägde antingen den ena eller den andra eller båda typerna av fondandelar. Vilket av följande uttalande är då korrekt? a Λ sannolikheten att en läsare ägde båda typerna av fondandelar är 0.35 och sannolikheten att en läsare inte hade några fonder är 0.26 b Λ sannolikheten att en läsare ägde båda typerna av fondandelar är 0.26 och sannolikheten att en läsare inte hade några fonder är 0.35 c Λ sannolikheten att en läsare ägde båda typerna av fondandelar är 0.20 och sannolikheten att en läsare inte hade några fonder är 0.26 d Λ sannolikheten att en läsare ägde båda typerna av fondandelar är 0.35 och sannolikheten att en läsare inte hade några fonder är 0.37 e Λ inget av ovanstående f Λ vet ej 5
6 5 Som en del av en undersökning av matvaruaffärers placering av varor studerade man en grupp butiker som alla hade frukostvaror (havregryn, cornflakes, etc) på tre eller flera hyllor placerade ovanpå varandra. 30 butiker valdes ut slumpmässigt. Från 10 av butikerna valdes slumpmässigt en frukostvara från nedersta hyllan, från 10 en vara från den mellersta hyllan, och från 10 en vara från översta hyllan. För var och en av de 30 utvalda varorna bestämde man så sockerinnehållet, beräknat som gram per portion, från innehållsdeklarationen på paketet. Med hjälp av dessa data vill man undersöka om det finns något sammanhang mellan hyllplacering och sockerinnehåll. Detta gör man bäst med a Λ regressionsanalys b Λ ensidig variansanalys utan blockindelning c Λ ensidig variansanalys med blockindelning (RCBD) d Λ Pearsons χ 2 -test in en tvåsidig tabell för kategoriska data e Λ inget av ovanstående f Λ vet inte 6
7 6 Nedastående bilder visar scatterplottar för observationer från tre olika bivariata fördelningar. Är det är det för någon/några av dem tydligt att korrelationskoefficienten är skilld från noll? Figur 1: Observationer från fördelning a överst till vänster, fördelning b överst till höger och fördelning c nederst a Λ ja, för fördelning a och b, men inte för fördelning c b Λ ja, för fördelning a och c, men inte för fördelning b c Λ ja, men bara för fördelning c d Λ ja, för fördelning b och c,men inte för fördelning a e Λ nej, inte för någon av fördelningarna f Λ vet ej 7
8 7 Som del i tillverkning av elektroniska kretskort uppbygges en film genom oxidering av kiselskivor i en högtemperaturugn. Nedanstående tabell visar uppmätta värden av filmtjockleken (i ångström) och skivans avstånd (i cm) från ugnsöppningen. avstånd tjocklek För att undersöka filmtjocklekens beroende av avståndet från ugnsöppningen gjordes en linjär regressionsanalys. Man fick då bl a följande datorutskrifter. Analysis of Variance Source DF Sum of Squares Mean Square F Stat Pr > F Model Error C Total Parameter Estimates Pr Variable DF Estimate Std Error t Stat > t Intercept afstand
9 Man vill bestämma ett 95% prediktionsinterval for filmtjockleken hos en skiva som ska placeras 30 cm från ugnsöppningen. Detta ska räknas ut som: s 1 (30 25)2 a Λ 675: :11 ± 2: : b Λ 675: :11±2:5706 c Λ 675: :11±2:5706 s s d Λ 675: :11 ± 2:5706 e Λ 675: :11±2:5706 f Λ vet ej s 15745: :5 s 15745: :6 17 (30 25) :7 17 (30 25) :7 (30 24:11) :7 9
10 8 Efter injektion av ett antibiotikum i blodet binds en viss del av den injicerade mängden till serumproteiner. Detta fenomen har stor farmakologisk betydelse, eftersom det påverkar hur effektiv antibiotikan ifråga blir mot infektioner. I en studie ville man undersöka hur stor del av fem olika antibiotikatyper som bands. Varje medel injicerades på fyra olika individer. De tjugo frivilliga försökspersonerna tilldelades genom lottning en av de fem antibiotikatyperna. Antibiotikum M ängd bundet serum (okänd enhet) Penicillin G Tetracycline Streptomycin Erythromycin Chlomphenicol Vilket av följande statistiska verktyg (med data på den form som ges i tabellen) skall du använda för att undersöka nollhypotesen att de fem typerna är likvärdiga? a Λ χ 2 -test av radoberoende ienkontigenstabell b Λ enkel linjär regression c Λ ensidig variansanalys d Λ tvåsidig variansanalys e Λ vet ej 10
