Träd. Ett träd kan se ut på detta sätt:

Storlek: px
Starta visningen från sidan:

Download "Träd. Ett träd kan se ut på detta sätt:"

Transkript

1 Träd En lista är en struktur som är enkel att hantera men som inte är så effektiv ur söksynpunkt. Att leta efter en viss nod i en lista med n noder kommer i genomsnitt att kräva n/2 jämförelser. Detta är inte så effektivt. En mer avancerad struktur som blir mer komplex att hantera men som blir mer effektiv är ett träd. Ett träd är en struktur som har grenar. Detta leder till att vi får fler korta sökvägar istället för en lång. Ett träd kan se ut på detta sätt: Ett träd är uppbyggt med en mängd noder sammanbundna genom pekare på ett hierarkiskt sätt. Varje nod har en ingående pekare och ett antal utgående pekare. 1 2 Ett binärt träd är ett träd där varje nod har en ingående pekare och högst två utgående pekare. Kan alltså se ut på följande sätt: rot nod Man talar också i termer av släkträd så att underliggande noder kallas för barn, i ett binärt träd talar man om vänsterbarn och högerbarn. Vi talar om förälder eller fader och förfader. Vi talar också om olika nivåer i trädet, rotnoden utgör nivå noll, sedan ökar nivån nedåt. En nod i ett binärt träd kan se ut på följande sätt: inre nod Nyckeldel Infodel Vänsterpek Högerpek löv 3 4

2 Ett binärt sökträd är ett binärt träd där nodernas placering baseras på deras nyckel så att en nods vänsterpekare pekar ut en nod med en lägre nyckel och en nods högerpekare pekar ut en nod med en högre nyckel. Det kan se ut på detta sätt: Vi antar här att nycklarna är unika. Om de inte är det kan man införa ett räknarfält i noderna eller låta nodernas infodel vara en länkad lista med alla dubletter. Vad ska man ha ett träd till? Det finns ju flera goda skäl, t.ex utgör de en stor bit av denna kurs. Det finns ju en del andra skäl också Ett sökträd är en effektiv struktur att söka i. För att finna talet 4 i vårt binära träd så behövs det 3 jämförelser. Vi ser att vi kan hitta vilket tal som helst i trädet med högst 4 jämförelser trots att vi har tio noder. Ett träd blir en logproportionelig struktur till skillnad mot en lista som blir linjär Om vi har ett träd med 8 nivåer kan vi i det ideala fallet lägga in femhundraelva noder och hitta en godtycklig av dessa noder med max 8 jämförelser Ett träd verkar vara komplicerat att underhålla och att lägga in noder i. Detta är inte fallet. I själva verket är det tämligen trivialt att lägga in noder i ett binärt sökträd. Däremot är det lite knepigare att ta bort något ur ett träd. Trädets effektitivet avgörs av dess utseende. Det ska vara balanserat för att vara effektivt. Sämsta möjliga är om vi bara har en lång pinne åt ett håll. Då har vi ju en länkad lista. Hur kan vi då implementera träd? Datastrukturen blir ju mycket lik en lista, det enda som skiljer i själva noden är att vi har två pekare. Vi kan alltså göra en post eller en klass som innehåller tillämpliga delar. Nämligen: Nyckeldel Infodel Vänsterpekare Högerpekare Det visar sig att det kan vara fördelaktigt att i varje nod ha en referens till sin förälder också. Det ingår egentligen inte i trädet, men förenklar vissa saker. Vad ska då ingå i ADT n? 7 8

3 Blir ungefär som i listfallet. Vi börjar med en lågnivådel, trädnoden, som mest innehåller konstruktorer Vi kan sedan utan större problem bygga upp högre nivårutiner som lite grand kan beror på vad vi avser att göra. Sådana kan vara: search insert delete print leta efter en nod i ett träd lägger in en ny nod i ett träd tar bort en ny nod ur ett träd skriver ut hela trädets infodelar Oväntat nog blir dessa rätt triviala trots att trädet verkar så komplext. Undantaget är delete.. Sökning i ett binärt sökträd. Vi antar att alla nycklar har en unik förekomst. Börja i roten. Repetera Jämför nycklarna Om lika klara Annars om söknyckeln för stor, gå ett steg till höger Annars gå ett steg till vänster tills vi hittat rätt eller tills vi inte kan gå längre Om vi hittat en nollpekare så fanns inte sökt nod. Vi kan naturligtvis formulera detta annorlunda: Om trädet är tomt så fanns nyckeln inte Annars jämför rotnoden med sökt data Om lika så är vi klara Annars finns den ev. till vänster eller till höger 9 10 En rekursiv formulering Resonemang; Har vi en tom pekare så fanns inte noden. Om vi har en eller flera noder så måste letar vi först i roten. Finns den inte där så letar vi i de båda subträden och hittar den kanske då. Om vi har ett binärt sökträd kan algoritmen förenklas en del. Vi kan ju då utesluta ett av subträden i den rekursiva sökningen. Hur lägger vi in noder i ett binärt träd då? Verkar ju svårt. Antag att vi vill lägga in talen Det blir på detta viset: Blir då så här: Om trädet är tomt så fanns nyckeln inte Annars Jämför rotnoden med sökt data Om lika så är vi klara Annars om för liten leta till höger annars leta till vänster a) b) c)

4 4 15 d) 4 15 f) e) g) Vi kan notera en viktig sak. All inläggning av noder sker längst ned i trädet. Vi lägger aldrig in en nod mitt i trädet. Det behövs inte. Det betyder å andra sidan att trädets utseende kommer att bero på i vilken ordning talen läggs in. Om vi tar samma tal som nyss men i ordningen får vi följande träd Man kan formulera en inläggningsalgoritm på följande sätt: Om trädet är tomt så lägg in noden direkt. Annars Repetera Jämför vår nyckel med nodens nyckel om vår nyckel större försök gå till höger annars försök gå till vänster tills du inte kan gå längre lägg in noden där Man kan naturligtvis formulera samma sak rekursivt Trivialfallet: roten är en nollpekare, d. v. s. trädet är tomt sätt roten att peka på vår nya nod Generella fallet: Om nyckeln mindre än rotens nyckel lägg in den nya noden i vänster subträd Annars lägg in i höger subträd. Test: Eftersom subträdet till slut blir en noll-pekare så konvergerar alltid det generella fallet mot trivialfallet

