Högskoleprovet. Börja inte med provet förrän provledaren säger till!

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Högskoleprovet. Börja inte med provet förrän provledaren säger till!"

Transkript

1 Svarshäftesnummer Högskoleprovet Provpass 5 lla svar ska föras in i svarshäftet inom provtiden. Markera dina svar tydligt i svarshäftet. u får använda provhäftet som kladdpapper. Om du inte kan lösa en uppgift, försök då att bedöma vilket svarsförslag som verkar mest rimligt. u får inget poängavdrag om du svarar fel. På nästa sida börjar provet, som innehåller 40 uppgifter. Provtiden är 55 minuter. Kvantitativ del etta provhäfte består av fyra olika delprov. essa är XYZ (matematisk problemlösning), KV (kvantitativa jämförelser), NOG (kvantitativa resonemang) och TK (diagram, tabeller och kartor). nvisningar och exempeluppgifter finner du i ett separat häfte. Prov ntal uppgifter Uppgiftsnummer Rekommenderad provtid XYZ minuter KV minuter NOG minuter TK minuter örja inte med provet förrän provledaren säger till! Tillstånd har inhämtats att publicera det upphovsrättsligt skyddade material som ingår i detta prov.

2 XYZ Matematisk problemlösning. Vilket värde har x om 4x = 8 3 9? I en påse finns det röd, 2 gröna, 3 blå, 4 vita och 5 svarta kulor. Om man drar en kula slumpmässigt, vad är då sannolikheten att den är antingen röd eller vit?

3 XYZ 3. Vilket svarsalternativ motsvarar linjen i figuren? y = - 2 x - 4 y =-2x - 2 y = - 2 x + 2 y =-2x Vilket av svarsalternativen motsvarar uttrycket ( 2a- 3b)( 3a+ 2b)? 2 2 5a -2ab-5b 2 2 6a - 8ab+ 6b 2 2 6a -5ab-6b 2 2 6a - 6b 3

4 XYZ Vilket värde har uttrycket? En cirkel är placerad i ett koordinatsystem. är cirkelns diameter. irkelns medelpunkt har koordinaterna ( 2, ) och har koordinaterna ( 4, 2). Vad är koordinaterna för? (4, 0) (0, 4) (4, 2) (2, 4) 4

5 XYZ 7. L är parallell med L 2. Vad är y? 90 - x 90 - z 80-2x 80-2z 8. 3x 2 + 8x+ 7= x^2x+ 6h + x Vad är x?,5 2 2,5 3 5

6 XYZ 9. En cirkel är placerad på den likbenta triangeln så att cirkelns medelpunkt ligger mitt på hypotenusan och cirkeln tangerar kateterna och. rean av triangeln är 50 cm 2. Vad är omkretsen av cirkeln? 0r cm 20r cm 0 2 r cm 20 2 r cm 0. x och y är positiva tvåsiffriga heltal med samma siffror, men de två talen har siffrorna i omvänd ordning. Vilket tal är x + y med säkerhet jämnt delbart med?

7 XYZ 3 2. Vilket av svarsalternativen är inte ett möjligt värde på x om x + x - 2x = 0? Vad är _ 3 i _ 3i$ _ 3i?

8 KV Kvantitativa jämförelser 3. -6( 5- x) = -30 Kvantitet I: x Kvantitet II: 0 I är större än II II är större än I I är lika med II informationen är otillräcklig 4. Kvantitet I: Kvantitet II: 0 I är större än II II är större än I I är lika med II informationen är otillräcklig 8

9 KV 5. Kvantitet I: vståndet mellan punkterna (, 2) och (2, 4) Kvantitet II: vståndet mellan punkterna (, 2) och (2, -4) I är större än II II är större än I I är lika med II informationen är otillräcklig 6. Kvantitet I: x Kvantitet II: 37 I är större än II II är större än I I är lika med II informationen är otillräcklig 9

10 KV 7. Mätserie x: 5, 3, 20 Mätserie y: 30, 5,, 3 Kvantitet I: Kvantitet II: Medianen i mätserie x Medianen i mätserie y I är större än II II är större än I I är lika med II informationen är otillräcklig 8. x =, där n är ett positivt heltal. 4 n Kvantitet I: Entalssiffran i talet x Kvantitet II: 4 I är större än II II är större än I I är lika med II informationen är otillräcklig 0

11 KV 9. är en rektangel, och cirkelbågarna och är halvcirklar. Kvantitet I: rean av den skuggade ytan Kvantitet II: 6 cm 2 I är större än II II är större än I I är lika med II informationen är otillräcklig 20. x > y y < 0 Kvantitet I: x 2 Kvantitet II: y 2 I är större än II II är större än I I är lika med II informationen är otillräcklig

12 KV 2. et tar 30 minuter för 4 likadana pumpar att tillsammans fylla en tank med 7 m 3 vatten. Kvantitet I: Kvantitet II: en tid det tar för 42 likadana pumpar att tillsammans fylla en tank med 63 m 3 vatten,5 timmar I är större än II II är större än I I är lika med II informationen är otillräcklig 22. x > 0 Kvantitet I: x + x Kvantitet II: 2x I är större än II II är större än I I är lika med II informationen är otillräcklig 2

