IPR Äspö Hard Rock Laboratory. International Progress Report. Äspö Pillar Stability Experiment
|
|
- Solveig Persson
- för 6 år sedan
- Visningar:
Transkript
1 International Progress Report IPR-3-3 Äspö Hard Rock Laboratory Äspö Pillar Stability Experiment Design of heaters and preliminary results from coupled 2D thermo-mechanical modelling Anders Fredriksson Isabelle Staub Thomas Janson Golder Associates AB February 23 Reviewed February 23 Revised version May 23 Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-2 4 Stockholm Sweden Tel Fax
2
3 Report no. IPR-3-3 Author No. F86K Date Anders Fredriksson Isabelle Staub Thomas Janson Checked by Date Christer Andersson Approved Date Christer Svemar Äspö Hard Rock Laboratory Äspö Pillar Stability Experiment Design of heaters and preliminary results from coupled 2D thermo-mechanical modelling Anders Fredriksson Isabelle Staub Thomas Janson Golder Associates AB February 23 Reviewed February 23 Revised version May 23 Keywords: Äspö Pillar Stability Experiment, spalling, 2D thermo-mechanical modelling, JobFem, deformation, stresses, sensitivity analysis This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client.
4
5 Abstract A site scale Pillar Stability Experiment is planned in the Äspö Hard Rock Laboratory. One of the experiment s aim is to demonstrate the possibilities of predicting spalling in the fractured rock mass. In order to investigate the probability and conditions for spalling in the pillar preliminary numerical simulations have been undertaken. This report presents the results obtained from 2D coupled thermo-mechanical numerical simulations that have been done with the Finite Element based programme JobFem. The optimal number and location of heaters were determined by numerical simulations, and the layout of the experiment was defined. The suggested heating system is composed of 4 heaters, located 2 on each side of the pillar. Complementary simulations were conducted to achieve the evolution of temperature, deviatoric stresses and total stresses during the experiment. A sensitivity analysis of input parameters (deformation s modulus, thermal conductivity, in situ stresses) have been conducted in order to catch the potential range of stresses and temperature in the rock mass during the experiment. The results of the simulations point out that the required level of stress for spalling can be reached in the pillar even when accounting for the lowest combination. 3
6 4
7 Sammanfattning Ett fullskaleförsök angående pelarstabilitet planeras vid Äspö laboratoriet. En av målsättningarna med experiment är att demonstrera möjligheten att prediktera risken för smällberg i en uppsprucken bergmassa. För att undersöka sannolikheten och förutsättningarna till smällberg i bergmassan genomfördes preliminära numeriska simuleringar. Denna rapport redovisar resultaten från 2D - kopplade, termomekaniska numeriska beräkningar som utfördes med det finita element - baserade programmet JobFem. Det optimala antalet värmare och deras utplacering bestämdes med hjälp av numeriska beräkningar. Den föreslagna experimentuppsättningen innefattar 4 värmare som placeras parvis på var sida av pelaren. Den numeriska modellen byggdes upp utifrån denna experimentuppsättning och ytterligare simuleringar genomfördes. Utvecklingen av temperatur och spänningar registrerades och studerades under olika steg av experimentet. En känslighetsanalys för några ingångsparametrar (deformationsmodul, termisk konduktivitet, initiala spänningar) utfördes för att bedöma spridningen av beräkningsutfallet och spannet av förväntade temperatur- och spänningsförändringar i bergmassan. Simuleringarna visade att förutsättningarna för smällberg i berget nås även för den parameterskombination som ger den lägsta temperatur- och spänningsökningen. 5
8 6
9 Contents 1 Introduction Background Objective 2 Determination of the optimal layout for heaters Material data Method of analysis Analysis of different alternatives Geometry of the alternatives Presentation of the results Discussion Proposed layout for the experiment Analysis of the proposed layout Conclusions D coupled thermo-mechanical modeling Modeling strategy The numerical code: JobFem Set-up of the model for the experiment Modeling results Influence of the depth level Influence of the slots Sensitivity analysis Influence of in-situ stresses Influence of the deformation modulus Influence of the thermal conductivity Analysis of the results Discussion 44 4 Conclusions 45 References 47 Appendix A 49 Appendix B 51 Appendix C 57 Appendix D 63 Appendix E 71 Appendix F 87 Appendix G 95 Appendix H 5 7
10 8
11 1 Introduction 1.1 Background SKB is planning a full-scale rock mechanics experiment. The experiment will study pillar stability. The main objectives with the pillar stability experiment are summarized in /Andersson, 23/: 1. Demonstrate the capability to predict spalling in a fractured rock mass 2. Demonstrate the effect of backfill (confining pressure) on the rock mass response 3. Comparison of 2D and 3D mechanical and thermal predicting capabilities The experiment will be performed in the Äspö Hard Rock Laboratory (HRL) at level 45 m. Three alternative locations are studied, alternative 1 is located north of the F- tunnel, alternative 2 is located south of the TBM-tunnel and alternative 3 18 from alternative 2, see Figure 1-1. A new tunnel will be excavated with start from the F- tunnel or TBM-tunnel and from the floor of the new tunnel two vertical holes will be drilled. The pillar between the holes will be heated and the additional thermal stresses shall force the rock in the holes walls to spall. Figure D view of the tunnel-system. Localization of the of the experiment volumes. 9
12 1.2 Objective In order to achieve the best possible results during the experiment the optimal number and location of heaters have been determined by means of numerical simulations. Several alternatives have been run and their outcome compared and analyzed. The results are presented in section 2. This study had to take into consideration the location of the acoustic emission system, and the maximum temperature the emitters could stand, as well as the level of stresses estimated to be optimal for the initiation of spalling in the pillar. After having determined the optimal layout for the experiment, coupled 2D thermomechanical simulations have been run. The preliminary mechanical and thermal properties assigned to the rock mass are estimated in Staub et al., 23. The results of the 2D modeling are presented in section 3.
13 2 Determination of the optimal layout for heaters This section reports the numerical analysis conducted to determine the influence of the number and position of the heaters in the proximity of the pillar. The assessed optimal layout is illustrated and discussed in sections 2.4 and Material data The following input data have been used for the modeling: Initial temperature 13.2 o C Thermal conductivity, rock 2.56 W/m, K Volume heat capacity, rock 2.9 MJ/m 3,K Volume heat capacity, water 4.18 MJ/m 3,K Volume heat capacity, air.129 MJ/m 3, K Coefficient of linear expansion 7. E-6 l/k Young s modulus 68 GPa Poisson s ratio.2 Initial stresses σ 1 = 3 MPa (3/3) (Äspö96) σ 2 = 15 MPa (82/53) (Äspö96) σ 3 = MPa (2/2) (Äspö96) Heater φ: 32 mm; effect: 5 W/m N.B. it should be stressed that the input data used for defining the layout of the experiment are not exactly reflecting the input data defined in the report Geology and properties of the rock mass around the experiment volume /Staub et al., 23/. The modeling for the layout started before the complete evaluation of mechanical and thermal properties of rock and fractures was achieved. Hence input data for the thermomechanical modeling should be taken from the aforementioned report, and not from this section. This does not influence the results of the thermal modeling as the study focuses on relative changes and comparisons between different alternatives, all models being run with the input data as stated in this section. 11
14 2.2 Method of analysis Heat flow and temperature induced stresses have been calculated under plain strain condition. The finite element code JobFem was used. The heaters were modeled as a point heat source in the plain strain model with a given effect. A maximum temperature of 2 o C was specified at the heater. If the temperature at the heater reached 2 o C the effect was reduced to keep the temperature at 2 o C. The effects of the heaters were varied from 5 W/m. One of the large holes is filled with water and the other with air. This was considered in the transient heat calculation. The temperature increase and temperature induced stresses after 6 days of heating were compared between the different alternatives and for different heater effects. The size of the model was chosen large enough to avoid influence of the boundary. Figure 2-1 illustrates the whole model for one alternative and the temperature situation after 6 days of heating. The figure illustrates that the temperature increase has not reached the boundary of the model, and validates the size of the model chosen for further modeling. The stress changes due to excavation of tunnel, holes and slots were given by SKB. The boundary element code Examine 3D was used to calculate the stress changes. Y TEMP Figure 2-1. Illustration of the zone of influence of heating compared to the size of the model. 12
15 2.3 Analysis of different alternatives Geometry of the alternatives Three different alternatives based on varying number and location of the heaters have been tested, see Figure 2-2 to Figure 2-4. To compare the different alternatives the temperature and temperature induced stresses are registered in three points A, B and C, located as illustrated in Figure 2-5. Figure 2-2. Alternative 1, with two heaters. 13