11 9 Vid en kontroll av antagandena i en enkel linjär regressionmodell är residualplottar ett mycket användbart verktyg. Man skall dock inte plotta residualerna mot: a Λ de observerade värdena av svarsvariabeln. b Λ de anpassade värdena av svarsvariabeln. c Λ värdena av prediktorn. d Λ värdena av regressorn. e Λ tidsordningen för observationerna. f Λ vet ej 11
12 10 Två uppmätta dimensioner, X och Y hos en plastdetalj tros följa en bivariat normalfördelning med ff X = 0:04;ff Y = 0:08;μ X = 3:0;μ Y = 7:7;ρ =0.Dåär P (2:95 <X< 3:05; 7:60 <Y < 7:80) lika med a Λ 0.32 b Λ 0.42 c Λ 0.52 d Λ 0.62 e Λ 0.72 f Λ Vet ej 12
13 11 Man var intresserad av felfrekvenser i ett sjukhuslaboratorium, och gick därför igenom 1000 slumpmässigt utvalda analysrapporter. Rapporterna kom från en vanlig arbetsvecka. De klassificerades som tillfredsställande, eller som behäftade med så pass viktiga fel att de borde ha gjorts om. Dessutom antecknades om analysen gjorts av dagskiftet eller kvällsskiftet. Resultatet ges i nedanstående tabell: Skift felprocent antal fel antal OK totalt Procent Dag kväll totalt Procent Pearson χ 2 testkvantitet för hypotesen om oberoende mellan felfrekvens og skift ges då av: (16 26:8)2 (24 13:2)2 a Λ + 26:8 13:2 b Λ (2:4 4:85) 2 (7:3 4:85)2 + 4:85 4:85 c Λ d Λ e Λ f Λ (16 26:8)2 26:8 (2:4 4:85)2 4:85 (16 250)2 250 Vet ej ( :2)2 (24 13:2)2 ( :8) :2 13:2 316:8 + + (97:6 95:15)2 95:15 ( ) (7:3 4:85)2 4:85 (24 250) (92:7 95:15)2 95:15 ( )
14 12 Ett företag som framställer insulin vill jämföra mätmetoderna för insulinstyrka vid 5 olika laboratiorier runt om i värlsden. För detta har man planerat göra följande sk Round Robin försök. Man skickar 6 prov från vart och ett av 3 insulinpartier till vart och ett av laboratorierna. Proverna analyseras sedan av laboratorierna, och analysresultaten skickas till företaget. Resultaten (mätta i insulinstyrka per ml) kan antagas vara normalfördelade. Man vet av erfarenhet att insulinstyrkan kan variera lite från parti till parti. Ändamålet med försöket är att undersöka om laboratorierna mäter samma insulinstyrka. Detta gör man bäst med a Λ regressionsanalys b Λ ensidig variansanalys utan blockindelning (one-way model) c Λ ensidig variansanalys med blockindelning (RCBD) d Λ χ 2 -test för oberoende ienfyrfältsstabell för kategoriska data e Λ inget av ovanstående f Λ vet ej 14
15 13 Den stokastiska variabeln X har väntevärde 3 och standardavvikelse 1 och variablen Y har väntevärde 2 och standardavvikelse 2. Vidare är korrelationen mellan X och Y lika med 0.5. Sätt Z = X Y +2. Då är variansen för Z lika med a Λ 1 b Λ 2 c Λ 3 d Λ 5 e Λ 7 f Λ vet ej 15
16 14 En teknolog gör examensarbete i en fabrik som tillverkar tandkräm. Hennes uppgift är att undersöka variationer i produktionen. Tandkrämen fylls på tuber av en maskin med sex påfyllningskanyler som fyller parallellt från samma tank. Hon valde att bedömma variationen genom att undersöka ev. skillnader mellan tuber som kom från olika påfyllningskanyler. Under en dag med 17 timmars produktion tog hon en gång i timmen samtidigt ut en tub från varje kanyl. Hon vägde därefter tuberna. Från de uppmätta vikterna kunde hon så beräkna värdena i följande tabell: Variation SS Tidpunkt Kanyl Error Testkvantiteten för test av hypotesen om att det inte finns någon skillnad i vikten av tandkrämstuber som kommer från olika påfyllningskanyler ges då av: a Λ 0:5458=16 0:1122=80 b Λ 0:5458=16 0:1122=81 c Λ 0:5458=5 0:1122=81 d Λ 0:5458=6 0:1122=81 e Λ 4:0175=5 0:1122=80 f Λ vet ej 16