13 Kvantitativa resonemang NOG 23. I en låda fanns det ett antal kulor. Vid ett tillfälle läggs 42 nya kulor ner i lådan. Hur många kulor finns det i lådan när de 42 nya kulorna har lagts ner? () Innan de 42 nya kulorna lades ner var antalet kulor i lådan 28 % mindre än efteråt. (2) e 42 nya kulorna utgör 7/25 av alla kulor i lådan. Tillräcklig information för lösningen erhålls i () men ej i (2) i (2) men ej i () i () tillsammans med (2) i () och (2) var för sig E ej genom de båda påståendena 24. Medelvärdet av tre tal är 9. Vad är talens median? () Ett av talen är 4. (2) Ett av talen är 27. Tillräcklig information för lösningen erhålls i () men ej i (2) i (2) men ej i () i () tillsammans med (2) i () och (2) var för sig E ej genom de båda påståendena 3

14 NOG 25. I ett pennställ finns det endast enfärgade pennor: 2 röda och 6 blå. Hur många av pennorna i pennstället är trasiga? () En tredjedel av de röda pennorna är trasiga. (2) Om en trasig röd penna plockas upp ur pennstället så finns det tre gånger så många trasiga blå pennor som trasiga röda pennor kvar i pennstället. Tillräcklig information för lösningen erhålls i () men ej i (2) i (2) men ej i () i () tillsammans med (2) i () och (2) var för sig E ej genom de båda påståendena 26. nna, avid, Frida och Johan är syskon. Vem av syskonen är yngst? () nna är äldre än Frida. Frida är yngre än avid. (2) avid är äldre än Johan. Johan är yngre än nna. Tillräcklig information för lösningen erhålls i () men ej i (2) i (2) men ej i () i () tillsammans med (2) i () och (2) var för sig E ej genom de båda påståendena 4

15 NOG 27. Kalle har 5 enfärgade kulor i sin ficka. Kulorna har tre olika färger. Om Kalle slumpmässigt tar kulor ur fickan, vilket är då det minsta antal kulor som Kalle måste ta upp för att säkert få minst en kula av varje färg? () /3 av antalet kulor är svarta. (2) 7 kulor är röda och 3 kulor är blå. Tillräcklig information för lösningen erhålls i () men ej i (2) i (2) men ej i () i () tillsammans med (2) i () och (2) var för sig E ej genom de båda påståendena 28. är en triangel. Punkten ligger på. Sträckorna, och är 4 cm långa. Hur stor är vinkeln x? () v = 35 (2) u = 70 Tillräcklig information för lösningen erhålls i () men ej i (2) i (2) men ej i () i () tillsammans med (2) i () och (2) var för sig E ej genom de båda påståendena 5

16 TK iagram, tabeller och kartor Utrikes och inrikes luftfart et totala antalet landningar på svenska flygplatser några år under perioden , uppdelat på utrikes- och inrikesflyg. Tusental. et totala antalet passagerare som landade på svenska flygplatser några år under perioden , uppdelat på utrikes- och inrikesflyg. Miljoner. 6

17 TK Uppgifter 29. Hur stort var antalet passagerare per landning på svenska flygplatser 2005? Med hur många procent hade antalet utrikes passagerare ökat 200 om man jämför med 980? 20 procent 250 procent 320 procent 450 procent 3. Hur stor var skillnaden i antal landningar mellan inrikes- och utrikesflyg år 2000?

18 TK Fågellokaler i södra alsland Karta över observationsplatser för fågelskådning i området kring Stora (St.) och Lilla (L.) Hästefjorden i södra alsland på 970-talet. 8

19 TK Uppgifter 32. Var slutar följande vägbeskrivning? Utgå från den fyrvägskorsning som ligger närmast rasmerud och välj den väg som går i nordvästlig riktning. Ta efter drygt 3 kilometer av på en mindre väg som går i nordlig riktning och följ denna väg i 2 kilometer. Holmen Rössebo Furholmen Lönnhult 33. I vilken riktning rinner Hakerudsälven när den når fram till Lilla Hästefjorden? Nordostlig riktning Ostlig riktning Sydostlig riktning Sydlig riktning 34. u cykar från Grunsbo och ska besöka tre av de bra observationsplatser som finns utmärkta på kartan. Platserna är den i Skarbo, den som ligger längst norrut i Stora Hästefjorden samt den vid S. Siviken. Platserna besöks i den nämnda ordningen. u följer vägen förbi dessa platser, och efter sista stoppet vid observationsplatsen i S. Siviken tar du vägen via Torsbo tillbaka till Grunsbo. u startar klockan 2.00, cyklar 20 km/h och stannar på varje observationsplats i en timme. Vilken tid kommer du tillbaka till Grunsbo? Klockan 3.30 Klockan 4.30 Klockan 5.30 Klockan