16 Figure 2-3. Alternative 2, with four heaters inside the volume defined by the AE-sensors. Figure 2-4. Alternative 3, with four heaters outside the volume defined by the AE-sensors. 14
17 3 =AE 2 1 Y air A B C water Figure 2-5. Location of the recording points A, B and C Presentation of the results Alternative 1 The temperature increase and temperature induced stresses in the measuring points A - C after 6 days of heating for alternative 1 are presented in Figure 2-6 and Figure 2-7. In Appendix A the results from the heater effects of 2 and 4 W/m are presented as contour maps. The effect to the heaters has been varied from 5 W/m. 15
18 7 6 Temperature, degree C Point A Point B Point C Effect to heaters, W/m Figure 2-6. Temperature increase after 6 days of heating, alternative 1. 5 Temperature induced stresses, MPa Point A Point B Point C Effect to heaters, W/m Figure 2-7. Temperature induced stresses after 6 days of heating, alternative 1. 16
19 Alternative 2 The temperature increase and temperature induced stresses in the measuring points A-C after 6 days of heating for alternative 2 with four heaters are presented in Figure 2-8 and Figure 2-9. In Appendix B the results are presented as contour maps. The effect to the heaters has been varied from 5 W/m. 12 Temperature, degree C Point A Point B Point C Effect to heaters, W/m Figure 2-8. Temperature increase after 6 days of heating, alternative Temperature induced stresses, MPa Point A Point B Point C Effect to heaters, W/m Figure 2-9. Temperature induced stresses after 6 days of heating, alternative 2. Note: the non-linear behavior of the curves at high effect of the heaters is due to the constraint of a maximal temperature of 2 applied at the heaters. This does also have an impact on the temperature evolution in the monitoring points. 17
20 Alternative 3 The temperature increase and temperature induced stresses in the measuring points A-C after 6 days of heating for alternative 3 with four heaters are presented in Figure 2- and Figure In Appendix C the results are presented as contour maps. The effect to the heaters has been varied from 5 W/m Temperature, oc Point A Point B Point C Effect to heaters, W/m Figure 2-. Temperature increase after 6 days of heating, alternative Tempearture induced stresses, MPa Point A Point B Point C Effect to heaters, W/m Figure Temperature induced stresses after 6 days of heating, alternative 3. 18
21 2.3.3 Discussion The magnitude of temperature induced stresses in the pillar is in about the same range for both alternatives 2 and 3, maximum 4 MPa at 2 W/m. Alternative 1 gives only half the stress increase. An advantage with alternative 3 is that the heaters are located outside the volume defined by the AE-monitoring holes, and this alternative is therefore recommended. An effect around 2 W/m will give a size of the heaters that is practical to handle. 2.4 Proposed layout for the experiment Recommendations for location of the acoustic emission system, the heaters and holes for recording temperature during the experiment are presented in Figure The effect of the heaters shall be variable from to 3 W/meter. The heaters shall be at least.5 m longer than the 1.8 m diameter boreholes. Figure The proposed layout of the experiment. The installation of thermistor arrays to monitor the evolution of temperature in the rock mass during the experiment is recommended and the suggested position of these arrays is illustrated in Figure
22 2.5 Analysis of the proposed layout Further simulations have been run on the proposed layout. For this layout, illustrated in Figure 2-12, the temperature increase and temperature induced stresses have been calculated during 12 days of heating with a heater effect of 2 W/m. The temperature induced stresses have been added to the stresses calculated with the 3D boundary element program Examine 3D. Two horizontal sections located.5 m and 1.5 m below the tunnel floor have been studied. The calculated temperature increase in the measuring points A C is shown in Figure In Appendix D the results are presented as contour maps. 6 5 Temperature, degree C Point A Point B Point C Number of days after start heating Figure Temperature increase during 12 days of heating, 2 W/m. The major stress reached in the rock mass after heating is illustrated in the measuring points A C, 1.5 m and.5 m below the tunnel floor, see Figure 2-14 and Figure In Appendix D the results are presented as contour maps. 2
23 Stresses, MPa Point A Point B Point C Number of days after start heating Figure Major stress increase in measuring points A C, 1.5 m below the tunnel floor during 12 days of heating Stresses, MPa Point B Point C Point A Number ot days after start heating Figure Major stress increase in measuring points A C,.5 m below the tunnel floor during 12 days of heating. 21
24 2.6 Conclusions The aim of the modeling was to determine the optimal layout for heaters during the experiment, in order to get temperature induced stresses high enough to initiate spalling in the pillar s wall. For the recommended layout 4 heaters are required, see Figure 2-4. The effect of the heaters shall be variable from to 3 W/meter, and the heaters shall be.5 m longer than the 1.8 diameter boreholes. It is recommended to set monitoring equipment for the following-up of heating of the rock mass in 6 locations, with thermosensors located every meter along the holes (Figure 2-16). Four of these equipments are on the boreholes walls, and two are on specific holes located between the heaters on both sides of the pillar. Figure Vertical view of the monitoring system at the proximity of the pillar. The thermistor arrays are the orange squares, the AE transmitters the green cones, the AE receivers the green cylinders, and the red vertical lines are the heaters. The results presented in this report are valid for the range of input data applied and listed in section 2.1. Based on the mechanical and thermal properties used as input in the model the temperature increase and temperature induced stresses are as expected to initiate spalling in the holes walls. The variation of input parameters, mechanical as well as thermal, will influence the results of the modeling and the magnitude of temperature induced stresses. It can anyhow be stated without further modeling that the range of increase in temperature induced stresses is linearly dependent to the value of the coefficient of expansion. For the same value of Young s modulus, a decrease of % of the coefficient of expansion will induce a decrease of % of the magnitude of temperature induced stresses. A sensitivity analysis will be carried out on the influence of input parameters on the outcome of modeling. 22
25 3 2D coupled thermo-mechanical modeling This section presents the preliminary results of the coupled 2D thermo-mechanical modeling with the numerical code JobFem. The modeling has been conducted in order to determine the temperatures and level of stresses reached in the pillar as a function of heating time. Both models with slots and without slots have been simulated to check if the presence of slots was necessary. A sensitivity analysis has been conducted on the value of in-situ stresses, deformation modulus and thermal conductivity. 3.1 Modeling strategy The aim of the modeling is to predict the thermo-induced stresses and the resulting total stresses in the pillar. The predictions of thermo-induced stresses were made by simulations with Flac3D /Wanne and Johansson, 23/ and in 2D with the numerical code JobFem. Two horizontal sections,.5m and 1.5m below the tunnel floor were designed as a reference for comparisons between results obtained in 2D and 3D. A short presentation of JobFem is presented in section The input parameters and assumptions made for this project are presented in section The numerical code: JobFem The numerical code JobFem is based on the Finite Element Method. The programme has been available for 2 years and used for different applications in the construction sector. The module for coupled thermo-mechanical modeling has been developed and validated in the frame of the hot water cavern project in Avesta /Rehbinder G. and Stille H., 1985/. The quality and relevance of the results are related to the assumptions made on the rock mass behavior and properties. The agreement of the theoretical thermo-induced stresses to the measured stresses increases in correlation with the knowledge of rock mass fracturing and properties Set-up of the model for the experiment Preliminary simulations have been conducted with JobFem in order to set-up the layout of the experiment, see section 2. The characteristics and position of heaters used in this report are based on the conclusions of this preliminary study. Heat flow and temperature induced stresses have been calculated under plain strain conditions. The effect of the heater is set to 2 W/m, with a maximal temperature of 2 C specified at the heaters. 23