5 Hur kan det fungera? Vi kommer först att anropa rutinen nånting så här: root = insert(root, nynod) Sedan kommer insert att anropa sig själv ungefär så här: root.left = insert(root.left, nynod) Så småningom blir det första argumentet en nollpekare och den kommer då att ändras till att peka på min nya nod. Eftersom root.left är en pekare som ingår i trädet så kommer min nya nod att noggrannt hängas upp i julgranen på lämplig gren. Om vi går vidare med att skriva ut alla noder i ett träd så kommer vi in på något som kallas för traversering av ett träd. Att traversera ett träd innebär att man går igenom hela trädet så att man besöker alla noder en gång. Man brukar tala om tre standardmetoder att göra detta: inorder postorder preorder in betyder emellan något och betyder i detta fallet att roten är i mitten. Alltså, vänster-roten-höger. post betyder ju efter och då får vi, vänster-höger-roten eftersom pre betyder före så får vi i det sista fallet rotenvänster-höger. Detta appliceras rekursivt på trädet Man kan exemplifiera detta med följande träd: Man kan formulera en sekventiell inorder algoritm på följande sätt: Skaffa en stack av noder tillräckligt stor. Sätt pek till roten. Repetera så längre inte pek är nollpekare pusha pek pek = pek.left om stacken inte är tom poppa pek gör något med utpekad nod pek = pek.höger tills pek är nollpekare och stacken är tom. Det blir ju så här ungefär: Inorder : Preorder: Postorder: pusha 5 pusha 3 pusha 2 pusha 1 poppa 1 skriv ut 1 poppa 2 skriv ut 2 poppa 3 skriv ut 3 pusha 4 poppa 4 skriv ut

6 poppa 5 skriv ut 5 pusha 8 pusha 6 poppa 6 skriv ut 6 pusha 7 poppa 7 skriv ut 7 poppa 8 skriv ut 8 pusha 9 poppa 9 skriv ut 9 pusha 10 poppa 10 skriv ut 10 klart Notera att detta kan förenklas genom vår föräldrapekare! Då behövs inte stacken. Hur blir en rekursiv formulering då? Trivialfallet: Tomt träd, gör inget Generella fallet: Ta först hand om vänster subträd Skriv sedan ut roten Ta sedan hand om höger subträd Konvergens? Ja subträden blir nollpekare så småningom. blir såhär ungefär inorder_print( root : trädpekare) om rot inte nollpekare inorder_print(root.left) skriv(root.info) inorder_print(root.right) end Ingen stack ingen repetition bara några få enkla rader. Medge att det blir snyggt! Vi ser att om vi har ett binärt sökträd så får vi stigande nyckelordning om vi gör en inorder traversering. Om vi inte bryr oss om ordningen utan bara vill besöka alla noder en gång och utföra något, spelar det då någon roll vilken traverseringsordning jag väljer. Vi kan implementera ett binärt träd på olika sätt. Som i listfallet börjar vi med att definera en nod. Den innehåller en datadel och två pekare samt ett antal enkla funktioner på dessa. Det kan bli något åt det här hållet: package trad; // En trädnodklass med heltal som datadel // använd paketåtkomst för att TreeNode och Tree ska // kunna komma åt varandra direkt, stäng ute de som är // utanför paketet class TreeNode { int val; TreeNode parent; TreeNode left; TreeNode right; // datadel // förälder // vänsterpekare // högerpekare TreeNode() { // std konstruktor val = 0; // nollställ parent = null; right = null; // left = null; // TreeNode(int val) { // konstruktor this.val = val; // sätt värde parent = null; right = null; left = null; TreeNode(int val, TreeNode parent) { this.val = val; // sätt värde this.parent = parent; 23 24

7 ; right = null; left = null; // kopiera ett träd rekursivt public TreeNode copy() { TreeNode t = new TreeNode(); // kopia t.val = val; // kopiera datadelen // klona barnen if(left!= null) { t.left = left.copy(); // vänsterträdet t.left.parent = t; // t är förälder if(right!= null) { t.right = right.copy(); t.right.parent = t; return t; // kopian En Iterator för vårt träd kan se ut som package trad; public interface Iterator { public boolean hasnext(); public int next(); public void remove(); Vi kan om vi är mindre renläriga direkt arbeta med TreeNode klassen och låta ett träd vara en pekare till en TreeNode. Det är dock snyggare att explicit skapa en trädtyp som vi kan deklarera och använda. Ett binärt sökträd kan bli ungefär så här package trad; // En klass för binära sökträd, trädnodklassen // finns i samma paket med paketåtkomst för // att underlätta arbetet public class Tree { ; // hämta nästa nod, flytta referenserna public int next() { // ta bort aktuell nod. Om den har två // barn så kommer den att ersättas av sin // efterföljare, därför backar vi ett // steg i det fallet. public void remove() { // Standardkonstruktor public Tree() { root = null; private TreeNode root; // trädets rot // Kopiera trädet // en iterator private class TreeIterator implements Iterator { // aktuell nod och nästa nod private TreeNode lastreturned = null,next; // konstruktor public TreeIterator() { // kolla om det finns fler noder public boolean hasnext() { public Object clone() { Tree t = new Tree(); t.root = (TreeNode) root.copy(); return t; // ny iterator public Iterator iterator() { return new TreeIterator(); // Inläggning, bara en "wrapper" public void insert(int val) { root = insert(root, val); // Rekursiv inläggning. Eftersom vi inte kan ha // referensparametrar i Java så måste vi returnera 27 28

8 // resultatet istället och lägga in på rätt ställe TreeNode insert(treenode root, int val) { // Kolla om tomt träd public boolean empty() { return root == null; // Töm trädet, bara en wrapper public void clear() { // Ta bort alla noder ur trädet, behövs kanske inte? private void clear(treenode root) { ; // Leta upp angiven nod, returnera en referens // till den private TreeNode nodesearch(int val) { // ta bort nod med angiven datadel public void remove(int val) { // den som gör själva jobbet private void deleteentry(treenode p) { // Leta efter angivet värde i trädet, icke rekursivt public boolean search(int val) { // Traversera trädet, bara en wrapper public void traverse() { traverse(root); // inorder traversering void traverse(treenode root) { // ta fram efterföljande nod i inorder mening. // En hjälpfunktion private TreeNode successor(treenode e) { Innan vi implementerar detta ska vi se hur man kan ta bort saker ur ett träd. När vi ska ta bort något ur ett träd så blir det vissa svårigheter. Det inses lätt att det inte är trivialt att såga bort en bit mitt i ett träd och samtidigt behålla trädet intakt. Med lite datoriserad ympningsteknik kan man dock fixa till det också. Antag att vi har trädet på sid 19. Man inser att det är lätt att ta bort ett löv t. ex. noden med värdet 1, men också överkomligt att ta bort en nod med bara ett barn, t. ex. 2 an. I detta fall får vi limma fast 1 an direkt under 3 an. Om vi vill ta bort noden med värdet 8 blir det svårare, vi kan inte hänga upp båda barnen under roten eftersom den då får 3 barn vilket inte är tillåtet. Istället erätter vi noden med en annan nod som är enklare att ta bort, utan att rubba trädets grundstruktur. Finns det en sådan nod. Ja två stycken, de som har värden närmast aktuell nod. Av konvention brukar man ta den som är närmast större än aktuell nod, i det här fallet 9 an. Vi vet säkert att denna nod inte kan ha något vänsterbarn