20 TK Kostnader för flerbostadshus en totala kostnaden för flerbostadshus i allmännyttiga bostadsföretag uppdelad på kapitalkostnad och driftkostnad. Kronor per kvadratmeter. en totala kostnaden för flerbostadshus i bostadsrättsföreningar uppdelad på kapitalkostnad och driftkostnad. Kronor per kvadratmeter. en totala kostnaden för flerbostadshus i privat ägo uppdelad på kapitalkostnad och driftkostnad. Kronor per kvadratmeter. vser kostnader för fastighetsägaren. 20

21 TK Uppgifter 35. Jämför den totala kostnaden för flerbostadshus i allmännyttiga bostadsföretag och den totala kostnaden för flerbostadshus i bostadsrättsföreningar. Hur stor var skillnaden 2002? 40 kr/m 2 85 kr/m 2 30 kr/m 2 75 kr/m Hur stor andel av den totala kostnaden för allmännyttiga bostadsföretag 975 respektive 2006 utgjordes av kapitalkostnad? 30 procent respektive 25 procent 40 procent respektive 35 procent 50 procent respektive 25 procent 60 procent respektive 35 procent 37. I nedanstående cirkeldiagram redovisas hur driftkostnaden för flerbostadshus i allmännyttiga bostadsföretag var fördelad på olika poster år Vilken typ av driftkostnad motsvarade 5 kronor per kvadratmeter? 4 % 7 % 26 % 3 % Skötsel och administration Uppvärmning Reparation och underhåll Övriga driftkostnader 8 % Taxebundna kostnader Fastighetsskatt 4 % Skötsel och administration Uppvärmning Taxebundna kostnader Reparation och underhåll 2

22 TK Lärosäten i Sverige ntalet lärare och lärjungar (studenter) vid universiteten i Uppsala och Lund Åren anges för varje femårsperiod ett årligt genomsnitt. ntalet lärare och lärjungar (studenter) vid Karolinska institutet, Stockholms högskola och Göteborgs högskola Åren anges för varje femårsperiod ett årligt genomsnitt. 22

23 TK Uppgifter 38. Hur stort var det årliga antalet studenter vid de fem lärosätena sammanlagt 9/5? Hur stor andel av lärarna vid Göteborgs högskola 949 var professorer? 30 procent 40 procent 60 procent 70 procent 40. Vilket lärosäte hade minst antal studenter per lärare 947? Lunds universitet Karolinska institutet Stockholms högskola Göteborgs högskola 23

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2016-10-29 Provpass 5 Högskoleprovet Svarshäfte nr. Kvantitativ del p Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematisk problemlösning), KV

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2016-10-29 Provpass 5 Högskoleprovet Svarshäfte nr. Kvantitativ del q Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematisk problemlösning), KV

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2016-10-29 Provpass 5 Högskoleprovet Svarshäfte nr. Kvantitativ del r Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematisk problemlösning), KV

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2016-10-29 Provpass 5 Högskoleprovet Svarshäfte nr. Kvantitativ del s Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematisk problemlösning), KV

Läs mer

Högskoleprovet. Börja inte med provet förrän provledaren säger till!

Högskoleprovet. Börja inte med provet förrän provledaren säger till! Svarshäftesnummer 2018-04-14 Högskoleprovet Provpass 4 lla svar ska föras in i svarshäftet inom provtiden. Markera dina svar tydligt i svarshäftet. u får använda provhäftet som kladdpapper. Om du inte

Läs mer

Högskoleprovet. Börja inte med provet förrän provledaren säger till!

Högskoleprovet. Börja inte med provet förrän provledaren säger till! Svarshäftesnummer 2018-10-21 Högskoleprovet Provpass 4 lla svar ska föras in i svarshäftet inom provtiden. Markera dina svar tydligt i svarshäftet. u får använda provhäftet som kladdpapper. Om du inte

Läs mer

Högskoleprovet. Börja inte med provet förrän provledaren säger till!

Högskoleprovet. Börja inte med provet förrän provledaren säger till! Svarshäftesnummer 2018-10-21 Högskoleprovet Provpass 2 lla svar ska föras in i svarshäftet inom provtiden. Markera dina svar tydligt i svarshäftet. u får använda provhäftet som kladdpapper. Om du inte

Läs mer

Högskoleprovet. Börja inte med provet förrän provledaren säger till!

Högskoleprovet. Börja inte med provet förrän provledaren säger till! Svarshäftesnummer 2018-04-14 Högskoleprovet Provpass 4 lla svar ska föras in i svarshäftet inom provtiden. Markera dina svar tydligt i svarshäftet. u får använda provhäftet som kladdpapper. Om du inte

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2017-10-21 Provpass 3 Högskoleprovet Svarshäfte nr. Kvantitativ del Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematisk problemlösning), KV (kvantitativa

Läs mer

Högskoleprovet. Börja inte med provet förrän provledaren säger till!