26 The temperature increase and thermo-induced stresses are monitored at different stages of the modeling: before heating after excavation of the holes, and after applying the confining stress of 1 MPa, during heating after 3, 6, 9 and 12 days of heating. The total stresses at each stage are achieved by adding for each node of the element mesh stress values after excavation to thermo-induced stresses. Three types of input parameters are required to build the model: - mechanical and thermal properties of the rock mass - stresses after excavation - geometry and layout of the experiment Mechanical and thermal rock mass properties In the first stage of modeling the rock mass is assumed to be elastic and homogeneous. Preliminary study of the fracturing and mechanical and thermal properties of the rock mass are presented in sections 2 and 4 /Staub et al, 23/. The parameters chosen for the experiment are listed in Table 3-1. Table 3-1. Input mechanical and thermal properties for the rock mass Parameter Value Unit Young s modulus, intact rock 68 GPa Young s modulus, rock mass 47 GPa Poisson s ratio, intact rock.24 - Poisson s ratio, rock mass.26 - Thermal conductivity 2.83 W/m, K 2.4 Volume heat capacity 2. MJ/m 3, K Linear expansion 7.9E-6 l/k Density 2.71 g/cm 3 Initial temperature of the rock mass 15 C The analysis of in-situ stresses in the experiment volumes is presented in section 3 /Staub et al., 23/, and the most probable values are listed in Table
27 Table 3-2. In-situ stresses σ 1 [MPa] σ 2 [MPa] σ 3 [MPa] Trend [Äspö 96] Dip [ ] 25 / 3 / The parameters are evaluated for the dominant rock type in the experiment volume, which is Diorite (see section 2 and 5 /Staub et al., 23/. The values chosen for the Young s modulus and Poisson s ratio can be interpreted as the minimal and maximal values that the simulated rock mass can reasonably take considering its fracturing degree. In the same way the two values used for thermal conductivity can be interpreted as extreme values of this parameter, on the basis of the analysis of calculated thermal properties in the four drilled boreholes in the experiment volumes, see section 5 /Staub et al., 23/. No range is given for volume heat capacity as the values are almost the same in the 4 boreholes. Stresses after excavation The calculations of stresses along the new tunnel are achieved with the 3D numerical model built with Examine3D. Table 3-2 lists the stress tensors that have been used for the calculations of the new tunnel. Stress values along the tunnel and in the rock mass around the pillar are monitored at different stages of excavation: after tunnel excavation, after excavation of the slots, and after drilling of the boreholes. The coordinates of the nodes of the element mesh of the 2D sections modeled in JobFem have been imported to the Examine3D model in order to obtain the stress tensor at each node of the element mesh of both horizontal 2D sections. These stress values were then transformed to fit a 2D model and the recalculated values are the one used for the evaluation of total stresses after heating. The procedure is to add the stress values to the thermo-induced stresses monitored during the JobFem s modeling. Layout of the experiment The geometry of the pillar and the layout of heaters and AE sensors is illustrated in Figure 3-1. Confinement pressure of 1 MPa is achieved with water in one hole. The geometry of the boreholes and of the slots has been optimized on the basis of stress calculations in Examine3D. The position of the AE sensors is optimal for the monitoring of microseismic events. The position of the heaters is based on preliminary modeling results with JobFem, see section 2. 25
28 Figure 3-1. Experiment layout. 3.2 Modeling results Simulations have been conducted for the three different values of σ 1, the values for σ 2 and σ 3 are constant, see Table 3-2. This gives a range of potential thermo-induced stresses and total stresses in the pillar in the consideration of the potential in-situ stresses at the experiment volume. These combinations are conducted with E=68 GPa and λ=2.83 W/m, K. For each value of σ 1 the simulations have been conducted with and without slots. These combinations are conducted with E=68 GPa and λ=2.83 W/m, K. Each combination of parameters was simulated at the both depth levels, named in the graphs level a (1.5m below the tunnel floor) and level b (.5m below the tunnel floor). The results are presented as sections across the pillar, from x=-.5 (hole with air) to x=.5m (hole with confining pressure). 2 measurement sections along this 1m fictive line are plotted in the graphs. The graphs for all realized simulations are presented in appendix E. In the following sections some realizations have been chosen to illustrate the influence of slots, depth level and in-situ stresses. 26
29 3.2.1 Influence of the depth level The results presented in Figure 3-2 and Figure 3-3 illustrate the influence of depth level on temperatures and total stresses reached in the pillar at different stages of modeling. These values are obtained for a model without slots, σ 1 =3 MPa, E=68 GPa and λ=2.83 W/m, K. Figure 3-2. Temperature monitored in the pillar at different stages of modeling, depth levels a and b. As illustrated in Figure 3-2 temperatures reached at different stages of modeling are identical for both levels. This is an implication of the plain strain assumptions made on the model: the tunnel will have no effect on the temperature flow in the rock mass. However the tunnel has a strong influence on the stress level, and the stresses reached in the section closed to the tunnel floor (level b) are very high, see Figure
30 . Figure 3-3. Total major stress at different stages of the modeling, levels a and b. As a consequence the results from the 2D section located.5 m below the tunnel floor (level b) are not considered in the following. 28
31 3.2.2 Influence of the slots The results presented in Fifure 3-4 and Figure 3-5 illustrate the influence of the slots on the temperatures and total stresses reached in the pillar at different stages of modeling. The results are presented for depth level a, σ 1 =3 MPa, E=68 GPa and λ=2.83 W/m, K. Figure 3-4. Temperature reached in the pillar, with and without slots, for different stages of modeling, σ 1 =3 MPa. 29
32 Figure 3-5. Total major stress at different stages of the modeling, with and without slots. Figure 3-6 illustrates the evolution of temperature with time in two monitoring points, with and without slots (their position is shown in Figure 3-1). Thermal conductivity 2.83 W/m, K Temperature Point O without slots Point O with slots Point A without slots Point A with slots Days Figure 3-6. Evolution as a function of time of the temperature in two monitoring points. 3
33 3.3 Sensitivity analysis The outcome of the modeling is subjected to the value of input parameters. The confidence in the modeling results is related to the quality and certainty in the input data. In order to better estimate the range of stresses that can be achieved in the pillar sensitivity analysis on input parameters has been conducted. The tested parameters are in-situ stresses, deformation modulus and thermal conductivity. The different combinations that have been modeled are listed in Table 3-3. Table 3-3. List of parameter combinations used for the sensitivity analysis σ 1, MPa Depth level Slots (Yes or No) E (GPa) λ (W/m, K) Number of combinations 25 a / b Y / N a / b Y / N a / b Y / N a / b N 47 / / Processed data are presented in the following sections. The curves for all combinations are found in appendix E Influence of in-situ stresses The model has been run for the three different values of σ 1. A comparison of the obtained total major stress after 12 days of heating is illustrated in Figure 3-7 for depth level a. These results are for a model without slots, E=68GPa and λ=2.83 W/m, K σ TOT1 [MPa] MPa-12d.a 3MPa-12d.a 35MPa-12d.a Figure 3-7. Total stresses after 12 days of heating, level a, different values of σ 1. 31
34 3.3.2 Influence of the deformation modulus The influence of deformation modulus is illustrated in two different sections, one when modeling with a thermal conductivity of 2.83 W/m, K, and the second when applying a thermal conductivity of 2.4 W/m, K. The results are presented for depth level a, σ 1 =3 MPa, model without slots. λ=2.83 W/m, K Figure 3-8. Temperature monitored in the pillar at different stages of modeling, depth level a, E=47GPa and E=68GPa. Figure 3-9. Total major stress at different stages of the modeling, depth level a, E=47GPa and E=68GPa. 32
35 Figure 3-. Deviatoric stresses at different stages of the modeling, depth level a, E=47GPa and E=68GPa. λ=2.4 W/m, K Figure Temperature monitored in the pillar at different stages of modeling, depth level a, E=47GPa and E=68GPa. 33
36 Figure Total major stress at different stages of the modeling, depth level a, E=47GPa and E=68GPa. Figure Deviatoric stresses at different stages of the modeling, depth level a, E=47GPa and E=68GPa. 34
37 3.3.3 Influence of the thermal conductivity The influence of thermal conductivity is illustrated in two different sections, one when modeling with a deformation modulus of 47 GPa, and the second when applying a deformation modulus of 68 GPa. The results are presented for depth level a, σ 1 =3 MPa, model without slots. E=47 GPa Figure Temperature monitored in the pillar at different stages of modeling, depth level a, λ=2.4 W/m, K and λ=2.83w/m, K. Figure Total major stress at different stages of the modeling, depth level a, λ=2.4 W/m, K and λ=2.83w/m,k. 35
38 Figure Deviatoric stresses at different stages of the modeling, depth level a, λ=2.4 W/m, K and λ=2.83w/m,k. E=68 GPa Figure Temperature monitored in the pillar at different stages of modeling, depth level a, λ=2.4 W/m, K and λ=2.83w/m,k. 36
39 Figure Total major stress at different stages of the modeling, depth level a, λ=2.4 W/m, K and λ=2.83w/m,k. Figure Deviatoric stresses at different stages of the modeling, depth level a, λ=2.4 W/m, K and λ=2.83w/m,k. 37