17 15 En betongtillverkare vill jämföra dragstyrkan hos betong tillverkat med fyra olika produktionsmetoder. Vid tillverkningen används ofta fyra olika tillsättningsmedel, som kanske har inflytande på dragstyrkan. Man har därför planerat ett försök där var och en av produktionsmetoderna används tillsammans med vart och ett av de fyra tillsättningsmedeln. För att få tillräcklig precision i försöket tänker man göra tre upprepningar för varje kombination av metod och tillsättningsmedel. Test av om produktionsmetoden har något inflytande på dragstyrkan görs bäst som: a Λ regressionsanalys b Λ ensidig variansanalys utan blockindelning (one-way model) c Λ ensidig variansanalys med blockindelning (RCBD) d Λ χ 2 -test för oberoende ienfyrfältsstabell för kategoriska data e Λ inget av ovanstående f Λ vet ej 17
Uppgift a b c d e f (vet ej) Poäng
TENTAMEN: Statistisk modellering för I3, TMS161, lördagen den 22 Oktober kl 8.30-11.30 på V. Jour: John Gustafsson, ankn. 5316. Hjälpmedel: På hemsidan tillgänglig ordlista och formelsamling med tabeller,
Del A: Schema för ifyllande av svar nns på sista sidan
Del A: Schema för ifyllande av svar nns på sista sidan 1 1 Nedladdningstiden (i sekunder) för en bestämd l registrerades 16 gånger vid var och en av tre olika tidpunkter på dygnet. ANOVA-analys av dessa
Uppgift a b c d e f (vet ej) Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
查 询 TMS160 供 应 商 捷 多 邦, 专 业 PCB 打 样 工 厂,24 小 时 加 急 出 货 TENTAMEN: Statistisk modellering för I3, TMS160, fredagen den 26 Augusti kl? på?. Jour: Holger Rootzén, ankn. 3578 Hjälpmedel: Utdelad formelsamling
Uppgift a b c d e Vet inte Poäng
TENTAMEN: Dataanalys och statistik för I2, TMS135 Fredagen den 12 mars kl. 8:45-11:45 på V. Jour: Jenny Andersson, ankn 8294 (mobil:070 3597858) Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på
Uppgift a b c d e Vet inte Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TENTAMEN: Dataanalys och statistik för I, TMS136 Onsdagen den 5 oktober kl. 8.30-13.30 på M. Jour: Jenny Andersson, ankn 5317 Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på kursen använd ordlista
Standard Normal Quantiles. Vilken av följande slutsatser kan man dra från qq-plotten?
-2.5cm TENTAMEN: Statistisk modellering för I3, TMS160, lördagen den 11 december 2004 kl 8:30-11:30 på M. Jour: John Gustavsson, mob 0705-330375 Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på
Uppgift a b c d e f (vet ej) Poäng
TENTAMEN: Statistisk modellering för I3, TMS161, måndagen den 9 januari 2006 kl 8.30-11:30 på V. Jour: Magnus Karlsson, tel: 772 42 91. Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på kursen använd
Statistisk försöksplanering
Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 2 November Tid: 09:00-13 Hjälpmedel: Miniräknare
En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:
1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt
Statistisk försöksplanering
Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 25 Oktober 2017 Tid: 09:00-13 Hjälpmedel: Miniräknare
Examinationsuppgifter del 2
UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk statistisk Statistik för ingenjörer, poäng, Anders Lundquist 7-- Examinationsuppgifter del Redovisas muntligt den / (Ö-vik) samt / (Lycksele).
LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN
10.1 Enkel linjär regression
Exempel: Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben. De halvledare vi betraktar är av samma storlek (bortsett benlängden). 70 Scatterplot
Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal
Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper
Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att
Föreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
Tentamen i matematisk statistik
Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:
TENTAMEN I MATEMATISK STATISTIK
UMEÅ UNIVERSITET Institutionen för matematisk statistik Regressions- och variansanalys, 5 poäng MSTA35 Leif Nilsson TENTAMEN 2003-01-10 TENTAMEN I MATEMATISK STATISTIK Regressions- och variansanalys, 5
F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT
Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är
7.5 Experiment with a single factor having more than two levels
7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan
Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:...
Avd. Matematisk statistik TENTAMEN I SF9/SF94/SF95/SF96 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 4:E OKTOBER 08 KL 8.00 3.00. Examinator för SF94/SF96: Tatjana Pavlenko, 08-790 84 66 Examinator för
Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig
Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-08-22 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Jourhavande lärare: Mykola
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (9 uppgifter) Tentamensdatum 2013-08-27 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson och
Tentamen för kursen. Linjära statistiska modeller. 22 augusti
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 22 augusti 2008 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus
Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II
Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I
FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik
Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende
Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.
Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för
Blandade problem från elektro- och datateknik
Blandade problem från elektro- och datateknik Sannolikhetsteori (Kapitel 1-10) E1. En viss typ av elektroniska komponenter anses ha exponentialfördelade livslängder. Efter 3000 timmar brukar 90 % av komponenterna
b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)
Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.
Metod och teori. Statistik för naturvetare Umeå universitet
Statistik för naturvetare -6-8 Metod och teori Uppgift Uppgiften är att undersöka hur hjärtfrekvensen hos en person påverkas av dennes kroppstemperatur. Detta görs genom enkel linjär regression. Låt signifikansnivån
Föreläsning 11: Mer om jämförelser och inferens
Föreläsning 11: Mer om jämförelser och inferens Matematisk statistik David Bolin Chalmers University of Technology Maj 12, 2014 Oberoende stickprov Vi antar att vi har två oberoende stickprov n 1 observationer
1. Lära sig plotta en beroende variabel mot en oberoende variabel. 2. Lära sig skatta en enkel linjär regressionsmodell
Datorövning 1 Regressions- och tidsserieanalys Syfte 1. Lära sig plotta en beroende variabel mot en oberoende variabel 2. Lära sig skatta en enkel linjär regressionsmodell 3. Lära sig beräkna en skattning
TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng
Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-08-31 Tid:
TENTAMEN I SF2950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 2010 KL
TENTAMEN I SF950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 010 KL 14.00 19.00 Examinator : Gunnar Englund, tel. 790 7416, epost: gunnare@math.kth.se Tillåtna hjälpmedel: Formel-
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2014-01-17 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 15.00 20.00 Lärare: Adam Jonsson, Mykola
Gör uppgift 6.10 i arbetsmaterialet (ingår på övningen 16 maj). För 10 torskar har vi värden på variablerna Längd (cm) och Ålder (år).
Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 4, 21 MAJ 2018 REGRESSION OCH FORTSÄTTNING PÅ MINIPROJEKT II Syfte Syftet med dagens laboration är att du ska bekanta
Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University
Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att
Föreläsning 12: Linjär regression
Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera
a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta?
Tentamen i Matematisk statistik, S0001M, del 1, 2008-01-18 1. Ett företag som köper enheter från en underleverantör vet av erfarenhet att en viss andel av enheterna kommer att vara felaktiga. Sannolikheten
Blandade problem från maskinteknik
Blandade problem från maskinteknik Sannolikhetsteori (Kapitel 1-7) M1. Vid tillverkning av en viss maskintyp får man spiralfjädrar från tre olika tillverkare. Varje dag levererar tillverkare A 100 fjädrar,
D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.
1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15
Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 6 april 004, klockan 08.15-13.15 Tillåtna hjälpmedel: Bifogad
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2018-01-12 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Mykola Shykula, Niklas
Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer
Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2018-01-12 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Mykola Shykula, Niklas
Föreläsningsanteckningar till kapitel 8, del 2
Föreläsningsanteckningar till kapitel 8, del 2 Kasper K. S. Andersen 4 oktober 208 Jämförelse av två väntevärden Ofte vil man jämföra två eller fler) produkter, behandlingar, processer etc. med varandra.