Högskoleprovet. Börja inte med provet förrän provledaren säger till! Svarshäftesnummer 2019-04-06 Högskoleprovet Provpass 2 lla svar ska föras in i svarshäftet inom provtiden. Markera dina svar tydligt i svarshäftet. u får använda provhäftet som kladdpapper. Om du inte

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2017-10-21 Provpass 5 Högskoleprovet Svarshäfte nr. Kvantitativ del Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematisk problemlösning), KV (kvantitativa

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2017-10-21 Provpass 5 Högskoleprovet Svarshäfte nr. Kvantitativ del Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematisk problemlösning), KV (kvantitativa

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2012-10-27 Provpass 1 Svarshäfte nr. Högskoleprovet Kvantitativ del b Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematik), KV (kvantitativa jämförelser),

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2013-04-06 Provpass 2 Högskoleprovet Svarshäfte nr. Kvantitativ del h Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematisk problemlösning), KV

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2016-10-29 Provpass 3 Högskoleprovet Svarshäfte nr. Kvantitativ del n Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematisk problemlösning), KV

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2015-03-28 Provpass 2 Högskoleprovet Svarshäfte nr. Kvantitativ del j Provet innehåller 40 uppgifter Instruktion Detta provhäfte består av fyra olika delprov. Dessa är XYZ (matematisk problemlösning),

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2015-03-28 Provpass 4 Högskoleprovet Svarshäfte nr. Kvantitativ del k Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematisk problemlösning), KV

Läs mer

Högskoleprovet. Börja inte med provet förrän provledaren säger till!

Högskoleprovet. Börja inte med provet förrän provledaren säger till! Svarshäftesnummer 018-04-14 Högskoleprovet Provpass 1 lla svar ska föras in i svarshäftet inom provtiden. Markera dina svar tydligt i svarshäftet. u får använda provhäftet som kladdpapper. Om du inte kan

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2013-10-26 Provpass 5 Högskoleprovet Svarshäfte nr. Kvantitativ del e Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematisk problemlösning), KV

Läs mer

Högskoleprovet. Börja inte med provet förrän provledaren säger till!

Högskoleprovet. Börja inte med provet förrän provledaren säger till! Svarshäftesnummer 018-04-14 Högskoleprovet Provpass 1 lla svar ska föras in i svarshäftet inom provtiden. Markera dina svar tydligt i svarshäftet. u får använda provhäftet som kladdpapper. Om du inte kan

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2017-04-01 Provpass 4 Högskoleprovet Svarshäfte nr. Kvantitativ del Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematisk problemlösning), KV (kvantitativa

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2014-10-25 Provpass 2 Högskoleprovet Svarshäfte nr. Kvantitativ del a Provet innehåller 40 uppgifter Instruktion Detta provhäfte består av fyra olika delprov. Dessa är XYZ (matematisk problemlösning),

Läs mer

Högskoleprovet. Provpass 1. Kvantitativ del. Instruktion. Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid. Provet innehåller 40 uppgifter

Högskoleprovet. Provpass 1. Kvantitativ del. Instruktion. Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid. Provet innehåller 40 uppgifter 2017-04-01 Provpass 1 Högskoleprovet Svarshäfte nr. Kvantitativ del Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematisk problemlösning), KV (kvantitativa

Läs mer

Högskoleprovet. Provpass 1. Kvantitativ del. Instruktion. Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid. Provet innehåller 40 uppgifter

Högskoleprovet. Provpass 1. Kvantitativ del. Instruktion. Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid. Provet innehåller 40 uppgifter 2017-04-01 Provpass 1 Högskoleprovet Svarshäfte nr. Kvantitativ del Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematisk problemlösning), KV (kvantitativa

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2016-04-09 Provpass 3 Högskoleprovet Svarshäfte nr. Kvantitativ del j Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematisk problemlösning), KV

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid Övningsprov Högskoleprovet Kvantitativ del elprovet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematik), KV (kvantitativa jämförelser), NOG (kvantitativa

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2014-04-05 Provpass 4 Högskoleprovet Svarshäfte nr. Kvantitativ del p Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematisk problemlösning), KV

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2012-03-31 Provpass 5 Svarshäfte nr. Högskoleprovet Kvantitativ del d Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematik), KV (kvantitativa jämförelser),

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2012-03-31 Provpass 3 Svarshäfte nr. Högskoleprovet Kvantitativ del c Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematik), KV (kvantitativa jämförelser),

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2012-10-27 Provpass 4 Svarshäfte nr. Högskoleprovet Kvantitativ del e Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematik), KV (kvantitativa jämförelser),

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2012-10-27 Provpass 4 Svarshäfte nr. Högskoleprovet Kvantitativ del e Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematik), KV (kvantitativa jämförelser),

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2011-10-29 Provpass 2 Svarshäfte nr. Högskoleprovet Kvantitativ del l Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematik), KV (kvantitativa jämförelser),

Läs mer

Högskoleprovet Kvantitativ del

Högskoleprovet Kvantitativ del Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. XYZ Matematisk problemlösning

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2011-10-29 Provpass 4 Svarshäfte nr. Högskoleprovet Kvantitativ del m Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematik), KV (kvantitativa jämförelser),

Läs mer

Högskoleprovet Kvantitativ del

Högskoleprovet Kvantitativ del Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. XYZ Matematisk problemlösning