40 Figure 3-2 illustrates the influence of thermal conductivity on the evolution of temperature with time in two monitoring points, A and O (localized in Figure 3-1) Temperature Point O Conductivity 2.4 W/m, K Point O Conductivity 2.83 W/m, K Point A Conductivity 2.4 W/m, K Point A Conductivity 2.83 W/m, K Days Figure 3-2. Influence of thermal conductivity on the evolution with time of temperature in two monitoring points. Figure 3-2 illustrates that the temperature increases faster at a given point when the thermal conductivity is lower Analysis of the results From the results presented in sections and the influence of variation of thermal conductivity and deformation modulus after 12 days of heating can be established, see Table 3-4. Table 3-4. Temperature, total major stress and deviatoric stresses in the middle (x=) and at the border of the pillar (x=-.5) after 12 days of heating. E, GPa λ, W/m, K Depth, m T, σ 1, MPa σ 1 -σ 3, MPa = =-.5 = =-.5 = =
41 The influence of increase of deformation modulus or thermal conductivity can be summarized as shown in Table 3-5. Table 3-5. General influence of increasing deformation modulus or thermal conductivity on temperatures, total stresses and deviatoric stresses. Effect of / on T σ 1 σ 1 -σ 3 Increased E Increased λ The combination of variation of thermal conductivity and deformation modulus can be summarized as followed: - The factor of influence for high temperatures in the rock mass is thermal conductivity. Indeed deformation modulus does not have any influence on the temperature reached in the rock mass for a given thermal conductivity. - Total and deviatoric stresses increase with the deformation modulus for different values of thermal conductivity. - Whatever the value of the deformation modulus the temperatures and total stresses reached in the pillar decrease when the thermal conductivity increase. Study of highest and lowest cases By means of all simulations the influence of depth, in-situ stresses, and mechanical and thermal properties has been tested. On the basis of the analysis of simulation results, temperature and temperature induced stresses can be estimated for the highest and lowest case: Highest case: σ 1 = 35 MPa; E=68 GPa; λ=2.4 W/m, K Lowest case: σ 1 = 25 MPa; E=47 GPa; λ=2.83 W/m, K The determination of the cases has been based on the combined influence of the different parameters, exclusive depth. Both cases are run considering the section located 1.5 m below the tunnel floor. The raw results of simulations are presented in appendix F. The increase of temperature, total major stress and deviatoric stresses during heating is illustrated for both cases in Figure 3-21 to Figure Curves are presented for the evolution of parameters in the middle of the pillar and at the border of the unconfined hole. 39
42 6 Temp (C) HC-border LC-border HC-middle LC-middle Time (days) Figure Increase of temperature during heating at two different points in the pillar. LC: lowest case; HC: highest case. 25 Major total stress (MPa) HC-border LC-border HC-middle LC-middle CIS CDS Time (days) Figure Increase of major total stress during heating at two different points in the pillar. LC: lowest case; HC: highest case; CIS: crack-initiation stress; CDS: crackdamage stress.. 4
43 The level of stresses reached in the pillar can be analyzed with regards to the defined crack-initiation stress, σ ci, and crack-damage stress, σ cd, of the Diorite, which are evaluated by /Nordlund et al., 1999/ to be respectively 118 MPa and 19 MPa /. According to the modeling results illustrated in Figure 3-22, the crack-initiation stress might be reached after only a short heating time. The crack-damage stress will be exceeded only in case of the highest case combination Deviatoric stress (MPa) HC-border LC-border HC-middle LC-middle Time (days) Figure Increase of deviatoric stresses during heating at two different points in the pillar. LC: lowest case; HC: highest case. Temperature, major total stresses and deviatoric stresses reached after 6 days of heating are summarized in Table 3-6. Table 3-6. Outcome of the model for extreme values, given in the middle (x=) and at the border of the pillar (x=-.5) after 6 days of heating σ 1, MPa E, GPa λ, W/m, K Depth, m T, σ 1, MPa σ 1 -σ 3, MPa = =-.5 = =-.5 = = Strain values at the border of the boreholes have been recorded during simulations of the lowest and highest cases. 41
44 /Stacey, 1981/ has shown that micro cracking starts when the extension strain is larger than a critical value. The critical value is a characteristic material property of the intact rock in the range of 7 17 micro strain ( -6 ). For the highest and lowest cases, noted respectively HC and LC, the principal strains have been calculated. The procedure is the same as used for calculating the stress increase in the model, see section The 2D simulations provided the thermo-induced strains. Strains related to the excavation of the holes are calculated from the difference between in situ stresses and the stresses simulated in Examine3D. The Poisson s ratio used for the determination of strain values from stress values is.2 (section 2.1), the deformation modulus is 47 GPa and 68 GPa respectively for the lowest and highest cases. In Figure 3-24 the development of the major and minor principal strains with time is shown for the HC and LC cases. In Appendix G the results are presented as contour maps before start of heating, and then after 3, 6, 9 and 12 days of heating. According to the modelling results illustrated in Figure 3-24 the development of strains for the two cases is almost identical. The maximum extension strain after excavation of the holes is approximately 12 micro strain. According to Stacey s criteria micro cracking has already started. After 12 days of heating the maximum extension strain has increased to approximately 19 micro strain Principal strains.1 HC major principal strain HC minor principal strain LC major principle strain LC minor principle strain Time (days) Figure 3-24 Increase of major and minor strain during heating..5 m below the tunnel floor (the largest values around the holes are plotted). Negative values: extension strain; positive values: compression strain The deformation vector related only to the 2D numerical simulations has also been studied. The results for both highest and lowest cases are illustrated in appendix H. In order to investigate the evolution of deformation with time the vector value has been extracted at 24 points, located every 15 at the border of the boreholes (Figure 3-25). 42
45 Figure 3-25 Vector deformation. Localisation of the extraction points around the holes. The values of vector deformation have been extracted at the different stages of the experiment. The results are illustrated in Figure 3-26 for the highest case in the unconfined and confined holes, and in Figure 3-27 for the lowest case in the unconfined and confined holes. a) b) Figure 3-26 Vector deformation for the highest case. a) unconfined hole; b) confined hole 43
46 Figure 3-27 Vector deformation for the lowest case. a) unconfined hole; b) confined hole The deformation is maximal on the outer boundary of the boreholes, and almost insignificant at the border of the pillar. The vector deformation is slightly higher in the confined hole for both cases. The maximal deformation at the border of the confined hole is.57 mm for the highest case and.51 mm for the lowest case. 3.4 Discussion In consideration of the mechanical properties of the rock and fractures determined in the experiment volumes, and referring to the empirical relationship between vertical applied stress and uniaxial compressive strength /Hoek and Brown, 198/, the stress levels that would lead to possible rockburst conditions might lay around 1 MPa, assuming a uniaxial compressive strength of around 2-22 MPa for the intact rock /Staub et al., 23/. The modeling results have been analyzed in order to check if such a stress level can be achieved with the given layout and input properties. According to the preliminary results the level of stress requires for spalling might be achieved after a period of 3-6 days of heating even without slots. The slots that had been designed to insure that the stress increase will be sufficient to initiate spalling appear to be unnecessary. The sensitivity analysis on deformation modulus and thermal conductivity has then been conducted in order to determine the range of outcomes with regards to the potential range of mechanical and thermal properties of the rock mass. The range of values has been defined by considering the highest and lowest values these parameters might take in the experiment area. Nevertheless the modeling outcomes are quite sensitive to these parameters and these will be updated as core samples from the pilot boreholes are tested. After 12 days of heating the level of total stresses lies between 15 and 173 MPa, all combinations presented in section 3.3 being considered. 44
47 4 Conclusions Preliminary 2D coupled thermo-mechanical simulations grounded the determination of the optimal layout for the position of heaters around the experiment. The suggested heating system is composed of 4 heaters located 1.9 m away from the middle of the pillar, 2 on each side. The heaters are far enough from the AE system to avoid damages on the receivers and transmitters. Further modeling has been conducted to estimate the response of the rock mass and the range of temperature, major total stress and deviatoric stresses reached in the pillar during heating. The evolution of these parameters has been analyzed as a function of depth, in-situ stresses, and thermal and mechanical properties. The results point out that the level of stress required in the pillar to initiate spalling should be reached even if the properties tend to the lowest case. The Engineering of slots appears not to be necessary for the achievement of the experiment. 45
48 46