7,5 högskolepoäng. Statistisk försöksplanering och kvalitetsstyrning. TentamensKod: Tentamensdatum: 30 oktober 2015 Tid: 9-13:00
Statistisk försöksplanering och kvalitetsstyrning Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen 5Hp 41I12B KINAF13, KINAR13, KINLO13,KMASK13 7,5 högskolepoäng Tentamensdatum: 30 oktober
FÖRELÄSNING 8:
FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data
I vår laboration kom vi fram till att kroppstemperaturen påverkar hjärtfrekvensen enligt
Introduktion Vi har fått ta del av 13 mätningar av kroppstemperatur och hjärtfrekvens, varav på hälften män, hälften kvinnor, samt en studie på 77 olika flingsorters hyllplaceringar och sockerhalter. Vi
Statistik för teknologer, 5 poäng Skrivtid:
UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för teknologer, MSTA33, p Statistik för kemister, MSTA19, p TENTAMEN 2004-06-03 TENTAMEN I MATEMATISK STATISTIK Statistik för teknologer,
7.5 Experiment with a single factor having more than two levels
Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan och att en inblandning mellan 10% och 40% är bra. För att
Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas.
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2014-10-28 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: A. Jonsson, M. Shykula,
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF194 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAG 1 AUGUSTI 019 KL 8.00 13.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling
TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng
Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-05-29 Tid:
Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 8 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Enkel linjär regression (kap 17.1 17.5) o Skatta regressionslinje (kap 17.2) o Signifikant lutning? (kap 17.3, 17.5a) o Förklaringsgrad
732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet
732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris
(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka.
Avd. Matematisk statistik TENTAMEN I SF1901, SF1905 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 11 JANUARI 2016 KL 14.00 19.00. Kursledare för CINEK2: Thomas Önskog, tel: 08 790 84 55 Kursledare för
Följande resultat erhålls (enhet: 1000psi):
Variansanalys Exempel Aluminiumstavar utsätts för uppvärmningsbehandlingar enligt fyra olika standardmetoder. Efter behandlingen uppmäts dragstyrkan hos varje stav. Fem upprepningar görs för varje behandling.
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2013-10-29 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Mykola
Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp
Sid 1 (9) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift 1 a) Nämn en kontinuerlig och en diskret fördelning. Exempelvis normalfördelningen respektive
Tentamen i Dataanalys och statistik för I den 28 okt 2015
Tentamen i Dataanalys och statistik för I den 8 okt Tentamen består av åtta uppgifter om totalt poäng. Det krävs minst poäng för betyg, minst poäng för och minst för. Eaminator: Ulla lomqvist Hjälpmedel:
a) Bestäm sannolikheten att en slumpmässigt vald komponent är defekt.
Tentamen i Matematisk statistik, S0001M, del 1, 007-10-30 1. En viss typ av komponenter tillverkas av en maskin A med sannolikheten 60 % och av en maskin B med sannolikheten 40 %. För de komponenter som
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2014-06-05 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Jesper
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2018-03-21 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Mykola Shykula, Inge
TMS136. Föreläsning 10
TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret
Tentamen i Sannolikhetslära och statistik Kurskod S0008M
Tentamen i Sannolikhetslära och statistik Kurskod S0008M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-10-27 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Mykola
Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola.
Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tid: Måndagen den 2015-06-01, 8.30-12.30. Examinator och Jour: Olle Nerman, tel. 7723565, rum 3056, MV, Chalmers. Hjälpmedel: Valfri
Lycka till!
Avd. Matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR K OCH B MÅNDAGEN DEN 25 AUGUSTI 2003 KL 14.00 19.00. Examinator: Gunnar Englund, 790 7416. Tillåtna hjälpmedel: Formel- och
7,5 högskolepoäng. Statistisk försöksplanering och kvalitetsstyrning. TentamensKod: Tentamensdatum: 28 oktober 2016 Tid: 9.