Läs mer

Högskoleprovet Kvantitativ del

Högskoleprovet Kvantitativ del Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. Ägna inte för lång

Läs mer

Högskoleprovet. Block 3. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 3. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 3 2011-04-02 Högskoleprovet Svarshäfte nr. DELPROV 5 NOG h Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

Högskoleprovet Kvantitativ del

Högskoleprovet Kvantitativ del Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. Ägna inte för lång

Läs mer

Högskoleprovet. Block 4. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 4. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 4 2009-10-24 Högskoleprovet Svarshäfte nr. DELPROV 7 NOGa Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

Högskoleprovet. Block 5. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 5. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 5 2008-04-05 Högskoleprovet Svarshäfte nr. DELPROV 9 NOGf Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

0,20 m 0,30 m 0,35 m 0,45 m 0,55 m

0,20 m 0,30 m 0,35 m 0,45 m 0,55 m Block 3 2008-04-05 Högskoleprovet Svarshäfte nr. DELPROV 5 DTKd Delprovet innehåller 20 uppgifter. Anvisningar Provet innehåller diagram, tabeller, kartor och andra grafiska framställningar. Materialet

Läs mer

Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6

Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6 Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara

Läs mer

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 1 2010-10-23 Högskoleprovet Svarshäfte nr. DELPROV 1 NOGa Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 1 2008-10-25 Högskoleprovet Svarshäfte nr. DELPROV 1 NOGe Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

NAMN KLASS/GRUPP. Poängsumma: Känguruskutt: UPPGIFT 1 2 3 4 5 6 7 8 9 10 SVAR UPPGIFT 11 12 13 14 15 16 17 18 19 20 SVAR

NAMN KLASS/GRUPP. Poängsumma: Känguruskutt: UPPGIFT 1 2 3 4 5 6 7 8 9 10 SVAR UPPGIFT 11 12 13 14 15 16 17 18 19 20 SVAR Känguru 2010 Junior (gymnasiet åk 1) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara

Läs mer

Avdelning 1, trepoängsproblem

Avdelning 1, trepoängsproblem vdelning, trepoängsproblem. Med hjälp av bilden bredvid kan vi se att + 3 + 5 + 7 = 4 4. Vad är + 3 + 5 + 7 + 9 +... + 7 + 9 + 2? : 0 0 : C: 2 2 D: 3 3 E: 4 4 2. Summan av talen i båda raderna är den samma.

Läs mer

Planering Geometri år 7

Planering Geometri år 7 Planering Geometri år 7 Innehåll Övergripande planering... 2 Bedömning... 2 Begreppslista... 3 Metodlista... 6 Arbetsblad... 6 Facit Diagnos + Arbeta vidare... 10 Repetitionsuppgifter... 11 Övergripande

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng. Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser Provet består

Läs mer

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 1 2010-04-10 Högskoleprovet Svarshäfte nr. DELPROV 1 NOGc Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

Lathund geometri, åk 7, matte direkt (nya upplagan)

Lathund geometri, åk 7, matte direkt (nya upplagan) Lathund geometri, åk 7, matte direkt (nya upplagan) Det som står i den här lathunden ska du kunna till provet. Du ska kunna ställa upp och räkna ut liknande tal som de nedan: a) 39,8 + 2,62 b) 16,42 5,8

Läs mer

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 1 2009-03-28 Högskoleprovet Svarshäfte nr. DELPROV 1 NOGg Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

Junior. låda 1 låda 2 låda 3 låda 4 låda 5 B V B V. a: det är omöjligt att göra så b: A c: V d: O e: R

Junior. låda 1 låda 2 låda 3 låda 4 låda 5 B V B V. a: det är omöjligt att göra så b: A c: V d: O e: R Junior vdelning 1. Trepoängsproblem 1. I fem lådor ligger kort. arje kort är märkt med en av bokstäverna,, R, O och. Peter ska plocka bort kort så att det blir ett enda kort kvar i varje låda och så att

Läs mer

Högskoleverket. Delprov NOG 2003-04-05

Högskoleverket. Delprov NOG 2003-04-05 Högskoleverket Delprov NOG 2003-04-05 2 1. Sven använder 40 procent av sin nettolön, d.v.s. lön efter skatt, till att betala hyran. Hur stor är Svens nettolön? (1) Efter att Sven betalat hyran har han

Läs mer

Avdelning 1, trepoängsproblem

Avdelning 1, trepoängsproblem vdelning 1, trepoängsproblem 1. Hur många symmetrilinjer har figuren? : 0 : 1 : 2 : 4 E: oändligt många 2. Robert arbetar på leksaksfabriken. Han ska packa kängurur som ska fraktas till affärerna. Varje

Läs mer

Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng

Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng Ämnesprov i matematik Skolår 9 Vårterminen 2004 Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 11 juni 2004. Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN Del I

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN Del I Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av juni månad 2002. NATIONELLT

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 1 Vilka tal pekar pilarna på? a) b) Skriv talen med siffror 2 a) trehundra sju b) femtontusen fyrtiofem c) tvåhundrafemtusen tre 3 a) fyra tiondelar b) 65 hundradelar c) 15 tiondelar

Läs mer

Student för elever på kurs Ma 4 och Ma 5

Student för elever på kurs Ma 4 och Ma 5 Till läraren Välkommen till Kängurutävlingen Matematikens hopp 16 mars 2017 Student för elever på kurs Ma 4 och Ma 5 Tävlingen genomförs under perioden 16 24 mars. Uppgifterna får inte användas tidigare.