49 References Andersson, C., 23. Äspö Pillar Stability Experiment. Feasibility study. SKB, IPR-3-1. Hoek, E., and Brown, E.T., 198. Underground excavations in rock. The institution of mining and metallurgy, London. 527 p. Nordlund,E., Chunlin, B. and Carlsson, B., Äspö Hard Rock Laboratory, Prototype repository. Mechanical properties of the diorite in the prototype repository at Äspö HRL Laboratory tests. SKB, IPR Rehbinder, G., and Stille. H., Termoinducerade spänningar och förskjutningar jämförelse mellan mätningar och beräkningar. Bergmekanikdag 1985, p Stacey, T. R., A simple extension strain criterion for fracture of brittle rocl. Int. Jn. Rock Mech. Min. Sci., Vol. 18, page Staub, I., Janson, T., and Fredriksson, A., 23. Äspö Pillar Stability Experiment. Geology and properties of the rock mass around the experiment volume. SKB, IPR-3-2. Wanne, T., and Johansson, E., 23. Äspö Pillar Stability Experiment. Coupled 3D thermo-mechanical modeling. SKB, IPR
50 48
51 Appendix A. Results of heating, alternative 1, 2 heaters Frame 1 3 Aug 22 TWO HEATING TUBES, 2W/m, 2.56W/mK, 2.9 MJ/m3K, NET WITH SLOTS Y =AE TEMP Figure A3. Temperature distribution after 6 days, o C. Two heating tubes 2W/m. Frame 1 3 Aug 22 TWO HEATING TUBES, 2W/m, 2.56W/mK, 2.9 MJ/m3K, NET WITH SLOTS Y =AE SIGT Figure A4. Temperature induced stresses, MPa, after 6 days. Two heating tubes 2W/m. 49
52 Frame 1 3 Aug 22 TWO HEATING TUBES, 4W/m, 2.56W/mK, 2.9 MJ/m3K NET WITH SLOTS 3 Y TEMP Figure A7. Temperature distribution after 6 days, o C. Two heating tubes 4W/m. Frame 1 3 Aug 22 TWO HEATING TUBES, 4W/m, 2.56W/mK, 2.9 MJ/m3K NET WITH SLOTS Y =AE SIGT Figure A8. Temperature induced stresses, MPa, after 6 days. Two heating tubes 4W/m. 5
53 Appendix B. Results of heating, alternative 2, 4 heaters Frame 1 3 Aug 22 FOUR HEATING TUBES, W/m, 2.56W/mK, 2.9 MJ/m3K Y =AE TEMP Figure B1. Temperature distribution after 6 days, o C. Four heating tubes W/m. Frame 1 31 Aug 22 FOUR HEATING TUBES, W/m, 2.56W/mK, 2.9 MJ/m3K Y =AE SIGT Figure B2. Temperature induced stresses, MPa, after 6 days. 51
54 Frame 1 3 Aug 22 FOUR HEATING TUBES, 2W/m, 2.56W/mK, 2.9 MJ/m3K Y =AE TEMP Figure B3. Temperature distribution after 6 days, o C. Four heating tubes 2W/m. Frame 1 31 Aug 22 FOUR HEATING TUBES, 2W/m, 2.56W/mK, 2.9 MJ/m3K Y =AE SIGT Figure B4. Temperature induced stresses, MPa, after 6 days. 52
55 Frame 1 3 Aug 22 FOUR HEATING TUBES, 3W/m, 2.56W/mK, 2.9 MJ/m3K Y =AE TEMP Figure B5. Temperature distribution after 6 days, o C. Four heating tubes 3W/m. Frame 1 31 Aug 22 FOUR HEATING TUBES, 3W/m, 2.56W/mK, 2.9 MJ/m3K Y =AE SIGT Figure B6. Temperature induced stresses, MPa, after 6 days. 53
56 Frame 1 3 Aug 22 FOUR HEATING TUBES, 4W/m, 2.56W/mK, 2.9 MJ/m3K Y =AE TEMP Figure B7. Temperature distribution after 6 days, o C. Four heating tubes 4W/m. Frame 1 31 Aug 22 FOUR HEATING TUBES, 4W/m, 2.56W/mK, 2.9 MJ/m3K Y =AE SIGT Figure B8. Temperature induced stresses, MPa, after 6 days. 54
57 Frame 1 3 Aug 22 FOUR HEATING TUBES, 5W/m, 2.56W/mK, 2.9 MJ/m3K Y =AE TEMP Figure B9. Temperature distribution after 6 days, o C. Four heating tubes 5W/m. Frame 1 31 Aug 22 FOUR HEATING TUBES, 5W/m, 2.56W/mK, 2.9 MJ/m3K Y =AE SIGT Figure B. Temperature induced stresses, MPa, after 6 days. 55
58 56
59 Appendix C. Results of heating, alternative 3, 4 heaters Frame 1 11 Sep 22 FOUR HEATING TUBES, W/m, 2.56W/mK, 2.9 MJ/m3K 3 Y =AE TEMP Figure C1. Temperature distribution after 6 days, o C. Four heating tubes W/m. Frame 1 11 Sep 22 FOUR HEATING TUBES, W/m, 2.56W/mK, 2.9 MJ/m3K 3 Y =AE SIGT Figure C2. Temperature induced stresses, MPa, after 6 days. 57
60 Frame 1 11 Sep 22 FOUR HEATING TUBES, 2W/m, 2.56W/mK, 2.9 MJ/m3K 3 Y =AE TEMP Figure C3. Temperature distribution after 6 days, o C. Four heating tubes 2W/m. Frame 1 11 Sep 22 FOUR HEATING TUBES, 2W/m, 2.56W/mK, 2.9 MJ/m3K 3 Y =AE SIGT Figure C4. Temperature induced stresses, MPa, after 6 days. 58
61 Frame 1 11 Sep 22 FOUR HEATING TUBES, 3W/m, 2.56W/mK, 2.9 MJ/m3K 3 Y =AE TEMP Figure C5. Temperature distribution after 6 days, o C. Four heating tubes 3W/m. Frame 1 11 Sep 22 FOUR HEATING TUBES, 3W/m, 2.56W/mK, 2.9 MJ/m3K 3 Y =AE SIGT Figure C6. Temperature induced stresses, MPa, after 6 days. 59
62 Frame 1 11 Sep 22 FOUR HEATING TUBES, 4W/m, 2.56W/mK, 2.9 MJ/m3K 3 Y =AE TEMP Figure C7. Temperature distribution after 6 days, o C. Four heating tubes 4W/m. Frame 1 11 Sep 22 FOUR HEATING TUBES, 4W/m, 2.56W/mK, 2.9 MJ/m3K 3 Y =AE SIGT Figure C8. Temperature induced stresses, MPa, after 6 days. 6
63 Frame 1 11 Sep 22 FOUR HEATING TUBES, 5W/m, 2.56W/mK, 2.9 MJ/m3K 3 Y =AE TEMP Figure C9. Temperature distribution after 6 days, o C. Four heating tubes 5W/m. Frame 1 11 Sep 22 FOUR HEATING TUBES, 5W/m, 2.56W/mK, 2.9 MJ/m3K 3 Y =AE SIGT Figure C. Temperature induced stresses, MPa, after 6 days. 61
64 62
65 Appendix D. Complementary test results for the proposed layout Frame 1 3 Aug 22 FOUR HEATING TUBES, 2W/m, 2.56W/mK, 2.9 MJ/m3K Y =AE TEMP Figure D1. Temperature distribution after 3 days, o C. Four heating tubes 2W/m. Frame 1 3 Aug 22 FOUR HEATING TUBES, 2W/m, 2.56W/mK, 2.9 MJ/m3K Y =AE TEMP Figure D2. Temperature distribution after 6 days, o C. Four heating tubes 2W/m. 63
66 Frame 1 3 Aug 22 FOUR HEATING TUBES, 2W/m, 2.56W/mK, 2.9 MJ/m3K Y =AE TEMP Figure D3. Temperature distribution after 9 days, o C. Four heating tubes 2W/m. Frame 1 3 Aug 22 FOUR HEATING TUBES, 2W/m, 2.56W/mK, 2.9 MJ/m3K Y =AE TEMP Figure D4. Temperature distribution after 12 days, o C. Four heating tubes 2W/m. 64
67 Frame 1 1 Sep 22 FOUR HEATING TUBES, 2W/m, 2.56W/mK, 2.9 MJ/m3K 3 =AE Y SIG Figure D5. Major stresses before start heating. 1.5 m below the tunnel floor. Frame 1 1 Sep 22 FOUR HEATING TUBES, 2W/m, 2.56W/mK, 2.9 MJ/m3K 3 =AE Y SIG Figure D6. Major stresses before start heating..5 m below the tunnel floor. 65
68 Frame 1 1 Sep 22 FOUR HEATING TUBES, 2W/m, 2.56W/mK, 2.9 MJ/m3K 3 =AE Y SIGTOT Figure D7. Major stresses after 3 days of heating, 2 W/m. 1.5 m below the tunnel floor. Frame 1 1 Sep 22 FOUR HEATING TUBES, 2W/m, 2.56W/mK, 2.9 MJ/m3K 3 =AE Y SIGTOT Figure D8. Major stresses after 3 days of heating, 2 W/m..5 m below the tunnel floor. 66
69 Frame 1 1 Sep 22 FOUR HEATING TUBES, 2W/m, 2.56W/mK, 2.9 MJ/m3K 3 =AE Y SIGTOT Figure D9. Major stresses after 6 days of heating, 2 W/m. 1.5 m below the tunnel floor. Frame 1 1 Sep 22 FOUR HEATING TUBES, 2W/m, 2.56W/mK, 2.9 MJ/m3K 3 =AE Y SIGTOT Figure D. Major stresses after 6 days of heating, 2 W/m..5 m below the tunnel floor. 67
70 Frame 1 1 Sep 22 FOUR HEATING TUBES, 2W/m, 2.56W/mK, 2.9 MJ/m3K 3 =AE Y SIGTOT Figure D11. Major stresses after 9 days of heating, 2 W/m. 1.5 m below the tunnel floor. Frame 1 1 Sep 22 FOUR HEATING TUBES, 2W/m, 2.56W/mK, 2.9 MJ/m3K 3 =AE Y SIGTOT Figure D12. Major stresses after 9 days of heating, 2 W/m..5 m below the tunnel floor. 68
71 Frame 1 1 Sep 22 FOUR HEATING TUBES, 2W/m, 2.56W/mK, 2.9 MJ/m3K 3 =AE Y SIGTOT Figure D13. Major stresses after 12 days of heating, 2 W/m. 1.5 m below the tunnel floor. Frame 1 1 Sep 22 FOUR HEATING TUBES, 2W/m, 2.56W/mK, 2.9 MJ/m3K 3 =AE Y SIGTOT Figure D14. Major stresses after 12 days of heating, 2 W/m..5 m below the tunnel floor. 69
72 7
73 Appendix E. Modeling results for the experiment The Y-axis represent respectively: total stresses (σ TOT1 ), deviatoric stresses (σ TOT1 - σ TOT3 ) and temperatures (T). Explanation of the legend: xxmpa: value of σ 1 for the given simulation. hole / 1 MPa / 3d / 6d / 9d / 12d: stage of the modelling. Hole means values taken after excavation of both holes, 1 MPa values monitored after applying the confining pressure of 1 MPa in one hole, 3d to 12d values monitored after 3/6/9/12 days of heating. a / b refers to the depth level, a is the section located 1.5m below the tunnel floor, b the section located.5m below the tunnel floor. Slots, σ 1 =3 MPa, E=68GPa, λ=2.83 W/m, K σ TOT1 [MPa] MPa-hole.a 3MPa-1MPa.a 3MPa-3d.a 3MPa-6d.a 3MPa-9d.a 3MPa-12d.a
74 σ TOT1 [MPa] MPa-hole.b 3MPa-1MPa.b 3MPa-3d.b 3MPa-6d.b 3MPa-9d.b 3MPa-12d.b σ TOT1 -σ TOT3 [MPa] MPa-hole.a 3MPa-1MPa.a 3MPa-3d.a 3MPa-6d.a 3MPa-9d.a 3MPa-12d.a σ TOT1 -σ TOT3 [MPa] MPa-hole.b 3MPa-1MPa.b 3MPa-3d.b 3MPa-6d.b 3MPa-9d.b 3MPa-12d.b
75 T o C MPa-hole.a 3MPa-1MPa.a 3MPa-3d.a 3MPa-6d.a 3MPa-9d.a 3MPa-12d.a T o C MPa-hole.b 3MPa-1MPa.b 3MPa-3d.b 3MPa-6d.b 3MPa-9d.b 3MPa-12d.b
76 74
77 No slots, σ 1 =3 MPa, E=68GPa, λ=2.83 W/m, K σ TOT1 [MPa] MPa-hole.a 3MPa-1MPa.a 3MPa-3d.a 3MPa-6d.a 3MPa-9d.a 3MPa-12d.a σ TOT1 [MPa] MPa-hole.b 3MPa-1MPa.b 3MPa-3d.b 3MPa-6d.b 3MPa-9d.b 3MPa-12d.b σ TOT1 -σ TOT3 [MPa] MPa-hole.a 3MPa-1MPa.a 3MPa-3d.a 3MPa-6d.a 3MPa-9d.a 3MPa-12d.a
78 σ TOT1 -σ TOT3 [MPa] MPa-hole.b 3MPa-1MPa.b 3MPa-3d.b 3MPa-6d.b 3MPa-9d.b 3MPa-12d.b T o C MPa-hole.a 3MPa-1MPa.a 3MPa-3d.a 3MPa-6d.a 3MPa-9d.a 3MPa-12d.a T o C MPa-hole.b 3MPa-1MPa.b 3MPa-3d.b 3MPa-6d.b 3MPa-9d.b 3MPa-12d.b
79 No slots, σ 1 =25 MPa, E=68GPa, λ=2.83 W/m, K σ TOT1 [MPa] MPa-hole.a 25MPa-1MPa.a 25MPa-3d.a 25MPa-6d.a 25MPa-9d.a 25MPa-12d.a σ TOT1 [MPa] MPa-hole.b 25MPa-1MPa.b 25MPa-3d.b 25MPa-6d.b 25MPa-9d.b 25MPa-12d.b σ TOT1 -σ TOT3 [MPa] MPa-hole.a 25MPa-1MPa.a 25MPa-3d.a 25MPa-6d.a 25MPa-9d.a 25MPa-12d.a
80 σ TOT1 -σ TOT3 [MPa] MPa-hole.b 25MPa-1MPa.b 25MPa-3d.b 25MPa-6d.b 25MPa-9d.b 25MPa-12d.b T o C MPa-hole.a 25MPa-1MPa.a 25MPa-3d.a 25MPa-6d.a 25MPa-9d.a 25MPa-12d.a T o C MPa-hole.b 25MPa-1MPa.b 25MPa-3d.b 25MPa-6d.b 25MPa-9d.b 25MPa-12d.b
81 No slots, σ 1 =35 MPa, E=68GPa, λ=2.83 W/m, K σ TOT1 [MPa] MPa-hole.a 35MPa-1MPa.a 35MPa-3d.a 35MPa-6d.a 35MPa-9d.a 35MPa-12d.a σ TOT1 [MPa] MPa-hole.b 35MPa-1MPa.b 35MPa-3d.b 35MPa-6d.b 35MPa-9d.b 35MPa-12d.b σ TOT1 -σ TOT3 [MPa] MPa-hole.a 35MPa-1MPa.a 35MPa-3d.a 35MPa-6d.a 35MPa-9d.a 35MPa-12d.a
82 σ TOT1 -σ TOT3 [MPa] MPa-hole.b 35MPa-1MPa.b 35MPa-3d.b 35MPa-6d.b 35MPa-9d.b 35MPa-12d.b T o C MPa-hole.a 35MPa-1MPa.a 35MPa-3d.a 35MPa-6d.a 35MPa-9d.a 35MPa-12d.a T o C MPa-hole.b 35MPa-1MPa.b 35MPa-3d.b 35MPa-6d.b 35MPa-9d.b 35MPa-12d.b