9 Varför? Jo om den hade det så skulle denna nod ha ett lägre värde än vår nod men samtidigt högre än 8 an. (Följer av dess läge). Men då är den ju närmare 8 an än vårt tal vilket strider mot grundantagandet. Vi ersätter alltså 8 an med 9 an och tar bort den gamla noden med talet 9. Notera att resonemanget lika gärna kan appliceras på noden närmast mindre än aktuell nod. Det är inte speciellt tidskrävande att ta bort noder ur ett träd, det är bara det att metodiken blir lite strulig. Hur hittar vi rätt nod? Ta ett steg nedåt till höger, gå sedan så långt åt vänster som det går. Då har vi hittat rätt nod. Notera att vi har en successor metod i vår klass, den är till för att hitta efterföljaren. Använs kanske också av iteratorn. Hur kan vi nu implementera detta? sökning ganska enkelt enligt tidigare beskrivning // Leta efter angivet värde i trädet, // rekursivt public boolean search(int val) { // kolla om sökt tal finns i roten if (root.val == val) return true; // Nej, leta vidare TreeNode l = root; // så länge vi kan fortsätta och // så länge vi inte hittat rätt while (l!= null && l.val!= val) { // gå till vänster eller höger if (val < l.val) l = l.left; else l = l.right; return (l!= null); // svaret Ta bort ett träd, enkelt med hjälp av destruktorerna // Töm trädet, bara en wrapper public void clear() { empty, trivial funktion // tomt inget att göra if (root == null) return; else { clear(root); root = null; public boolean empty() { return root == null; // Ta bort alla noder ur trädet, // behövs kanske inte? private void clear(treenode root) { // ta bort subträden rekursivt if (root.left!= null) { clear(root.left); root.left.parent = null; root.left = null; if (root.right!= null) { clear(root.right); root.right.parent = null; root.right = null; 35 36

10 Utskrift av alla noder i inorder ordning public void traverse() { traverse(root); // inorder traversering void traverse(treenode root) { if (root!= null) { // tomt? traverse(root.left); System.out.println(root.val); traverse(root.right); nodesearch och successor används bl. a. av remove. // Leta upp angiven nod, // returnera en referens till den private TreeNode nodesearch(int val) { TreeNode t = root; while (t!= null) { if (t.val == val) return t; else if (t.val > val) t = t.left; else t = t.right; return null; // ta fram efterföljande nod i inorder // mening. En hjälpfunktion private TreeNode successor(treenode e) { // tomt träd, ingen efterföljare if (e == null) return null; // ta ett steg åt höger om det går else if (e.right!= null) { // sedan åt vänster så långt det går TreeNode p = e.right; while (p.left!= null) p = p.left; return p; // inget högerbarn else { // saknar högerbarn // vandra uppåt så länge du // bara är högerbarn. Stanna när // du hittar ett barn som är //vänsterbarn, returnera dess // förälder. TreeNode p = e.parent; TreeNode ch = e; while (p!= null && ch == p.right) { ch = p; p = p.parent; return p; Borttagning görs på detta sätt: // ta bort nod med angiven datadel public void remove(int val) { TreeNode p = nodesearch(val); // kolla om den fannse if (p == null) throw new NoSuchElementException(); deleteentry(p); // själva arbetshästen private void deleteentry(treenode p) { // kolla om p har två barn, i så fall // byt ut innehållet och // ta bort en annan nod if (p.left!= null && p.right!= null) { TreeNode s = successor(p); p.val = s.val; // flytta s data till p p = s; // ta bort s istället // Nu vet vi att p har högst ett barn TreeNode replace; // om vi har ett vänsterbarn, spara referens // annars spara referens till högerbarn if(p.left!= null) replace = p.left; else 39 40

11 replace = p.right; // om p har ett barn, länka //utbytesnoden till föräldern if (replace!= null) { // finns ett barn replace.parent = p.parent; // farfar blir pappa // se till att farfar adopterar barnbarnet // när vi slår ihjäl pappa. Kolla dock att // farfar existerar först if (p.parent == null) root = replace; // ingen farfar // om p är vänsterbarn, lägg in utbytesnod // där istället Vanliga binära sökträd lider av de är så känsliga för inläggningsordningen. Det leder till att effektiviteten är svår att förutse och den kan bli allt från log(n) till n-proportionell i ett träd. För att avhjälpa detta kan vi använda oss av olika metoder att balansera trädet. Obalans uppstår vid inläggning och borttagning av noder. Vi kan modifiera dessa operationer så att balans uppnås. En metod att göra detta är s. k. AVL-träd, uppkallade efter de ryska kamraterna Adelson-Velskij och Landis. else if (p == p.parent.left) p.parent.left = replace; // annars högerbarn else p.parent.right = replace; // inga barn, kolla om jag är // den enda i hela världen else if (p.parent == null) root = null; // ja, nu utrotad! // nej finns fler än jag, kolla om jag är // vänster eller högerbarn till min förälder. // Nollställ aktuellt ställe. else { if (p == p.parent.left) p.parent.left = null; else p.parent.right = null; Principen för ett AVL-träd är ganska enkel. Vi inför en balansräknare i varje nod som anger skillnaden i längd mellan nodens vänster och högergren. I ett balanserat träd skall denna ha något av värdena -1, 0 eller +1. I ett AVL-träd modifierar vi sedan insert och remove så att balans alltid bibehålls oavsett inläggningsordning

Föreläsning 7. Träd och binära sökträd

Föreläsning 7. Träd och binära sökträd Föreläsning 7 Träd och binära sökträd Föreläsning 7 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Det är extra mycket

Läs mer

Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5

Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5 Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5? FORTSÄTTNING TRÄD RECAP (förra föreläsningen) RECAP (förra föreläsningen) Träd är icke-linjära datastrukturer som ofta

Läs mer

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU På denna föreläsning: Träd Traversering Insättning, borttagning

Läs mer

Föreläsning Datastrukturer (DAT036)

Föreläsning Datastrukturer (DAT036) Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-25 Idag Starkt sammanhängande komponenter Duggaresultat Sökträd Starkt sammanhängande komponenter Uppspännande skog Graf, och en möjlig

Läs mer

Föreläsning 9 Innehåll

Föreläsning 9 Innehåll Föreläsning 9 Innehåll Träd, speciellt binära träd egenskaper användningsområden implementering Datavetenskap (LTH) Föreläsning 9 HT 2017 1 / 31 Inlämningsuppgiften De föreläsningar som inlämningsuppgiften

Läs mer

Föreläsning 5. Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning

Föreläsning 5. Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Föreläsning 5 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Terminologi - träd Ett träd i datalogi består av en rotnod

Läs mer

Föreläsning 9 Innehåll

Föreläsning 9 Innehåll Föreläsning 9 Innehåll Binära sökträd algoritmer för sökning, insättning och borttagning, implementering effektivitet balanserade binära sökträd, AVL-träd Abstrakta datatyperna mängd (eng. Set) och lexikon

Läs mer

Föreläsning 9 Datastrukturer (DAT037)

Föreläsning 9 Datastrukturer (DAT037) Föreläsning Datastrukturer (DAT07) Fredrik Lindblad 27 november 207 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/20/course/dat07 Innehåll 2

Läs mer

BST implementering, huvudstruktur

BST implementering, huvudstruktur BST implementering, huvudstruktur BST-implementering public class BinarySearchTree