Läs mer

Känguru 2012 Junior sivu 1 / 8 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasiet

Känguru 2012 Junior sivu 1 / 8 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasiet Känguru 2012 Junior sivu 1 / 8 NAMN GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Felaktigt

Läs mer

Känguru 2012 Student sid 1 / 8 (gymnasiet åk 2 och 3) i samarbete med Jan-Anders Salenius vid Brändö gymnasiet

Känguru 2012 Student sid 1 / 8 (gymnasiet åk 2 och 3) i samarbete med Jan-Anders Salenius vid Brändö gymnasiet Känguru 2012 Student sid 1 / 8 NAMN GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Felaktigt

Läs mer

Snabba tips på hur du kan plugga till XYZ och KVA

Snabba tips på hur du kan plugga till XYZ och KVA Introduktion en här boken skapades för att hjälpa dig att maximera din poäng på XYZ och KV. Jag räknade genom alla tidigare XYZ och KV och resultatet är 1000 övningsuppgifter som starkt påminner om och

Läs mer

Bestäm den sida som är markerad med x.

Bestäm den sida som är markerad med x. 7 trigonometri Trigonometri handlar om sidor och inklar i trianglar. Ordet kommer från grekiskans trigonon (tre inklar) och métron (mått). Trigonometri har anänts under de senaste 2000 åren inom astronomi,

Läs mer

Känguru 2017 Student gymnasiet

Känguru 2017 Student gymnasiet sid 1 / 9 NAMN GRUPP Poäng: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Rätt svar ger dig 3, 4 eller 5 poäng. Varje uppgift har endast ett rätt svar. Felaktigt

Läs mer

Högskoleverket. Delprov NOG 2002-10-26

Högskoleverket. Delprov NOG 2002-10-26 Högskoleverket Delprov NOG 2002-10-26 1. Det ordinarie priset på en skjorta, som såldes på rea, var 600 kr. Inför slutrean sänktes priset till halva ursprungliga reapriset. Vad var det ursprungliga reapriset

Läs mer

2: E TOOT Bokstäverna O och T har en lodrät symmetriaxel, men inte R, B och L. Därför kommer endast ordet TOOT kunna skrivas på detta sätt.

2: E TOOT Bokstäverna O och T har en lodrät symmetriaxel, men inte R, B och L. Därför kommer endast ordet TOOT kunna skrivas på detta sätt. Kängurutävlingen 018 Cadet svar och kommentarer Facit Cadet 1: C 19 0 + 18 = 8 = 19 : E TOOT Bokstäverna O och T har en lodrät symmetriaxel, men inte R, B och L. Därför kommer endast ordet TOOT kunna skrivas

Läs mer

Finaltävling i Lund den 19 november 2016

Finaltävling i Lund den 19 november 2016 SKOLORNS MTEMTIKTÄVLING Svenska matematikersamfundet Finaltävling i Lund den 19 november 2016 1. I en trädgård finns ett L-format staket, se figur. Till sitt förfogande har man dessutom två färdiga raka

Läs mer

0,20 m 0,30 m 0,35 m 0,45 m 0,55 m

0,20 m 0,30 m 0,35 m 0,45 m 0,55 m Block 5 2009-10-24 Högskoleprovet Svarshäfte nr. DELPROV 9 DTKd Delprovet innehåller 20 uppgifter. Anvisningar Provet innehåller diagram, tabeller, kartor och andra grafiska framställningar. Materialet

Läs mer

Trepoängsproblem. Kängurutävlingen 2011 Cadet. 1 Vilket av följande uttryck har störst värde? 1 A: B: C: D: E: 2011

Trepoängsproblem. Kängurutävlingen 2011 Cadet. 1 Vilket av följande uttryck har störst värde? 1 A: B: C: D: E: 2011 Trepoängsproblem 1 Vilket av följande uttryck har störst värde? 1 A: 2011 1 B: 1 2011 C: 1 2011 D: 1 + 2011 E: 2011 2 Övergångsställen är markerade med vita och svarta streck som är 50 cm breda. Markeringen

Läs mer

2. 1 L ä n g d, o m k r e t s o c h a r e a

2. 1 L ä n g d, o m k r e t s o c h a r e a 2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda

Läs mer

17 Trigonometri. triangeln är 20 cm. Bestäm vinkeln mellan dessa sidor. Lösning: Här är det dags för areasatsen. s1 s2 sin v 2

17 Trigonometri. triangeln är 20 cm. Bestäm vinkeln mellan dessa sidor. Lösning: Här är det dags för areasatsen. s1 s2 sin v 2 17 Trigonometri Övning 17.1 En likbent triangel har arean 10 cm. De båda lika långa sidorna i triangeln är 0 cm. estäm vinkeln mellan dessa sidor. Här är det dags för areasatsen = s1 s sin v där v ligger

Läs mer

A: 3 B: 4 C: 5 D: 6 E: 7 Ryssland

A: 3 B: 4 C: 5 D: 6 E: 7 Ryssland Trepoängsproblem 1. Några av bildens ringar bildar en kedja där den ring som pilen pekar på ingår. Hur många ringar finns det i denna kedja? A: 3 B: 4 C: 5 D: 6 E: 7 Ryssland 2. I en triangel har två sidor

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng. NpMac vt 01 Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser

Läs mer

Känguru 2013 Junior sida 1 / 9 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasium

Känguru 2013 Junior sida 1 / 9 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasium Känguru 2013 Junior sida 1 / 9 NAMN KLASS / GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala

Läs mer

8 miljarder B. 8 miljoner B. 80 tusen B. 8 tusen B 8 MB 8 GB. 8 kb. 80 kb B B B B 32 MB 32 GB.

8 miljarder B. 8 miljoner B. 80 tusen B. 8 tusen B 8 MB 8 GB. 8 kb. 80 kb B B B B 32 MB 32 GB. Tal Sida av 9 a) 000 9 000 c) 000 000 d) 9 000 000 e) 000 000 000 f) 9 000 000 000 a) 00 000 c) 00 000 d) 00 000 000 99 78 79 9 000 000 000 00 000 000 000 00 000 00 000 7 a) 8 kb 80 tusen B 80 kb 8 miljoner

Läs mer

0,20 m 0,30 m 0,35 m 0,45 m 0,55 m

0,20 m 0,30 m 0,35 m 0,45 m 0,55 m lock 2 2007-03-31 Högskoleprovet Svarshäfte nr. LPROV 3 TKb elprovet innehåller 20 uppgifter. nvisningar Provet innehåller diagram, tabeller, kartor och andra grafiska framställningar. Materialet är hämtat

Läs mer

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje

Läs mer

4 Dividera höjningen (0,5 %) med räntesatsen från början (1 %). 7 Du kan pröva dig fram till exempel så här: Från Till Procent- Procent enheter

4 Dividera höjningen (0,5 %) med räntesatsen från början (1 %). 7 Du kan pröva dig fram till exempel så här: Från Till Procent- Procent enheter ledtrådar LäOr Läa 8 Räkna först ut hur mycket tiokronorna och enkronorna är värda sammanlagt. Läa 8 Räkna först ut hur mycket allt vatten i hinken väger när den är full. Läa MGN = 8 Tänk dig att näckrosen

Läs mer

Kängurutävlingen Matematikens hopp

Kängurutävlingen Matematikens hopp Kängurutävlingen Matematikens hopp Junior 2010 Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. De flesta problem kan lösas på flera sätt

Läs mer

(1) Trädgården har 24 buskar och hälften av dessa har blivit klippta. (2) Av de 18 buskar som ursprungligen behövde klippas är 1/3 inte klippta.

(1) Trädgården har 24 buskar och hälften av dessa har blivit klippta. (2) Av de 18 buskar som ursprungligen behövde klippas är 1/3 inte klippta. 1. En trädgård har ett antal buskar varav en del behöver klippas. En del av dessa har redan blivit klippta. Hur många buskar som behöver klippas är ännu inte klippta? (1) Trädgården har 24 buskar och hälften

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 Beräkna 1 a) 0,5 + 0,7 b) 0,45 + 1,6 c) 2,76 0,8 2 a) 4,5 10 b) 30,5 10 c) 0,45 1 000 3 Vilka av produkterna är a) större än 6 1,09 6 0,87 6 1 6 4,3 6 0,08 6 b) mindre än 6 4 Skriv

Läs mer

Högskoleprovet. Block 5. Anvisningar. Övningsexempel. Delprovet innehåller 20 uppgifter.

Högskoleprovet. Block 5. Anvisningar. Övningsexempel. Delprovet innehåller 20 uppgifter. Block 5 2008-10-25 Högskoleprovet Svarshäfte nr. ELPROV 9 TKa elprovet innehåller 20 uppgifter. Anvisningar Provet innehåller diagram, tabeller, kartor och andra grafiska framställningar. Materialet är

Läs mer

Problemlösning med hjälp av nycklar

Problemlösning med hjälp av nycklar Problemlösning med hjälp av nycklar I denna problemavdelning finns förutom ett antal geometriproblem även förslag på ett arbetssätt som avser underlätta för elever att komma igång med problemlösning och

Läs mer

(1) För att numrera alla sidor i tidningen, löpande från och med 1, krävs 119 siffror.