83 No slots, σ 1 =3 MPa, E=68GPa, λ=2.4 W/m, K σ TOT1 [MPa] E=68c=2.4-hole.a E=68c=2.4-1MPa.a E=68c=2.4-3d.a E=68c=2.4-6d.a E=68c=2.4-9d.a E=68c=2.4-12d.a σ TOT1 [MPa] E=68c=2.4-hole.b E=68c=2.4-1MPa.b E=68c=2.4-3d.b E=68c=2.4-6d.b E=68c=2.4-9d.b E=68c=2.4-12d.b σ TOT1 -σ TOT3 [MPa] E=68c=2.4-hole.a E=68c=2.4-1MPa.a E=68c=2.4-3d.a E=68c=2.4-6d.a E=68c=2.4-9d.a E=68c=2.4-12d.a
84 σ TOT1 -σ TOT3 [MPa] E=68c=2.4-hole.b E=68c=2.4-1MPa.b E=68c=2.4-3d.b E=68c=2.4-6d.b E=68c=2.4-9d.b E=68c=2.4-12d.b T o C E=68c=2.4-hole.a E=68c=2.4-1MPa.a E=68c=2.4-3d.a E=68c=2.4-6d.a E=68c=2.4-9d.a E=68c=2.4-12d.a T o C E=68c=2.4-hole.b E=68c=2.4-1MPa.b E=68c=2.4-3d.b E=68c=2.4-6d.b E=68c=2.4-9d.b E=68c=2.4-12d.b
85 No slots, σ 1 =3 MPa, E=47GPa, λ=2.4 W/m, K σ TOT1 [MPa] E=47c=2.4-hole.a E=47c=2.4-1MPa.a E=47c=2.4-3d.a E=47c=2.4-6d.a E=47c=2.4-9d.a E=47c=2.4-12d.a σ TOT1 [MPa] E=47c=2.4-hole.b E=47c=2.4-1MPa.b E=47c=2.4-3d.b E=47c=2.4-6d.b E=47c=2.4-9d.b E=47c=2.4-12d.b σ TOT1 -σ TOT3 [MPa] E=47c=2.4-hole.a E=47c=2.4-1MPa.a E=47c=2.4-3d.a E=47c=2.4-6d.a E=47c=2.4-9d.a E=47c=2.4-12d.a
86 σ TOT1 -σ TOT3 [MPa] E=47c=2.4-hole.b E=47c=2.4-1MPa.b E=47c=2.4-3d.b E=47c=2.4-6d.b E=47c=2.4-9d.b E=47c=2.4-12d.b T o C E=47c=2.4-hole.a E=47c=2.4-1MPa.a E=47c=2.4-3d.a E=47c=2.4-6d.a E=47c=2.4-9d.a E=47c=2.4-12d.a T o C E=47c=2.4-hole.b E=47c=2.4-1MPa.b E=47c=2.4-3d.b E=47c=2.4-6d.b E=47c=2.4-9d.b E=47c=2.4-12d.b
87 No slots, σ 1 =3 MPa, E=47GPa, λ=2.83 W/m, K σ TOT1 [MPa] E=47c=2.83-hole.a E=47c=2.83-1MPa.a E=47c=2.83-3d.a E=47c=2.83-6d.a E=47c=2.83-9d.a E=47c= d.a σ TOT1 [MPa] E=47c=2.83-hole.b E=47c=2.83-1MPa.b E=47c=2.83-3d.b E=47c=2.83-6d.b E=47c=2.83-9d.b E=47c= d.b σ TOT1 -σ TOT3 [MPa] E=47c=2.83-hole.a E=47c=2.83-1MPa.a E=47c=2.83-3d.a E=47c=2.83-6d.a E=47c=2.83-9d.a E=47c= d.a
88 σ TOT1 -σ TOT3 [MPa] E=47c=2.83-hole.b E=47c=2.83-1MPa.b E=47c=2.83-3d.b E=47c=2.83-6d.b E=47c=2.83-9d.b E=47c= d.b T o C E=47c=2.83-hole.a E=47c=2.83-1MPa.a E=47c=2.83-3d.a E=47c=2.83-6d.a E=47c=2.83-9d.a E=47c= d.a T o C E=47c=2.83-hole.b E=47c=2.83-1MPa.b E=47c=2.83-3d.b E=47c=2.83-6d.b E=47c=2.83-9d.b E=47c= d.b
89 Appendix F. Modeling results, lowest and highest cases The Y-axis represent respectively: total stresses (σ TOT1 ), deviatoric stresses (σ TOT1 - σ TOT3 ) and temperatures (T). Explanation of the legend: xxmpa: value of σ 1 for the given simulation. hole / 1 MPa / 3d / 6d / 9d / 12d: stage of the modelling. Hole means values taken after excavation of both holes, 1 MPa values monitored after applying the confining pressure of 1 MPa in one hole, 3d to 12d values monitored after 3/6/9/12 days of heating. a / b refers to the depth level, a is the section located 1.5m below the tunnel floor, b the section located.5m below the tunnel floor. No slots, σ 1 =25 MPa, E=47GPa, λ=2.83 W/m, K, level a T o C E=47c= hole. E=47c= MPa E=47c= d.a E=47c= d.a E=47c= d.a E=47c= d
90 σ TOT1 [MPa] E=47c= hole. E=47c= MPa E=47c= d.a E=47c= d.a E=47c= d.a E=47c= d σ TOT1 -σ TOT3 [MPa] E=47c= hole. E=47c= MPa E=47c= d.a E=47c= d.a E=47c= d.a E=47c= d
91 No slots, σ 1 =35 MPa, E=68GPa, λ=2.4 W/m, K, level a T o C E=68c=2.435-hole.a E=68c= MPa. E=68c= d.a E=68c= d.a E=68c= d.a E=68c= d.a σ TOT1 [MPa] E=68c=2.435-hole.a E=68c= MPa. E=68c= d.a E=68c= d.a E=68c= d.a E=68c= d.a
92 σ TOT1 -σ TOT3 [MPa] E=68c=2.435-hole.a E=68c= MPa. E=68c= d.a E=68c= d.a E=68c= d.a E=68c= d.a
93 No slots, σ 1 =25 MPa, E=47GPa, λ=2.83 W/m, K, level b T o C E=47c= hole. E=47c= MPa E=47c= d.b E=47c= d.b E=47c= d.b E=47c= d σ TOT1 [MPa] E=47c= hole. E=47c= MPa E=47c= d.b E=47c= d.b E=47c= d.b E=47c= d
94 σ TOT1 -σ TOT3 [MPa] E=47c= hole. E=47c= MPa E=47c= d.b E=47c= d.b E=47c= d.b E=47c= d
95 No slots, σ 1 =35 MPa, E=68GPa, λ=2.4 W/m, K, level b T o C E=68c=2.435-hole.b E=68c= MPa. E=68c= d.b E=68c= d.b E=68c= d.b E=68c= d.b σ TOT1 [MPa] E=68c=2.435-hole.b E=68c= MPa. E=68c= d.b E=68c= d.b E=68c= d.b E=68c= d.b
96 σ TOT1 -σ TOT3 [MPa] E=68c=2.435-hole.b E=68c= MPa. E=68c= d.b E=68c= d.b E=68c= d.b E=68c= d.b
97 Appendix G. Strain values contour maps Figure G1. Major principal strain before start heating..5 m below the tunnel floor. Lowest Case. Figure G2. Minor principal strain before start heating..5 m below the tunnel floor. Lowest Case. 95
98 Figure G3. Major principal strain after 3 days of heating..5 m below the tunnel floor. Lowest Case. Figure G4. Minor principal strain after 3 days of heating..5 m below the tunnel floor. Lowest Case. 96
99 Figure G5. Major principal strain after 6 days of heating..5 m below the tunnel floor. Lowest Case. Figure G6. Minor principal strain after 6 days of heating..5 m below the tunnel floor. Lowest Case. 97
100 Figure G7. Major principal strain after 9 days of heating..5 m below the tunnel floor. Lowest Case. Figure G8. Major principal strain after 9 days of heating..5 m below the tunnel floor. Lowest Case. 98
101 Figure G9. Major principal strain after 12 days of heating..5 m below the tunnel floor. Lowest Case. Figure G. Minor principal strain after 12 days of heating..5 m below the tunnel floor. Lowest Case. 99
102 Figure G11. Major principal strain before start heating..5 m below the tunnel floor. Highest Case. Figure G12. Minor principal strain before start heating..5 m below the tunnel floor. Highest Case.
103 Figure G13. Major principal strain after 3 days of heating..5 m below the tunnel floor. Highest Case. Figure G14. Minor principal strain after 3 days of heating..5 m below the tunnel floor. Highest Case. 1
IPR Äspö Hard Rock Laboratory. International Progress Report. Äspö Pillar Stability Experiment. Feasibility Study. Christer Andersson SKB
International Progress Report IPR-03-01 Äspö Hard Rock Laboratory Äspö Pillar Stability Experiment Feasibility Study Christer Andersson SKB February 2003 Svensk Kärnbränslehantering AB Swedish Nuclear
Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm
Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm Guldplätering kan aldrig helt stoppa genomträngningen av vätgas, men den får processen att gå långsammare. En tjock guldplätering
Resultat av den utökade första planeringsövningen inför RRC september 2005
Resultat av den utökade första planeringsövningen inför RRC-06 23 september 2005 Resultat av utökad första planeringsövning - Tillägg av ytterligare administrativa deklarationer - Variant (av case 4) med
This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum
Examiner Linus Carlsson 016-01-07 3 hours In English Exam (TEN) Probability theory and statistical inference MAA137 Aids: Collection of Formulas, Concepts and Tables Pocket calculator This exam consists
A study of the performance
A study of the performance and utilization of the Swedish railway network Anders Lindfeldt Royal Institute of Technology 2011-02-03 Introduction The load on the railway network increases steadily, and
12.6 Heat equation, Wave equation
12.6 Heat equation, 12.2-3 Wave equation Eugenia Malinnikova, NTNU September 26, 2017 1 Heat equation in higher dimensions The heat equation in higher dimensions (two or three) is u t ( = c 2 2 ) u x 2
Gradientbaserad Optimering,
Gradientbaserad Optimering, Produktfamiljer och Trinitas Hur att sätta upp ett optimeringsproblem? Vad är lämpliga designvariabler x? Tjockleksvariabler (sizing) Tvärsnittsarean hos stänger Längdmått hos
P Äspö Hard Rock Laboratory. Ground magnetic survey at site for planned facility for calibration of borehole orientation equipment at Äspö
P-12-10 Äspö Hard Rock Laboratory Ground magnetic survey at site for planned facility for calibration of borehole orientation equipment at Äspö Håkan Mattsson, GeoVista AB January 2012 Svensk Kärnbränslehantering
Heavy Transport on Existing Lines: the Assessment of Bearing Capacity of Track-bed based on Track Stiffness Measurements and Theoretical Studies
19th Nordic Seminar on Railway Technology, 14-15 September 2016, JVTC, Luleå Heavy Transport on Existing Lines: the Assessment of Bearing Capacity of Track-bed based on Track Stiffness Measurements and
Aborter i Sverige 2008 januari juni
HÄLSA OCH SJUKDOMAR 2008:9 Aborter i Sverige 2008 januari juni Preliminär sammanställning SVERIGES OFFICIELLA STATISTIK Statistik Hälsa och Sjukdomar Aborter i Sverige 2008 januari juni Preliminär sammanställning
TN LR TT mg/l N b) 2,6-Dimethylphenole
TN LR TT 0.5-14 mg/l N b) 2,6-Dimethylphenole 283 Instrument specific information The test can be performed on the following devices. In addition, the required cuvette and the absorption range of the photometer
Isolda Purchase - EDI
Isolda Purchase - EDI Document v 1.0 1 Table of Contents Table of Contents... 2 1 Introduction... 3 1.1 What is EDI?... 4 1.2 Sending and receiving documents... 4 1.3 File format... 4 1.3.1 XML (language
WindPRO version 2.7.448 feb 2010. SHADOW - Main Result. Calculation: inkl Halmstad SWT 2.3. Assumptions for shadow calculations. Shadow receptor-input
SHADOW - Main Result Calculation: inkl Halmstad SWT 2.3 Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look
Module 6: Integrals and applications
Department of Mathematics SF65 Calculus Year 5/6 Module 6: Integrals and applications Sections 6. and 6.5 and Chapter 7 in Calculus by Adams and Essex. Three lectures, two tutorials and one seminar. Important
The test can be performed on the following devices. In addition, the required cuvette and the absorption range of the photometer are indicated.
TN HR TT b) i) 5-140 mg/l N 2,6-Dimethylphenole 284 Instrument specific information The test can be performed on the following devices. In addition, the required cuvette and the absorption range of the
Parking garage, Gamletull. MDM-piles, pre-installation testing RÄTT FRÅN GRUNDEN!