Läs mer

Linjärt minne. Sammanhängande minne är ej flexibelt. Effektivt

Linjärt minne. Sammanhängande minne är ej flexibelt. Effektivt Binära träd (forts) Ett binärt träd kan lagras i ett enda sammanhängande minne Roten har index 1 Vänster barn till nod i har index 2*i Höger barn till nod i har index 2*i + 1 Föräldern till nod i har index

Läs mer

Datastrukturer i kursen. Föreläsning 8 Innehåll. Träd rekursiv definition. Träd

Datastrukturer i kursen. Föreläsning 8 Innehåll. Träd rekursiv definition. Träd Föreläsning 8 Innehåll Datastrukturer i kursen Träd, speciellt binära träd egenskaper användningsområden implementering Undervisningsmoment: föreläsning 8, övningsuppgifter 8, lab 4 Avsnitt i läroboken:

Läs mer

Inlämningsuppgiften. Föreläsning 9 Innehåll. Träd. Datastrukturer i kursen

Inlämningsuppgiften. Föreläsning 9 Innehåll. Träd. Datastrukturer i kursen Föreläsning 9 Innehåll Inlämningsuppgiften De föreläsningar som inlämningsuppgiften bygger på är nu klara. Det är alltså dags att börja arbeta med inlämningsuppgiften. Träd, speciellt binära träd egenskaper

Läs mer

Föreläsning 7. Träd och binära sökträd

Föreläsning 7. Träd och binära sökträd Föreläsning 7 Träd och binära sökträd Föreläsning 7 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Läsanvisningar och

Läs mer

Inom datalogin brukar man använda träd för att beskriva vissa typer av problem. Om man begränsar sig till träd där varje nod förgrenar sig högst två

Inom datalogin brukar man använda träd för att beskriva vissa typer av problem. Om man begränsar sig till träd där varje nod förgrenar sig högst två Binära träd Inom datalogin brukar man använda träd för att beskriva vissa typer av problem. Om man begränsar sig till träd där varje nod förgrenar sig högst två gånger, talar man om binära träd. Sådana

Läs mer

Träd - C&P kap. 10 speciellt binära sökträd sid. 452

Träd - C&P kap. 10 speciellt binära sökträd sid. 452 Föreläsning 10 Träd - C&P kap. 10 speciellt binära sökträd sid. 452 Dessa bilder finns i PDF-format på http://dsv.su.se/courses/pm2/f10/index.html Jozef Swiatycki DSV Bild 1 förälder Träd allmänt Binär-länkad

Läs mer

Binära sökträd. Seminarium 9 Binära sökträd Innehåll. Traversering av binära sökträd. Binära sökträd Definition. Exempel på vad du ska kunna

Binära sökträd. Seminarium 9 Binära sökträd Innehåll. Traversering av binära sökträd. Binära sökträd Definition. Exempel på vad du ska kunna Seminarium inära sökträd Innehåll inära sökträd inära sökträd Definition Implementering lgoritmer Sökning Insättning orttagning Effektivitet alanserade binära sökträd Eempel på vad du ska kunna Förklara

Läs mer

Föreläsning 13. Träd

Föreläsning 13. Träd Föreläsning 13 Träd Träd Ett träd är en datastruktur som tillåter oss att modellera sådant som vi inte kan modellera med linjära datastrukturer. Ett datavetenskapligt träd består av noder med pilar emellan.

Läs mer

Symboliska konstanter const

Symboliska konstanter const (5 oktober 2010 T11.1 ) Symboliska konstanter const Tre sätt som en preprocessormacro med const-deklaration med enum-deklaration (endast heltalskonstanter) Exempel: #define SIZE 100 const int ANSWER =

Läs mer

Trädstrukturer och grafer

Trädstrukturer och grafer Översikt Trädstrukturer och grafer Trädstrukturer Grundbegrepp Binära träd Sökning i träd Grafer Sökning i grafer Programmering tillämpningar och datastrukturer Varför olika datastrukturer? Olika datastrukturer

Läs mer

Träd, binära träd och sökträd. Koffman & Wolfgang kapitel 6, avsnitt 1 4

Träd, binära träd och sökträd. Koffman & Wolfgang kapitel 6, avsnitt 1 4 Träd, binära träd och sökträd Koffman & Wolfgang kapitel 6, avsnitt 1 4 1 Träd Träd är ickelinjära och hierarkiska: i motsats till listor och fält en trädnod kan ha flera efterföljare ( barn ) men bara

Läs mer

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Prioritetskö Heap Representation som

Läs mer

Föreläsning 10 Innehåll. Diskutera. Inordertraversering av binära sökträd. Binära sökträd Definition

Föreläsning 10 Innehåll. Diskutera. Inordertraversering av binära sökträd. Binära sökträd Definition Föreläsning Innehåll Diskutera Binära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, AVL-träd Jämföra objekt interfacet Comparable Interfacet

Läs mer

Föreläsning 10 Datastrukturer (DAT037)

Föreläsning 10 Datastrukturer (DAT037) Föreläsning 10 Datastrukturer (DAT037) Fredrik Lindblad 1 29 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037

Läs mer

TDIU01 Programmering i C++

TDIU01 Programmering i C++ TDIU01 Programmering i C++ Föreläsning 6 - Klasser Eric Elfving, eric.elfving@liu.se Institutionen för datavetenskap (IDA) Avdelningen för Programvara och system (SaS) Klasser När vi skapade vår lista

Läs mer

Föreläsning Datastrukturer (DAT036)

Föreläsning Datastrukturer (DAT036) Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2012-11-05 Repetition Förra gången: Listor, stackar, köer. Länkade listor, pekarjonglering. Idag: Cirkulära arrayer. Dynamiska arrayer. Amorterad

Läs mer

Abstrakta datatyper. Primitiva vektorer. Deklarera en vektor

Abstrakta datatyper. Primitiva vektorer. Deklarera en vektor Abstrakta datatyper 1 Primitiva vektorer Vektorer kan skapas av primitiva datatyper, objektreferenser eller andra vektorer. Vektorer indexeras liksom i C från 0. För att referera en vektor används hakparenteser.