(1) För att numrera alla sidor i tidningen, löpande från och med 1, krävs 119 siffror. 1. En skolklass har gjort en tidning. Hur många sidor har tidningen? (1) För att numrera alla sidor i tidningen, löpande från och med 1, krävs 119 siffror. (2) Tryckkostnaden är 25 öre per sida och klassen

Läs mer

Avdelning 1, trepoängsproblem

Avdelning 1, trepoängsproblem Avdelning 1, trepoängsproblem 1. Vilket är ett jämnt tal? A: 2009 B: 2 + 0 + 0 + 9 C: 200 9 D: 200 9 E: 200 + 9 Frankrike 2. Var är kängurun? A: I cirkeln och i triangeln, men inte i kvadraten. B: I cirkeln

Läs mer

Trepoängsproblem. Kängurutävlingen 2014 Junior. 1 Bilden visar tre kurvor med längderna a, b respektive c. Vilket av följande påståenden är korrekt?

Trepoängsproblem. Kängurutävlingen 2014 Junior. 1 Bilden visar tre kurvor med längderna a, b respektive c. Vilket av följande påståenden är korrekt? Trepoängsproblem 1 Bilden visar tre kurvor med längderna a, b respektive c. Vilket av följande påståenden är korrekt? A: a < b < c B: a < c < b C: b < a < c D: b < c < a E: c < b < a 2 Sidolängderna i

Läs mer

a) trettiotvåtusen femhundrasju b) femhundratusen åttiotre a) ett udda tal b) det största jämna tal som är möjligt A B C A B C 3,1 3,2

a) trettiotvåtusen femhundrasju b) femhundratusen åttiotre a) ett udda tal b) det största jämna tal som är möjligt A B C A B C 3,1 3,2 Alternativdiagnos 1 1 Skriv med siffror a) trettiotvåtusen femhundrasju b) femhundratusen åttiotre 2 Använd siffrorna 2, 3, 4 och 5 och skriv a) ett udda tal b) det största jämna tal som är möjligt 3 Vilka

Läs mer

Addera. Skriv mellanled. Subtrahera Skriv mellanled. 532-429 1685-496 1 1 10 10 10

Addera. Skriv mellanled. Subtrahera Skriv mellanled. 532-429 1685-496 1 1 10 10 10 Namn: Hela och halva tusental till 00 000 Addera och subtrahera. 000+ 000= 000 000+ 00 = 00 000-000= 000 000-00 = 00 Skriv talen i fallande ordningsföljd. 000 0 00 0 00 0 00 00 0 000 0 00 0 00 0 00 0 00

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2015-10-24 Provpass 3 Högskoleprovet Svarshäfte nr. Kvantitativ del d Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematisk problemlösning), KV

Läs mer

Högskoleverket. Delprov NOG 2005-04-09

Högskoleverket. Delprov NOG 2005-04-09 Högskoleverket Delprov NOG 2005-04-09 1. Eva, Pia och Linus köpte totalt 18 frukter. Hur många frukter köpte Eva? (1) Eva och Linus köpte sammanlagt dubbelt så många frukter som Pia. (2) Pia köpte tre

Läs mer

Högskoleverket. Delprov NOG

Högskoleverket. Delprov NOG Högskoleverket Delprov NOG 2004-10-23 2 1. Caroline hyrde en flyttbil och fick då betala en fast grundkostnad och en kostnad per körd mil. Hur hög var grundkostnaden som Caroline fick betala? (1) Caroline

Läs mer

Kvalificeringstävling den 28 september 2010

Kvalificeringstävling den 28 september 2010 SKOLORNS MTEMTIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 28 september 2010 Förslag till lösningar Problem 1 En rektangel består av nio smårektanglar med areor (i m 2 ) enligt figur

Läs mer

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna.

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna. REPETITION Hur mcket är a) 9 b) 00 0 c) 00 På en karta i skala : 0 000 är det, cm mellan två små sjöar. Hur långt är det i verkligheten? Grafen visar hur långt en bil hinner de se första sekunderna efter

Läs mer

Känguru 2011 Cadet (Åk 8 och 9)

Känguru 2011 Cadet (Åk 8 och 9) sida 1 / 7 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Gissa inte, felaktigt

Läs mer

7F Ma Planering v2-7: Geometri

7F Ma Planering v2-7: Geometri 7F Ma Planering v2-7: Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2016-04-09 Provpass 5 Högskoleprovet Svarshäfte nr. Kvantitativ del k Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematisk problemlösning), KV

Läs mer

Känguru 2014 Student sida 1 / 8 (gymnasiet åk 2 och 3)

Känguru 2014 Student sida 1 / 8 (gymnasiet åk 2 och 3) Känguru 2014 Student sida 1 / 8 NAMN GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal.

Läs mer

a) 4a + a b) 4a 3a c) 4(a + 1)

a) 4a + a b) 4a 3a c) 4(a + 1) REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin

Läs mer

REPETITION 2 A. a) 4a + a b) 4a 3a c) 4(a + 1)

REPETITION 2 A. a) 4a + a b) 4a 3a c) 4(a + 1) REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin

Läs mer

Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data

Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data Geometri och statistik Blandade övningar Sannolikhetsteori och statistik 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data 27, 30, 32, 25, 41, 52, 39, 21, 29, 34, 55,

Läs mer