Parking garage, Gamletull MDM-piles, pre-installation testing Gamletull, MDM-pålar 1 CPT tests Gamletull, MDM-pålar 2 CPT test results Cone resistance Undrained shear strength Gamletull, MDM-pålar 3 Interpretation
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 5 June 217, 14:-18: Examiner: Zhenxia Liu (Tel: 7 89528). Please answer in ENGLISH if you can. a. You are allowed to use a calculator, the formula and
Isometries of the plane
Isometries of the plane Mikael Forsberg August 23, 2011 Abstract Här följer del av ett dokument om Tesselering som jag skrivit för en annan kurs. Denna del handlar om isometrier och innehåller bevis för
SVENSK STANDARD SS-EN ISO 19108:2005/AC:2015
SVENSK STANDARD SS-EN ISO 19108:2005/AC:2015 Fastställd/Approved: 2015-07-23 Publicerad/Published: 2016-05-24 Utgåva/Edition: 1 Språk/Language: engelska/english ICS: 35.240.70 Geografisk information Modell
Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:
IMCDP Grafisk teknik The impact of the placed dot is fed back to the original image by a filter Original Image Binary Image Sasan Gooran (HT 2006) The next dot is placed where the modified image has its
Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås
Schenker Privpak AB Interface documentation for web service packageservices.asmx 2012-09-01 Version: 1.0.0 Doc. no.: I04304b Sida 2 av 7 Revision history Datum Version Sign. Kommentar 2012-09-01 1.0.0
SWESIAQ Swedish Chapter of International Society of Indoor Air Quality and Climate
Swedish Chapter of International Society of Indoor Air Quality and Climate Aneta Wierzbicka Swedish Chapter of International Society of Indoor Air Quality and Climate Independent and non-profit Swedish
Manhour analys EASA STI #17214
Manhour analys EASA STI #17214 Presentatör Johan Brunnberg, Flygteknisk Inspektör & Del-M Koordinator Sjö- och luftfartsavdelningen Operatörsenheten Sektionen för teknisk operation 1 Innehåll Anmärkningen
SVENSK STANDARD SS-ISO :2010/Amd 1:2010
SVENSK STANDARD SS-ISO 14839-1:2010/Amd 1:2010 Fastställd/Approved: 2010-11-08 Publicerad/Published: 2010-11-30 Utgåva/Edition: 1 Språk/Language: engelska/english ICS: 01.040.17; 17.160 Vibration och stöt
Klimatpåverkan och de stora osäkerheterna - I Pathways bör CO2-reduktion/mål hanteras inom ett osäkerhetsintervall
Klimatpåverkan och de stora osäkerheterna - I Pathways bör CO2-reduktion/mål hanteras inom ett osäkerhetsintervall Vi måste förstå att: Vårt klimat är ett mycket komplext system Många (av människan påverkade)
Adding active and blended learning to an introductory mechanics course
Adding active and blended learning to an introductory mechanics course Ulf Gran Chalmers, Physics Background Mechanics 1 for Engineering Physics and Engineering Mathematics (SP2/3, 7.5 hp) 200+ students
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 0896661). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
INSTALLATION INSTRUCTIONS
INSTALLATION - REEIVER INSTALLATION INSTRUTIONS RT0 RF WIRELESS ROOM THERMOSTAT AND REEIVER MOUNTING OF WALL MOUTING PLATE - Unscrew the screws under the - Pack contains... Installation - Receiver... Mounting
Collaborative Product Development:
Collaborative Product Development: a Purchasing Strategy for Small Industrialized House-building Companies Opponent: Erik Sandberg, LiU Institutionen för ekonomisk och industriell utveckling Vad är egentligen
STANDARD. UTM Ingegerd Annergren UTMS Lina Orbéus. UTMD Anders Johansson UTMS Jan Sandberg
1(7) Distribution: Scania, Supplier Presskruvar med rundat huvud - Metrisk gänga med grov delning Innehåll Sida Orientering... 1 Ändringar från föregående utgåva... 1 1 Material och hållfasthet... 1 2
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 2012-03-24 kl 14.30-19.30 Hjälpmedel : Inga hjälpmedel
Swedish framework for qualification www.seqf.se
Swedish framework for qualification www.seqf.se Swedish engineering companies Qualification project leader Proposal - a model to include the qualifications outside of the public education system to the
3 rd October 2017
3 rd October 2017 Failures of Scaffold False work Failures Form work Bursting Trench Support Failure Hoarding Failures Can be expensive and result in fatalities and serious injuries Cardiff
IPR Äspö Hard Rock Laboratory. International Progress Report. Prototype Repository
International Progress Report IPR-00-21 Äspö Hard Rock Laboratory Prototype Repository Hydrogeology interference test campaign 2 after drill campaign 3 Torbjörn Forsmark Ingvar Rhén VBB VIAK September
FORSKNINGSKOMMUNIKATION OCH PUBLICERINGS- MÖNSTER INOM UTBILDNINGSVETENSKAP
FORSKNINGSKOMMUNIKATION OCH PUBLICERINGS- MÖNSTER INOM UTBILDNINGSVETENSKAP En studie av svensk utbildningsvetenskaplig forskning vid tre lärosäten VETENSKAPSRÅDETS RAPPORTSERIE 10:2010 Forskningskommunikation
Hur fattar samhället beslut när forskarna är oeniga?
Hur fattar samhället beslut när forskarna är oeniga? Martin Peterson m.peterson@tue.nl www.martinpeterson.org Oenighet om vad? 1.Hårda vetenskapliga fakta? ( X observerades vid tid t ) 1.Den vetenskapliga
MÄTNING AV VÄGT REDUKTIONSTAL MEASUREMENT OF THE WEIGHTED SOUND TRANSMISSION LOSS
Beställare: Roca Industry AB Kontaktperson: Alexander Grinde MÄTIG AV VÄGT REDUKTIOSTAL MEASUREMET OF THE WEIGHTED SOUD TRASMISSIO LOSS Objekt: Glasdörr mm Mätningens utförande och omfattning: Tid för
EBBA2 European Breeding Bird Atlas
Methodology Sergi Herrando, Verena Keller, Petr Voříšek et al. objectives 1. To document breeding evidence for all bird species at a resolution of 50x50 km 2. To estimate abundance for all bird species
CompactAIR Center Ventilation - Filtrering - Uppvärmning CompactAIR Center Ventilation - Filtration - Heating
CompactAIR / CompactAIR CompactAIR Center Ventilation - Filtrering - Uppvärmning CompactAIR Center Ventilation - Filtration - Heating Typenschlüssel / Type Code Beteckning / Type code Compact AIR / CompactAIR
Profilinformation Flygteknink 2019, Ingo Staack
Profilinformation 2019 Flygteknik Roland Gårdhagen Ingo Staack Aeronautical Engineering Masterprofil Flygteknik Profilinformation Flygteknink 2019, Ingo Staack 1 2019-03-14 3 Från koncept till prototyp
Consumer attitudes regarding durability and labelling
Consumer attitudes regarding durability and labelling 27 april 2017 Gardemoen Louise Ungerth Konsumentföreningen Stockholm/ The Stockholm Consumer Cooperative Society louise.u@konsumentforeningenstockholm.se
Uttagning för D21E och H21E
Uttagning för D21E och H21E Anmälan till seniorelitklasserna vid O-Ringen i Kolmården 2019 är öppen fram till och med fredag 19 juli klockan 12.00. 80 deltagare per klass tas ut. En rangordningslista med
ISO general purpose metric screw threads Selected sizes for screws, bolts and nuts
SVENSK STANDARD SS-ISO 262 Fastställd 2003-08-01 Utgåva 1 Metriska ISO-gängor för allmän användning Utvalda storlekar för skruvar och muttrar ISO general purpose metric screw threads Selected sizes for
8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MAA150 Vektoralgebra TEN1 Datum: 9januari2015 Skrivtid:
1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)
UMEÅ UNIVERSITY Department of Mathematics and Mathematical Statistics Pre-exam in mathematics Linear algebra 2012-02-07 1. Compute the following matrix: (2 p 3 1 2 3 2 2 7 ( 4 3 5 2 2. Compute the determinant
SWETHRO. Gunilla Pihl Karlsson, Per Erik Karlsson, Sofie Hellsten & Cecilia Akselsson* IVL Svenska Miljöinstitutet *Lunds Universitet
SWETHRO The Swedish Throughfall Monitoring Network (SWETHRO) - 25 years of monitoring air pollutant concentrations, deposition and soil water chemistry Gunilla Pihl Karlsson, Per Erik Karlsson, Sofie Hellsten
Bilaga 5 till rapport 1 (5)
Bilaga 5 till rapport 1 (5) EEG som stöd för diagnosen total hjärninfarkt hos barn yngre än två år en systematisk litteraturöversikt, rapport 290 (2018) Bilaga 5 Granskningsmallar Instruktion för granskning
Measuring child participation in immunization registries: two national surveys, 2001
Measuring child participation in immunization registries: two national surveys, 2001 Diana Bartlett Immunization Registry Support Branch National Immunization Program Objectives Describe the progress of
SVENSK STANDARD SS-EN ISO 2578
SVENSK STANDARD SS-EN ISO 2578 Handläggande organ Fastställd Utgåva Sida SVENSK MATERIAL- & MEKANSTANDARD, SMS 1998-09-25 1 1 (1+19) INNEHÅLLET I SVENSK STANDARD ÄR UPPHOVSRÄTTSLIGT SKYDDAT. SIS HAR COPYRIGHT
Grafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions:
Grafisk teknik Sasan Gooran (HT 2006) Iterative Method Controlling Dot Placement (IMCDP) Assumptions: The original continuous-tone image is scaled between 0 and 1 0 and 1 represent white and black respectively
Pre-Test 1: M0030M - Linear Algebra.
Pre-Test : M3M - Linear Algebra. Test your knowledge on Linear Algebra for the course M3M by solving the problems in this test. It should not take you longer than 9 minutes. M3M Problem : Betrakta fyra
The Finite Element Method, FHL064
The Finite Element Method, FHL064 Division of Solid Mechanics Course program, vt2, 20 Course description The finite element method (FEM) is a numerical method able to solve differential equations, i.e.
Rastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM
Rastercell Digital Rastrering Hybridraster, Rastervinkel, Rotation av digitala bilder, AM/FM rastrering Sasan Gooran (VT 2007) Önskat mått * 2* rastertätheten = inläsningsupplösning originalets mått 2
Syns du, finns du? Examensarbete 15 hp kandidatnivå Medie- och kommunikationsvetenskap
Examensarbete 15 hp kandidatnivå Medie- och kommunikationsvetenskap Syns du, finns du? - En studie över användningen av SEO, PPC och sociala medier som strategiska kommunikationsverktyg i svenska företag
S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN Date:
ISO general purpose metric screw threads General plan
SVENSK STANDARD SS-ISO 261 Fastställd 2003-08-01 Utgåva 1 Metriska ISO-gängor för allmän användning Generalplan ISO general purpose metric screw threads General plan ICS 21.040.10 Språk: engelska, svenska
GERDA Cryostat Rn emanation
GERDA Cryostat Rn emanation K.T. Knöpfle, B. Schwingenheuer, H. Simgen, G. Zuzel MPI für Kernphysik, Heidelberg General remarks Tolerable rate: ~8 (14) mbq 10-4 cts/(kg kev y) assuming homogenous Rn distribution
Könsfördelningen inom kataraktkirurgin. Mats Lundström
Könsfördelningen inom kataraktkirurgin Mats Lundström Innehåll Fördelning av antal operationer utveckling Skillnader i väntetid Effekt av NIKE Skillnader i synskärpa före operation Skillnader i Catquest-9SF
Komponenter Removed Serviceable
Komponenter Removed Serviceable Presentatör Jonas Gränge, Flygteknisk Inspektör Sjö- och luftfartsavdelningen Fartygs- och luftfartygsenheten Sektionen för Underhållsorganisationer 1 145.A.50(d): När en
Hittsjön. Vindkraftspark. Samrådsunderlag
Hittsjön Vindkraftspark Samrådsunderlag Maj 2009 Lantmäteriverket,Gävle 2009. Medgivande MEDGIV-2009-20074. Karta: Terrängkartan Lantmäteriverket,Gävle 2009. Medgivande MEDGIV- 2009-20077. Karta:
Beijer Electronics AB 2000, MA00336A, 2000-12
Demonstration driver English Svenska Beijer Electronics AB 2000, MA00336A, 2000-12 Beijer Electronics AB reserves the right to change information in this manual without prior notice. All examples in this
Webbregistrering pa kurs och termin
Webbregistrering pa kurs och termin 1. Du loggar in på www.kth.se via den personliga menyn Under fliken Kurser och under fliken Program finns på höger sida en länk till Studieöversiktssidan. På den sidan
Anvisning för Guide for
Anvisning för Guide for PRISMA SENSOR 1 96243235zPC Montering i tak/installation in the ceiling Byte av kupa/change of diffuser 2 Installation Installation från gavel / Installation from the end Installationskabel
Styrteknik: Binära tal, talsystem och koder D3:1
Styrteknik: Binära tal, talsystem och koder D3:1 Digitala kursmoment D1 Boolesk algebra D2 Grundläggande logiska funktioner D3 Binära tal, talsystem och koder Styrteknik :Binära tal, talsystem och koder
SOLAR LIGHT SOLUTION. Giving you the advantages of sunshine. Ningbo Green Light Energy Technology Co., Ltd.
2017 SOLAR LIGHT SOLUTION Address:No.5,XingYeMiddleRoad,NingboFreeTradeZone,China Tel:+86-574-86812925 Fax:+86-574-86812905 Giving you the advantages of sunshine SalesServiceE-mail:sales@glenergy.cn Tech.ServiceE-mail:service@glenergy.cn
Methods to increase work-related activities within the curricula. S Nyberg and Pr U Edlund KTH SoTL 2017
Methods to increase work-related activities within the curricula S Nyberg and Pr U Edlund KTH SoTL 2017 Aim of the project Increase Work-related Learning Inspire theachers Motivate students Understanding
SVENSK STANDARD SS
Provläsningsexemplar / Preview SVENSK STANDARD Handläggande organ Fastställd Utgåva Sida Allmänna Standardiseringsgruppen, STG 1998-01-30 1 1 (13) SIS FASTSTÄLLER OCH UTGER SVENSK STANDARD SAMT SÄLJER
Signatursida följer/signature page follows
Styrelsens i Flexenclosure AB (publ) redogörelse enligt 13 kap. 6 och 14 kap. 8 aktiebolagslagen över förslaget till beslut om ökning av aktiekapitalet genom emission av aktier och emission av teckningsoptioner
Semantic and Physical Modeling and Simulation of Multi-Domain Energy Systems: Gas Turbines and Electrical Power Networks
DEGREE PROJECT IN ELECTRICAL ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2017 Semantic and Physical Modeling and Simulation of Multi-Domain Energy Systems: Gas Turbines and Electrical Power
Chapter 2: Random Variables
Chapter 2: Random Variables Experiment: Procedure + Observations Observation is an outcome Assign a number to each outcome: Random variable 1 Three ways to get an rv: Random Variables The rv is the observation
Metodprov för kontroll av svetsmutterförband Kontrollbestämmelse Method test for inspection of joints of weld nut Inspection specification
Stämpel/Etikett Security stamp/lable Metodprov för kontroll av svetsmutterförband Kontrollbestämmelse Method test for inspection of joints of weld nut Inspection specification Granskad av Reviewed by Göran
E4 Sundsvall Sundsvallsbron
E4 Sundsvall Sundsvallsbron E4 Sundsvall LEVERANTÖRSDAG EN NY VÄG. 1000 2009 NYA MÖJLIGHETER One new road. 1000 new opportunities. Ove Malmberg, Assistant Project Manager 2 2014-10-10 Project E4 Sundsvall
Preschool Kindergarten
Preschool Kindergarten Objectives CCSS Reading: Foundational Skills RF.K.1.D: Recognize and name all upper- and lowercase letters of the alphabet. RF.K.3.A: Demonstrate basic knowledge of one-toone letter-sound
EASA Standardiseringsrapport 2014
EASA Standardiseringsrapport 2014 Inför EASA Standardiseringsinspektion hösten 2016 Presentatör Johan Brunnberg, Flygteknisk Inspektör & Del-M Koordinator Sjö- och luftfartsavdelningen Enheten för operatörer,
Grafisk teknik. Sasan Gooran (HT 2006)
Grafisk teknik Sasan Gooran (HT 2006) Iterative Method Controlling Dot Placement (IMCDP) Assumptions: The original continuous-tone image is scaled between 0 and 1 0 and 1 represent white and black respectively
SAMMANFATTNING AV SUMMARY OF
Detta dokument är en enkel sammanfattning i syfte att ge en första orientering av investeringsvillkoren. Fullständiga villkor erhålles genom att registera sin e- postadress på ansökningssidan för FastForward
District Application for Partnership
ESC Region Texas Regional Collaboratives in Math and Science District Application for Partnership 2013-2014 Applying for (check all that apply) Math Science District Name: District Contacts Name E-mail
Robust och energieffektiv styrning av tågtrafik
1 Robust och energieffektiv styrning av tågtrafik - CATO - Forskning inom OnTime - Vidareutveckling och möjligheter KAJT, temadag om punktlighet 2014-11-13 Tomas Lidén Transrail Sweden AB Dagens trafikledning
denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell
Kursen bedöms med betyg, 4, 5 eller underänd, där 5 är högsta betyg. För godänt betyg rävs minst 4 poäng från uppgifterna -7. Var och en av dessa sju uppgifter an ge maximalt poäng. För var och en av uppgifterna
2. Förklara vad en egenfrekvens är. English: Explain what en eigenfrequency is.
Linköpings Universitet, Hållfasthetslära, IEI/IKP TENTAMEN i Mekaniska svängningar och utmattning, TMMI09 2007-10-16 kl 14-18 L Ö S N I N G A R ---- SOLUTIONS 1. Ange sambanden mellan vinkelfrekvens ω,
Förbundsutskott 32, broar och tunnlar
Förbundsutskott 32, broar och tunnlar Utmärkelse till en framstående konstruktion inom bro- och tunnelområdet www.nvfnorden.org Stadgar i korthet: För ingenjörskonsten viktiga konstruktioner Behöver inte
Module 1: Functions, Limits, Continuity
Department of mathematics SF1625 Calculus 1 Year 2015/2016 Module 1: Functions, Limits, Continuity This module includes Chapter P and 1 from Calculus by Adams and Essex and is taught in three lectures,
Boiler with heatpump / Värmepumpsberedare
Boiler with heatpump / Värmepumpsberedare QUICK START GUIDE / SNABBSTART GUIDE More information and instruction videos on our homepage www.indol.se Mer information och instruktionsvideos på vår hemsida
PORTSECURITY IN SÖLVESBORG
PORTSECURITY IN SÖLVESBORG Kontaktlista i skyddsfrågor / List of contacts in security matters Skyddschef/PFSO Tord Berg Phone: +46 456 422 44. Mobile: +46 705 82 32 11 Fax: +46 456 104 37. E-mail: tord.berg@sbgport.com
(D1.1) 1. (3p) Bestäm ekvationer i ett xyz-koordinatsystem för planet som innehåller punkterna
Högsolan i Sövde (SK) Tentamen i matemati Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 4-8-6 l 4.-9. Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad. Ej ränedosa. Tentamen
Daylight and thermal comfort in a residential passive house
Daylight and thermal comfort in a residential passive house A simulations study based on environmental classification systems Magnus Heier Magnus Österbring Supervisors: Paula Wahlgren, Chalmers Tekniska
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 0896661). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
Protected areas in Sweden - a Barents perspective
Protected areas in Sweden - a Barents perspective Olle Höjer Swedish Environmental Protection Agency Naturvårdsverket Swedish Environmental Protection Agency 2013-04-03 1 The fundamental framework for
A QUEST FOR MISSING PULSARS
LOFAR A QUEST FOR MISSING PULSARS Samayra Straal Joeri v. Leeuwen WHAT ARE MISSING ~ half of PWN are associated with a pulsar (32/56) PULSARS? less than 25% of all SNRs are associated with a pulsar (60/294)
Modeling of pore pressure in a railway embankment
Modeling of pore pressure in a railway embankment Marcus Vestman Civilingenjör, Väg- och vattenbyggnad 2018 Luleå tekniska universitet Institutionen för samhällsbyggnad och naturresurser 1. INTRODUCTION...
School of Management and Economics Reg. No. EHV 2008/220/514 COURSE SYLLABUS. Fundamentals of Business Administration: Management Accounting
School of Management and Economics Reg. No. EHV 2008/220/514 COURSE SYLLABUS Fundamentals of Business Administration: Management Accounting Course Code FE3001 Date of decision 2008-06-16 Decision-making
SVENSK STANDARD SS-ISO 8779:2010/Amd 1:2014
SVENSK STANDARD SS-ISO 8779:2010/Amd 1:2014 Fastställd/Approved: 2014-07-04 Publicerad/Published: 2014-07-07 Utgåva/Edition: 1 Språk/Language: engelska/english ICS: 23.040.20; 65.060.35; 83.140.30 Plaströrssystem
Beslut om bolaget skall gå i likvidation eller driva verksamheten vidare.
ÅRSSTÄMMA REINHOLD POLSKA AB 7 MARS 2014 STYRELSENS FÖRSLAG TILL BESLUT I 17 Beslut om bolaget skall gå i likvidation eller driva verksamheten vidare. Styrelsen i bolaget har upprättat en kontrollbalansräkning
FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR
FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR Kontrollera vilka kurser du vill söka under utbytet. Fyll i Basis for nomination for exchange studies i samråd med din lärare. För att läraren ska kunna göra en korrekt
SÖ 2000: 18 Nr 18 Avtal med Estland om avgränsningen av de maritima zonerna i Östersjön Stockholm den 2 november 1998
Nr 18 Avtal med Estland om avgränsningen av de maritima zonerna i Östersjön Stockholm den 2 november 1998 Regeringen beslutade den 15 oktober 1998 att ingå överenskommelsen. Överenskommelsen trädde i kraft
Kursplan. EN1088 Engelsk språkdidaktik. 7,5 högskolepoäng, Grundnivå 1. English Language Learning and Teaching
Kursplan EN1088 Engelsk språkdidaktik 7,5 högskolepoäng, Grundnivå 1 English Language Learning and Teaching 7.5 Higher Education Credits *), First Cycle Level 1 Mål Efter genomgången kurs ska studenten
SVENSK STANDARD SS-ISO 965/2 Första giltighetsdag Utgåva Sida Registrering
SIS - Standardiseringskommissionen i Sverige Standarden utarbetad av SMS, SVERIGES MEKANSTANDARDISERING SVENSK STANDARD SS-ISO 965/2 Första giltighetsdag Utgåva Sida Registrering 1984-05-20 1 1 (7) SMS
RADIATION TEST REPORT. GAMMA: 30.45k, 59.05k, 118.8k/TM1019 Condition D
RADIATION TEST REPORT PRODUCT: OP47AYQMLL Die Type: 147X FILE: OP47_LDR.xlsx DATE CODE: 95 GAMMA: 3.45k, 59.5k, 118.8k/TM119 Condition D GAMMA SOURCE: Co6 DOSE RATE: 8.6mRad(si)/s FACILITIES: University
2013:35. Technical Note
Authors: Goodluck I. Ofoegbu Kevin J. Smart Technical Note 2013:35 Rock Mechanics Confidence of SKB s models for predicting the occurrence of a damage zone around the excavations Main Review Phase Report