Läs mer

BINÄRA TRÄD. (X = pekarvärdet NULL): struct int_bt_node *pivot, *ny; X X X 12 X X 12 X X -3 X X

BINÄRA TRÄD. (X = pekarvärdet NULL): struct int_bt_node *pivot, *ny; X X X 12 X X 12 X X -3 X X Algoritmer och Datastrukturer Kary FRÄMLING/Göran PULKKIS (v23) Kap. 7, Sid 1 BINÄRA TRÄD Träd används för att representera olika slags hierarkier som ordnats på något sätt. Den mest använda trädstrukturen

Läs mer

Lösningar Datastrukturer TDA

Lösningar Datastrukturer TDA Lösningar Datastrukturer TDA416 2016 12 21 roblem 1. roblem 2. a) Falskt. Urvalssortering gör alltid samma mängd av jobb. b) Sant. Genom att ha en referens till sista och första elementet, kan man nå både

Läs mer

Föreläsning 10 Innehåll

Föreläsning 10 Innehåll Föreläsning 10 Innehåll Binära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, AVL-träd Jämföra objekt interfacet Comparable Interfacet

Läs mer

Tentamen Datastrukturer (DAT036/DAT037/DIT960)

Tentamen Datastrukturer (DAT036/DAT037/DIT960) Tentamen Datastrukturer (DAT036/DAT037/DIT960) Datum och tid för tentamen: 2016-04-07, 14:00 18:00. Författare: Nils Anders Danielsson. (Tack till Per Hallgren och Nick Smallbone för feedback.) Ansvarig:

Läs mer

Programmering i C++ EDAF30 Dynamiska datastrukturer. EDAF30 (Föreläsning 11) HT / 34

Programmering i C++ EDAF30 Dynamiska datastrukturer. EDAF30 (Föreläsning 11) HT / 34 Programmering i C++ EDAF30 Dynamiska datastrukturer EDAF30 (Föreläsning 11) HT 2014 1 / 34 Dynamiska datastrukturer Innehåll Länkade listor Stackar Köer Träd Säkrare minneshantering (shared_ptr och unique_ptr)

Läs mer

Algoritmer och datastrukturer 2012, föreläsning 6

Algoritmer och datastrukturer 2012, föreläsning 6 lgoritmer och datastrukturer 2012, föreläsning 6 Nu lämnar vi listorna och kommer till nästa datastruktur i kursen: träd. Här nedan är ett exempel på ett träd: Båge Rot De rosa noderna är ett exempel på

Läs mer

Föreläsning 11 Innehåll. Diskutera. Binära sökträd Definition. Inordertraversering av binära sökträd

Föreläsning 11 Innehåll. Diskutera. Binära sökträd Definition. Inordertraversering av binära sökträd Föreläsning Innehåll Diskutera Binära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, AVL-träd Jämföra objekt interfacet Comparable Interfacet

Läs mer

Självbalanserande träd AVL-träd. Koffman & Wolfgang kapitel 9, avsnitt 1 2

Självbalanserande träd AVL-träd. Koffman & Wolfgang kapitel 9, avsnitt 1 2 Självbalanserande träd AVL-träd Koffman & Wolfgang kapitel 9, avsnitt 1 2 1 Balanserade träd Nodbalanserat träd: skillnaden i antalet noder mellan vänster och höger delträd är högst 1 Höjdbalanserat träd:

Läs mer

Föreläsning 13 och 14: Binära träd

Föreläsning 13 och 14: Binära träd Föreläsning 13 och 14: Binära träd o Binärträd och allmänna träd o Rekursiva tankar för binärträd o Binära sökträd Binärträd och allmänna träd Stack och kö är två viktiga datastrukturer man kan bygga av

Läs mer

DAI2 (TIDAL) + I2 (TKIEK)

DAI2 (TIDAL) + I2 (TKIEK) TNTMN KURSNMN PROGRM: KURSTKNING XMINTOR lgoritmer och datastrukturer I2 (TIL) + I2 (TKIK) 2017/2018, lp 4 LT75 Uno Holmer TI ÖR TNTMN redagen den 1/8 2018, 08.0-12.0 HJÄLPML NSVRIG LÄRR atastrukturer

Läs mer

Tentamen, Algoritmer och datastrukturer

Tentamen, Algoritmer och datastrukturer UNDS TEKNISKA ÖGSKOA (6) Institutionen för datavetenskap Tentamen, Algoritmer och datastrukturer 23 8 29, 8. 3. Anvisningar: Denna tentamen består av fem uppgifter. Totalt är skrivningen på 36 poäng och

Läs mer

Självbalanserande AVL-träd Weiss, avsnitt 4.4

Självbalanserande AVL-träd Weiss, avsnitt 4.4 Självbalanserande AVL-träd Weiss, avsnitt 4.4 Peter Ljunglöf DAT036, Datastrukturer 30 nov 2012 1 Balanserade träd Nodbalanserat träd: skillnaden i antalet noder mellan vänster och höger delträd är högst

Läs mer

Programmering i C++ EDA623 Dynamiska datastrukturer. EDA623 (Föreläsning 11) HT / 31

Programmering i C++ EDA623 Dynamiska datastrukturer. EDA623 (Föreläsning 11) HT / 31 Programmering i C++ EDA623 Dynamiska datastrukturer EDA623 (Föreläsning 11) HT 2013 1 / 31 Dynamiska datastrukturer Innehåll Länkade listor Stackar Köer Träd EDA623 (Föreläsning 11) HT 2013 2 / 31 Länkade

Läs mer

Föreläsning 4 Datastrukturer (DAT037)

Föreläsning 4 Datastrukturer (DAT037) Föreläsning 4 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-10 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra

Läs mer

Tentamen Programmeringsteknik II Inledning. Anmälningskod:

Tentamen Programmeringsteknik II Inledning. Anmälningskod: Tentamen Programmeringsteknik II 2016-01-11 Inledning I bilagan finns ett antal mer eller mindre ofullständiga klasser. Några ingår i en hierarki: List, SortedList, SplayList och ListSet enligt vidstående

Läs mer

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Jonas Lindgren, Institutionen för Datavetenskap, LiU

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Jonas Lindgren, Institutionen för Datavetenskap, LiU TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Träd Traversering Insättning, borttagning

Läs mer

Algoritmer och datastrukturer

Algoritmer och datastrukturer Algoritmer och datastrukturer Binära sökträd Hash Tabeller Sökning Många datastukturer försöker uppnå den effektivaste sökningen I arrayer - linjer sökning, och binärt sökning när arrayen kan vara sörterad

Läs mer

13 Prioritetsköer, heapar

13 Prioritetsköer, heapar Prioritetsköer, heapar 31 13 Prioritetsköer, heapar U 101. En prioritetskö är en samling element där varje element har en prioritet (som används för att jämföra elementen med). Elementen plockas ut i prioritetsordning

Läs mer

Tentamen Programmeringsteknik II och NV2 (alla varianter) 2008-12-10. Skriv bara på framsidan av varje papper.

Tentamen Programmeringsteknik II och NV2 (alla varianter) 2008-12-10. Skriv bara på framsidan av varje papper. Tentamen Programmeringsteknik II och NV2 (alla varianter) 2008-12-10 Skrivtid: 0800-1300 Inga hjälpmedel. Tänk på följande Maximal poäng är 40. För betygen 3 krävs 18 poäng. För betygen 4, 5 kommer något

Läs mer

Ett generellt träd är. Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn

Ett generellt träd är. Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn Träd allmänt Träd allmänt Ett generellt träd är Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn där t1,..., tn i sin tur är träd och kallas subträd, vars rotnoder kallas

Läs mer

Tentamen Datastrukturer, DAT037 (DAT036)

Tentamen Datastrukturer, DAT037 (DAT036) Tentamen Datastrukturer, DAT037 (DAT036) Datum, tid och plats för tentamen: 2017-08-17, 8:30 12:30, M. Ansvarig: Fredrik Lindblad. Nås på tel nr. 031-772 2038. Besöker tentamenssalarna ca 9:30 och ca 11:00.

Läs mer

Föreläsning 14. Träd och filhantering

Föreläsning 14. Träd och filhantering Föreläsning 14 Träd och filhantering Träd Ett träd är en datastruktur som tillåter oss att modellera sådant som vi inte kan modellera med linjära datastrukturer. Ett datavetenskapligt träd består av noder

Läs mer

Föreläsning 10 Innehåll. Prioritetsköer och heapar. ADT Prioritetskö. Interface för Prioritetskö. Exempel på vad du ska kunna

Föreläsning 10 Innehåll. Prioritetsköer och heapar. ADT Prioritetskö. Interface för Prioritetskö. Exempel på vad du ska kunna Föreläsning Innehåll Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util Implementering med lista ar Implementering av prioritetskö med heap Sortering

Läs mer

F5: Debriefing OU2, repetition av listor, träd och hashtabeller. Carl Nettelblad

F5: Debriefing OU2, repetition av listor, träd och hashtabeller. Carl Nettelblad F5: Debriefing OU2, repetition av listor, träd och hashtabeller Carl Nettelblad 2017-04-24 Frågor Kommer nog inte att täcka 2 timmar Har ni frågor på OU3, något annat vi har tagit hittills på kursen, listor

Läs mer

Lösningsförslag till exempeltenta 1

Lösningsförslag till exempeltenta 1 Lösningsförslag till exempeltenta 1 1 1. Beskriv hur binärsökning fungerar. Beskriv dess pseudokod och förklara så klart som möjligt hur den fungerar. 2 Uppgift 1 - Lösning Huvudidé: - Titta på datan i

Läs mer

Träd. Rot. Förgrening. Löv

Träd. Rot. Förgrening. Löv Träd Träd Rot Förgrening Löv Exempel: Organisationsschema Rot Överkucku Förgrening Underhuggare Underhuggare Administativ chef Kanslichef Knegare Knegare Knegare Byråchef Löv Intendent Avd. chef Intendent

Läs mer

Föreläsning 4 Innehåll. Abstrakta datatypen lista. Implementering av listor. Abstrakt datatypen lista. Abstrakt datatyp

Föreläsning 4 Innehåll. Abstrakta datatypen lista. Implementering av listor. Abstrakt datatypen lista. Abstrakt datatyp Föreläsning 4 Innehåll Abstrakta datatypen lista Definition Abstrakta datatypen lista egen implementering Datastrukturen enkellänkad lista Nästlade klasser statiska nästlade klasser inre klasser Listklasser

Läs mer

TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.

TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. 1 (8) TENTMEN: lgoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. örja varje uppgift på ett nytt blad. Skriv inga lösningar i tesen. Skriv ditt idnummer

Läs mer

Tabeller. Programkonstruktion. Moment 8 Om abstrakta datatyper och binära sökträd. Implementering av tabellen. Operationer på tabellen

Tabeller. Programkonstruktion. Moment 8 Om abstrakta datatyper och binära sökträd. Implementering av tabellen. Operationer på tabellen Programkonstruktion Moment 8 Om abstrakta datatyper och binära sökträd Tabeller En viktig tillämpning är tabellen att ifrån en nyckel kunna ta fram ett tabellvärde. Ett typiskt exempel är en telefonkatalog:

Läs mer

Programmeringsmetodik DV1 Programkonstruktion 1. Moment 8 Om abstrakta datatyper och binära sökträd

Programmeringsmetodik DV1 Programkonstruktion 1. Moment 8 Om abstrakta datatyper och binära sökträd Programmeringsmetodik DV1 Programkonstruktion 1 Moment 8 Om abstrakta datatyper och binära sökträd PK1&PM1 HT-06 moment 8 Sida 1 Uppdaterad 2005-09-22 Tabeller En viktig tillämpning är tabellen att ifrån

Läs mer

Det är principer och idéer som är viktiga. Skriv så att du övertygar rättaren att du har förstått dessa även om detaljer kan vara felaktiga.

Det är principer och idéer som är viktiga. Skriv så att du övertygar rättaren att du har förstått dessa även om detaljer kan vara felaktiga. Tentamen Programmeringsteknik II 2013-06-05 Skrivtid: 1400-1700 Hjälpmedel: Java-bok (vilken som helst) Tänk på följande Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper. Börja

Läs mer

Lösningsförslag till tentamen Datastrukturer, DAT037,

Lösningsförslag till tentamen Datastrukturer, DAT037, Lösningsförslag till tentamen Datastrukturer, DAT037, 2018-04-05 1. q.dequeue() tar O(1) (eventuellt amorterat) s.contains(x) tar O(1) pq.add(x) tar O(log i) I värsta fall exekveras innehållet i if-satsen.

Läs mer

Datastrukturer som passar för sökning. Föreläsning 10 Innehåll. Inordertraversering av binära sökträd. Binära sökträd Definition

Datastrukturer som passar för sökning. Föreläsning 10 Innehåll. Inordertraversering av binära sökträd. Binära sökträd Definition Föreläsning Innehåll inära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet alanserade binära sökträd VL-träd Datastrukturer som passar för sökning ntag att vi i ett

Läs mer

Lösningsförslag till tentamen Datastrukturer, DAT037,

Lösningsförslag till tentamen Datastrukturer, DAT037, Lösningsförslag till tentamen Datastrukturer, DAT037, 2018-01-10 1. Båda looparna upprepas n gånger. s.pop() tar O(1), eventuellt amorterat. t.add() tar O(log i) för i:te iterationen av första loopen.

Läs mer

Föreläsning 3: Abstrakta datastrukturer, kö, stack, lista

Föreläsning 3: Abstrakta datastrukturer, kö, stack, lista Föreläsning 3: Abstrakta datastrukturer, kö, stack, lista Abstrakt stack Abstrakt kö Länkade listor Abstrakta datatyper Det är ofta praktiskt att beskriva vilka operationer man vill kunna göra på sina

Läs mer

Det är principer och idéer som är viktiga. Skriv så att du övertygar rättaren om att du har förstått dessa även om detaljer kan vara felaktiga.

Det är principer och idéer som är viktiga. Skriv så att du övertygar rättaren om att du har förstått dessa även om detaljer kan vara felaktiga. Tentamen Programmeringsteknik II 2015-05-26 Skrivtid: 0800 1300 Tänk på följande Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper. Börja alltid ny uppgift på nytt papper. Lägg

Läs mer

Upplägg. Binära träd. Träd. Binära träd. Binära träd. Antal löv på ett träd. Binära träd (9) Binära sökträd (10.1)

Upplägg. Binära träd. Träd. Binära träd. Binära träd. Antal löv på ett träd. Binära träd (9) Binära sökträd (10.1) Binära träd Algoritmer och Datastrukturer Markus Saers markus.saers@lingfil.uu.se Upplägg Binära träd (9) Binära sökträd (0.) Träd Många botaniska termer Träd, rot, löv, gren, Trädets rot kan ha ett antal

Läs mer

Tabeller. Programkonstruktion. Moment 8 Om abstrakta datatyper och binära sökträd. Specifikationer för tabellfunktionerna. Operationer på tabellen

Tabeller. Programkonstruktion. Moment 8 Om abstrakta datatyper och binära sökträd. Specifikationer för tabellfunktionerna. Operationer på tabellen Programkonstruktion Moment 8 Om abstrakta datatyper och binära sökträd Tabeller En viktig tillämpning är tabeller att ifrån en nyckel kunna ta fram ett tabellvärde. Ett typiskt exempel är en telefonkatalog:

Läs mer

Seminarium 13 Innehåll

Seminarium 13 Innehåll Seminarium 13 Innehåll Prioritetsköer och heapar Prioritetsköer ADTn Klassen PriorityQueue i java.util Implementering med lista Heapar ADTn För implementering av prioritetskö För sortering Efter seminariet

Läs mer

Tentamen TEN1 HI

Tentamen TEN1 HI Tentamen TEN1 HI1029 2015-03-17 Skrivtid: 8.15-13.00 Hjälpmedel: Referensblad (utdelas), papper (tomma), penna Logga in med tentamenskontot ni får av skrivvakten. Det kommer att ta tid att logga in ha

Läs mer

Datastrukturer som passar för sökning. Föreläsning 11 Innehåll. Binära sökträd Definition. Inordertraversering av binära sökträd

Datastrukturer som passar för sökning. Föreläsning 11 Innehåll. Binära sökträd Definition. Inordertraversering av binära sökträd Föreläsning Innehåll inära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, VL-träd Jämföra objekt interfacet omparable Interfacet omparator

Läs mer

TDDC30 Programmering i Java, Datastrukturer och Algoritmer Lektion 2. Laboration 2 Datastrukturer En liten uppgift Frågor

TDDC30 Programmering i Java, Datastrukturer och Algoritmer Lektion 2. Laboration 2 Datastrukturer En liten uppgift Frågor TDDC30 Programmering i Java, Datastrukturer och Algoritmer Lektion 2 Laboration 2 Datastrukturer En liten uppgift Frågor 1 Laboration 2 - Datastrukturer Länkade datastrukturer Stack Kö (En. Queue) Lista

Läs mer

ADT Prioritetskö. Föreläsning 12 Innehåll. Prioritetskö. Interface för Prioritetskö. Prioritetsköer och heapar

ADT Prioritetskö. Föreläsning 12 Innehåll. Prioritetskö. Interface för Prioritetskö. Prioritetsköer och heapar Föreläsning 1 Innehåll Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util Heapar Implementering av prioritetskö med heap Sortering med hjälp av heap

Läs mer

Träd Hierarkiska strukturer

Träd Hierarkiska strukturer Träd Hierarkiska strukturer a 1 a 2 a 3 a 4 a 2 a 5 a 6 a 7 Hierarki: Korta vägar till många Hur korta? Linjär lista: n 2 Träd: Antal element på avståndet m: g m a 1 a 3 a 8 a 12 m = log g n a 9 a 10 Väglängden

Läs mer

Tentamen Programmeringsteknik II Skrivtid: Hjälpmedel: Java-bok (vilken som helst) Skriv läsligt! Använd inte rödpenna!

Tentamen Programmeringsteknik II Skrivtid: Hjälpmedel: Java-bok (vilken som helst) Skriv läsligt! Använd inte rödpenna! Tentamen Programmeringsteknik II 2014-01-09 Skrivtid: 0800-1300 Hjälpmedel: Java-bok (vilken som helst) Tänk på följande Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper. Börja

Läs mer

Föreläsning 4 Innehåll

Föreläsning 4 Innehåll Föreläsning 4 Innehåll Abstrakta datatypen lista Datastrukturen enkellänkad lista Nästlade klasser statiskt nästlade klasser inre klasser Listklasser i Java Implementera abstrakta datatyperna stack och

Läs mer

Föreläsning 4 Datastrukturer (DAT037)

Föreläsning 4 Datastrukturer (DAT037) Föreläsning 4 Datastrukturer (DAT07) Fredrik Lindblad 1 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat07 1 Innehåll

Läs mer

Föreläsning Datastrukturer (DAT037)

Föreläsning Datastrukturer (DAT037) Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-23 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Djupet först-sökning. Minsta uppspännande träd Träd (utan rot)

Läs mer

Tentamen'('Datastrukturer,'algoritmer'och'programkonstruktion.'

Tentamen'('Datastrukturer,'algoritmer'och'programkonstruktion.' Tentamen'('Datastrukturer,'algoritmer'och'programkonstruktion.' Skrivtid: 08.30 13.30 Hjälpmedel: Inga Lärare: Betygsgränser DVA104' Akademin)för)innovation,)design)och)teknik) Onsdag)2014:01:15) Caroline

Läs mer

Träd, speciellt binära sökträd. Träd allmänt

Träd, speciellt binära sökträd. Träd allmänt Datalogi gk 2I1027 - Föreläsning 10 Träd, speciellt binära sökträd presenteras av Jozef Swiatycki, DSV Litteratur: Main, kap. 9 Jozef Swiatycki DSV Bild 1 Träd allmänt Länkad, hierarkisk (icke-linjär)

Läs mer

Klassen BST som definierar binära sökträd med tal som nycklar och enda data. Varje nyckel är unik dvs förekommer endast en

Klassen BST som definierar binära sökträd med tal som nycklar och enda data. Varje nyckel är unik dvs förekommer endast en Tentamen Programmeringsteknik II 2017-10-23 Skrivtid: 14:00 19:00 Inledning Skrivningen innehåller ett antal bilagor: Bilagan listsandtrees innehåller fyra klasser: Klassen List med några grundläggande

Läs mer

TENTAMEN: Algoritmer och datastrukturer. Läs detta!

TENTAMEN: Algoritmer och datastrukturer. Läs detta! (6) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt idnummer på varje blad (så att vi inte

Läs mer

TDDC30 Programmering i Java, Datastrukturer och Algoritmer Lektion 2. Länkade listor Stackar Köer MyList Iteratorer Lab 2 Exceptions Paket

TDDC30 Programmering i Java, Datastrukturer och Algoritmer Lektion 2. Länkade listor Stackar Köer MyList Iteratorer Lab 2 Exceptions Paket TDDC30 Programmering i Java, Datastrukturer och Algoritmer Lektion 2 Länkade listor Stackar Köer MyList Iteratorer Lab 2 Exceptions Paket 1 Länkade listor Likadant som i Ada-kursen. 2 Stack MyStack MyStack

Läs mer

Tentamen Datastrukturer (DAT036)

Tentamen Datastrukturer (DAT036) Tentamen Datastrukturer (DAT036) Datum och tid för tentamen: 2012-08-24, 8:30 12:30. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker tentamenssalarna ca 9:30 och ca

Läs mer

Föreläsning 2. Länkad lista och iterator

Föreläsning 2. Länkad lista och iterator Föreläsning 2 Länkad lista och iterator Föreläsning 2 Länkad-lista Lista implementerad med en enkellänkad lista Iterator Implementering av en Iterator Dubbellänkad lista och cirkulär lista LinkedList JCF

Läs mer

Tentamen Datastrukturer (DAT036)

Tentamen Datastrukturer (DAT036) Tentamen Datastrukturer (DAT036) Datum och tid för tentamen: 2013-12-16, 14:00 18:00. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker tentamenssalarna ca 15:00 och

Läs mer

Datastrukturer. föreläsning 3. Stacks 1

Datastrukturer. föreläsning 3. Stacks 1 Datastrukturer föreläsning 3 Stacks 1 Abstrakta datatyper Stackar - stacks Köer - queues Dubbeländade köer - deques Vektorer vectors (array lists) All är listor men ger tillgång till olika operationer

Läs mer

Föreläsning 2. AVL-träd, Multi-Way -sökträd, B-träd TDDD71: DALG. Innehåll. Innehåll. 1 Binära sökträd

Föreläsning 2. AVL-träd, Multi-Way -sökträd, B-träd TDDD71: DALG. Innehåll. Innehåll. 1 Binära sökträd Föreläsning AVL-träd, Multi-Wa -sökträd, B-träd DDD7: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer november 5 omm Färnqvist, IDA, Linköpings universitet. Innehåll Innehåll Binära

Läs mer

Lägg uppgifterna i ordning. Skriv uppgiftsnummer och din kod överst i högra hörnet på alla papper.

Lägg uppgifterna i ordning. Skriv uppgiftsnummer och din kod överst i högra hörnet på alla papper. Tentamen Programmeringsteknik II 2016-05-30 Skrivtid: 1400 1900 Tänk på följande Skriv läsligt. Använd inte rödpenna. Skriv bara på framsidan av varje papper. Börja alltid ny uppgift på nytt papper. Lägg

Läs mer

Algoritmer och datastrukturer 2012, fo rela sning 8

Algoritmer och datastrukturer 2012, fo rela sning 8 lgoritmer och datastrukturer 01, fo rela sning 8 Komplexitet för binära sökträd De viktigaste operationerna på binära sökträd är insert, find och remove Tiden det tar att utföra en operation bestäms till

Läs mer

Föreläsning 2 Datastrukturer (DAT037)

Föreläsning 2 Datastrukturer (DAT037) Föreläsning 2 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-02 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Tidskomplexitet

Läs mer

Tentamen Datastrukturer (DAT036)

Tentamen Datastrukturer (DAT036) Tentamen Datastrukturer (DAT036) Det här är inte originaltesen. Uppgift 6 var felaktigt formulerad, och har rättats till. Datum och tid för tentamen: 2011-12-16, 8:30 12:30. Ansvarig: Nils Anders Danielsson.

Läs mer

Dugga Datastrukturer (DAT036)

Dugga Datastrukturer (DAT036) Dugga Datastrukturer (DAT036) Duggans datum: 2012-11-21. Författare: Nils Anders Danielsson. För att en uppgift ska räknas som löst så måste en i princip helt korrekt lösning lämnas in. Enstaka mindre

Läs mer

Föreläsning 5 TDDC91,TDDE22,725G97: DALG. Föreläsning i Datastrukturer och algoritmer 18 september 2018

Föreläsning 5 TDDC91,TDDE22,725G97: DALG. Föreläsning i Datastrukturer och algoritmer 18 september 2018 Föreläsning 5 TDDC91,TDDE22,725G97: DALG Föreläsning i Datastrukturer och algoritmer 18 september 2018 Institutionen för datavetenskap Linköpings universitet 5.1 Introduktion find,insert och remove i ett

Läs mer

if (n==null) { return null; } else { return new Node(n.data, copy(n.next));

if (n==null) { return null; } else { return new Node(n.data, copy(n.next)); Inledning I bilagor finns ett antal mer eller mindre ofullständiga klasser. Klassen List innehåller några grundläggande komponenter för att skapa och hantera enkellänkade listor av heltal. Listorna hålls

Läs mer

Föreläsning 3 Datastrukturer (DAT037)

Föreläsning 3 Datastrukturer (DAT037) Föreläsning 3 Datastrukturer (DAT037) Fredrik Lindblad 1 6 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 1

Läs mer

Lösningsförslag till tentamen i EDA690 Algoritmer och Datastrukturer, Helsingborg

Lösningsförslag till tentamen i EDA690 Algoritmer och Datastrukturer, Helsingborg LUNDS TEKNISKA HÖGSKOLA 1(5) Institutionen för datavetenskap Lösningsförslag till tentamen i EDA690 Algoritmer och Datastrukturer, Helsingborg 2013 12 19 1. a) En samling element där insättning och borttagning

Läs mer

Vad har vi pratat om i kursen?

Vad har vi pratat om i kursen? Vad har vi pratat om i kursen? Föreläsning 1 & 2 Systemminnet och systemstacken Rekursion Abstrakta datatyper Föreläsning 3 ADT:n Länkad lista Föreläsning 4 ADT:n Kö ADT:n Stack Föreläsning 5 Komplexitet

Läs mer

Länkade strukturer, parametriserade typer och undantag

Länkade strukturer, parametriserade typer och undantag Länkade strukturer, parametriserade typer och undantag Programmering för språkteknologer 2 Sara Stymne 2013-09-18 Idag Parametriserade typer Listor och länkade strukturer Komplexitet i länkade strukturer

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2013-03-27 Sal Tid 08:00 12:00 Kurskod Provkod Kursnamn/benämning Institution Antal uppgifter som ingår i tentamen Antal

Läs mer

Teoretisk del. Facit Tentamen TDDC kl (6) 1. (6p) "Snabba frågor" Alla svar motiveras väl.

Teoretisk del. Facit Tentamen TDDC kl (6) 1. (6p) Snabba frågor Alla svar motiveras väl. Facit Tentamen TDDC30 2015-03-19 kl 08-12 1 (6) Teoretisk del 1. (6p) "Snabba frågor" Alla svar motiveras väl. a) Varför väljer man ofta synligheten private hellre än public för medlemsvariabler i en klass?

Läs mer

Föreläsning Datastrukturer (DAT036)

Föreläsning Datastrukturer (DAT036) Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-27 Idag Balanserade sökträd Splayträd Skipplistor AVL-träd AVL-träd Sökträd Invariant (för varje nod): Vänster och höger delträd har samma

Läs mer

Föreläsning 3 Datastrukturer (DAT037)

Föreläsning 3 Datastrukturer (DAT037) Föreläsning 3 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-07 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra

Läs mer

ADT Prioritetskö. Föreläsning 13 Innehåll. Prioritetskö vs FIFO-kö. Prioritetskö Exempel på användning. Prioritetsköer och heapar

ADT Prioritetskö. Föreläsning 13 Innehåll. Prioritetskö vs FIFO-kö. Prioritetskö Exempel på användning. Prioritetsköer och heapar Föreläsning 1 Innehåll ADT Prioritetskö Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util ar Implementering av prioritetskö med heap Sortering med hjälp

Läs mer