Statistisk försöksplanering och kvalitetsstyrning Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen 4I2B KINAF4, KINAR4, KINLO4, KMASK4 7,5 högskolepoäng Tentamensdatum: 28 oktober 206 Tid:
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl
Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema
Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0
Avd. Matematisk statistik TENTAMEN I SF191, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 1:A JUNI 216 KL 8. 13.. Kursledare: Thomas Önskog, 8-79 84 55 Tillåtna hjälpmedel: Formel- och tabellsamling i
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1901,SF1905,SF1907 OCH SF1908 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 12:E JANUARI 2011 KL 14.00 19.00. Kursledare: Gunnar Englund för D och I, tel. 7907416.
9. Konfidensintervall vid normalfördelning
TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag
Matematiska Institutionen Silvelyn Zwanzig 13 mar, 2006
UPPSALA UNIVERSITET Sannolikhetslära och Statistik Matematiska Institutionen F Silvelyn Zwanzig 3 mar, 006 Tillåtna hjälpmedel: Miniräknare, Formel- och Tabellsamling med egna handskrivna tillägg Skrivtid:5-0.
(a) Avgör om A och B är beroende händelser. (5 p) (b) Bestäm sannolikheten att A inträffat givet att någon av händelserna A och B inträffat.
Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSLÄRA OCH STATISTIK I, MÅNDAGEN DEN 15 AUGUSTI 2016 KL 08.00 13.00. Examinator: Tatjana Pavlenko, 08 790 84 66. Kursledare: Thomas Önskog, 08 790
Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8
1 Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8 Dessa instuderingsfrågor är främst tänkta att stämma överens med innehållet i föreläsningarna,
27,5 27,6 24,8 29,2 27,7 26,6 26,2 28,0 (Pa s)
TENTAMEN: Statistik och sannolikhetslära (LMA120) Tid och plats: 08:0-12:0 den 7 oktober 2016, Samhällsbyggnad Hjälpmedel: Typgodkänd miniräknare, formelblad Betygsgränser: : 12 poäng, 4: 18 poäng, 5:
Regressionsanalys. - en fråga om balans. Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet
Regressionsanalys - en fråga om balans Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Innehåll: 1. Enkel reg.analys 1.1. Data 1.2. Reg.linjen 1.3. Beta (β) 1.4. Signifikansprövning 1.5. Reg.
Laboration 4 R-versionen
Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 VT13, lp3 Laboration 4 R-versionen Regressionsanalys 2013-03-07 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner
2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer
Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna
Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION
KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat
Laboration 3: Enkel linjär regression och korrelationsanalys
STOCKHOLMS UNIVERSITET 13 februari 2009 Matematiska institutionen Avd. för matematisk statistik Gudrun Brattström Laboration 3: Enkel linjär regression och korrelationsanalys I sista datorövningen kommer
Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)
Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,
Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp
Sid (7) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift Nedanstående beräkningar från Minitab är gjorda för en Poissonfördelning med väntevärde λ = 4.
AMatematiska institutionen avd matematisk statistik
Kungl Tekniska Högskolan AMatematiska institutionen avd matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR B OCH K FREDAGEN DEN 11 JANUARI 2002 KL 14.00 19.00. Examinator: Gunnar
Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen
Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då
Tentamen för kursen. Linjära statistiska modeller. 20 mars 2015 9 14
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 20 mars 2015 9 14 Examinator: Anders Björkström, bjorks@math.su.se Återlämning: Fredag 27/3 kl 12.00, Hus 5,
TENTAMEN I MATEMATISK STATISTIK
UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för Teknologer, 5 poäng MSTA33 Ingrid Svensson TENTAMEN 2004-01-13 TENTAMEN I MATEMATISK STATISTIK Statistik för Teknologer, 5 poäng Tillåtna
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1913 MATEMATISK STATISTIK FÖR IT OCH ME ONSDAGEN DEN 12 JANUARI 2011 KL 14.00 19.00. Examinator: Camilla Landén, tel. 7908466. Tillåtna hjälpmedel: Formel- och tabellsamling
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 22 december, 2016 Examinatorer: Kerstin Wiklander och Erik Broman.
LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK
UMEÅ UNIVERSITET Institutionen för matematisk statistik MSTA16, Statistik för tekniska fysiker A Peter Anton TENTAMEN 2004-08-23 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Statistik för tekniska
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2018-05-31 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri
Matematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour: