Föreläsning 5. Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning

Storlek: px
Starta visningen från sidan:

Download "Föreläsning 5. Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning"

Transkript

1 Föreläsning 5 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning

2 Terminologi - träd Ett träd i datalogi består av en rotnod och ett ändligt antal underträd (subtrees) Trädets höjd är antalet nivåer (4 i exemplet). nivå 0 nivå 1 nivå 2 nivå 3 Ett träd är en graf där man kan ta sig mellan två noder på endast ett sätt. N noder ger N-1 bågar. Vi kommer främst titta på binära träd.

3 Binära träd Ett binärt träd är ett träd där varje nod har maximalt 2 barn Definition: Ett binärt träd är antingen tomt eller så har rotnoden 2 underträd (subtree) som också är binära träd (vänster och höger underträd).

4 Binärt sökträd (BST) Ett binärt sökträd är ett binärt träd som är ordnat efter nodernas nycklar För godtycklig nod gäller alla nycklar i nodens vänstra underträdet är mindre än nodens nyckel alla nycklar i nodens högra underträdet är större än nodens nyckel vänster och höger underträd är också binära sökträd varje nod är unik (inga kopior)

5 Traversera Att besöka alla noder i ett träd kallas att traversera trädet. Tre traverseringsordningar: Inorder. Besök först trädets vänstra del, sedan noden själv och sist trädets högra del. (1,2,3,4,5,6,7) Preorder. Besök först noden själv, sedan trädets vänstra del och sist trädets högra del. (4,2,1,3,6,5,7) Postorder. Besök först trädets vänstra del, sedan trädets högra del och sist noden själv. (1,3,2,5,7,6,4) Normalt använder vi inorder.

6 Binärt sökträd som ADT Är skapat för att lätt kunna söka och lägga till och ta ut (log n). För att det ska fungera måste trädet vara bra balanserat. Operationer: searchtree(nyckel) inserttree(element) deletetree(nyckel)

7 binarysearchtree.h typedef struct{ char key[wordlength]; Data; typedef struct treenode TreeNode; struct treenode{ Data element; TreeNode *left, *right; ; typedef struct{ TreeNode *root; BinaryTree; BinaryTree *initbinarytree(); void inserttree(binarytree *bp,data e); void inorder(binarytree *bp); Data *searchtree(binarytree *bp,char key[]);

8 binarysearchtree.c - initiera #include <stdio.h> #include <stdlib.h> #include <assert.h> #include <string.h> #include "binarysearchtree.h" BinaryTree *initbinarytree() { BinaryTree *bp = (BinaryTree*)malloc(sizeof(BinaryTree)); bp->root = NULL; return bp;

9 binarysearchtree.c - traversera void inorder(binarytree *bp) { inordernode(bp->root); void inordernode(treenode *np) { if(np!=null) { inordernode(np->left); printf("%s,",(np->element).key); inordernode(np->right); Det här extrasteget hade vi sluppit om vi inte använt en speciell datastruktur för att representera ett träd utan helt enkelt använt en pekare av typen TreeNode och kallat den root. Det steget kommer nu behövas på alla funktioner vi väljer att lösa rekursivt.

10 binarysearchtree.c sätta in void inserttree(binarytree *bp,data e) { TreeNode *newnode = (TreeNode*)malloc(sizeof(TreeNode)); newnode->element = e; newnode->left=newnode->right=null; if(bp->root==null) bp->root=newnode; else insertnodeintree(bp->root,newnode);

11 binarysearchtree.c sätta in void insertnodeintree(treenode *tree,treenode *newnode) { int komp=strcmp((tree->element).key,(newnode->element).key); assert(komp!=0); if(komp<0) { if(tree->right==null) tree->right=newnode; else insertnodeintree(tree->right,newnode); else { if(tree->left==null) tree->left=newnode; else insertnodeintree(tree->left,newnode);

12 binarysearchtree.c - söka Data *searchtree(binarytree *bp,char key[]) { if(bp->root==null) return NULL; else { TreeNode *found = searchtreenode(bp->root, key); if(found!=null) return &(found->element); else return NULL;

13 binarysearchtree.c - söka TreeNode *searchtreenode(treenode *tree, char key[]) { int komp=strcmp((tree->element).key,key); if(komp==0) return tree; else if(komp<0){ if(tree->right==null) return NULL; else return searchtreenode(tree->right,key); else{ if(tree->left==null) return NULL; else return searchtreenode(tree->left,key);

14 Ta bort från binärt sökträd Det finns tre fall att ta hänsyn till när vi tar bort en nod: noden är ett löv noden har bara ett subträd noden har både vänster och höger subträd Fall 1 är trivialt: vi sätter helt enkelt förälderns relevanta subträd till NULL

15 Noden har bara ett subträd Också relativt enkelt. Vi ersätter helt enkelt noden med dess barn. Ex: Vi ska ta bort 4:

16 Noden har både vänster och höger subträd Vi måste nu lösa vad vi ska göra med de två barnen. Lösningen är att vi ersätter noden med den minsta noden i det högra underträdet. Denna kan inte ha något vänsterbarn (den är ju minst) och därmed lätta att ta bort (fall 2) Ex: vi vill ta bort nod B. H H B N C N A E A E C F F D D

17 deletenode För att implementera deletetree kommer vi att skapa en intern hjälpfunktion som tar som parameter en pekare till noden som ska tas bort och returnerar en pekare till rotnoden till det nya subträdet. I exemplet nedan skickar man in en pekare till B och funktionen returnerar en pekare till C med underträdet i den högra bilden: H H B N C N A E A E C F F D D

18 deletenode - hjälpfunktion TreeNode *deletenode(treenode *np){ TreeNode *newsubtree; if(np==null) return NULL; else if(np->right==null){ H newsubtree=np->left; B free(np); return newsubtree; A else if(np->left==null){ H newsubtree=np->right; B free(np); return newsubtree; E else{ N N

19 hjälpfunktion forts. TreeNode *parenttomin; TreeNode *minofrighttree; H minofrighttree = np->right; if(minofrighttree->left==null){ B N minofrighttree->left=np->left; free(np); A E return minofrighttree; F while(minofrighttree->left!=null){ parenttomin = minofrighttree; minofrighttree = minofrighttree->left; min parenttomin->left = minofrighttree->right; minofrighttree->left=np->left; minofrighttree->right=np->right; free(np); return minofrighttree; A B C E D H F N parent

20 deletenode -gränssnittsfunktion Data deletetree(binarytree *bp,char key[]){ Data d; bp->root=deletenodetree(bp->root,key,&d); return d; Observera hur deletnodetree ska returnera en pekare till hela det nya trädet! Den kommer sedan rekursivt leta sig ner i trädet mot rätt nod och hela tiden returnera en pekare till trädet där den är tills den hittar rätt nod. Då skickar den denna till vår hjälpfunktion som returnerar en pekare till det nya trädet.

21 deletenode söker upp rätt nod TreeNode *deletenodetree(treenode *tree,char key[],data *d){ int komp=strcmp((tree->element).key,key); if(komp==0){ *d = tree->element; return deletenode(tree); else if(komp<0){ if(tree->right==null) return tree;//fanns ej else{ tree->right = deletenodetree(tree->right,key,d); return tree; else{ if(tree->left==null) return tree;//fanns ej else{ tree->left = deletenodetree(tree->left,key,d); return tree;

22 Inlämningsuppgifter Följande uppgifter redovisas senast måndag den 6 februari och kan inte redovisas senare: 5.5, 5.A, 5.B, 5.C/5.7, 5.D, 5.E Dessa uppgifter bör göras nu för att ni ska kunna följa kursen på ett bra sätt. Övriga kan ni göra vid tillfälle för högre betyg.

23 Uppgifter ej i boken Utgå från föreläsningens implementering av ett binärt sökträd när du löser nedanstående uppgifter 5.A Skriv en main som läser in sju ord från användaren och placerar dessa i ett BST. Kör programmet och skriv in 7 ord så att trädet får minsta möjliga höjd. Kör programmet och skriv in 7 ord så att trädet får maximal höjd. (2p) 5.B Skriv funktioner som traverserar trädet med preorder och inorder. (1p) 5.C Skriv två funktioner numberofleaves och numberofnodes till vår implementation från föreläsningen. (2p) 5.D Skriv om sökfunktionen så att den är iterativ istället för rekursiv. (3p) 5.E Skriv en funktion maximum som returnerar det största värdet i ett binärt sökträd. Skriv en rekursiv och en iterativ version. (2p)

Föreläsning 7. Träd och binära sökträd

Föreläsning 7. Träd och binära sökträd Föreläsning 7 Träd och binära sökträd Föreläsning 7 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Läsanvisningar och

Läs mer

BINÄRA TRÄD. (X = pekarvärdet NULL): struct int_bt_node *pivot, *ny; X X X 12 X X 12 X X -3 X X

BINÄRA TRÄD. (X = pekarvärdet NULL): struct int_bt_node *pivot, *ny; X X X 12 X X 12 X X -3 X X Algoritmer och Datastrukturer Kary FRÄMLING/Göran PULKKIS (v23) Kap. 7, Sid 1 BINÄRA TRÄD Träd används för att representera olika slags hierarkier som ordnats på något sätt. Den mest använda trädstrukturen

Läs mer

Datastrukturer i kursen. Föreläsning 8 Innehåll. Träd rekursiv definition. Träd

Datastrukturer i kursen. Föreläsning 8 Innehåll. Träd rekursiv definition. Träd Föreläsning 8 Innehåll Datastrukturer i kursen Träd, speciellt binära träd egenskaper användningsområden implementering Undervisningsmoment: föreläsning 8, övningsuppgifter 8, lab 4 Avsnitt i läroboken:

Läs mer

Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5

Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5 Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5? FORTSÄTTNING TRÄD RECAP (förra föreläsningen) RECAP (förra föreläsningen) Träd är icke-linjära datastrukturer som ofta

Läs mer

Linjärt minne. Sammanhängande minne är ej flexibelt. Effektivt

Linjärt minne. Sammanhängande minne är ej flexibelt. Effektivt Binära träd (forts) Ett binärt träd kan lagras i ett enda sammanhängande minne Roten har index 1 Vänster barn till nod i har index 2*i Höger barn till nod i har index 2*i + 1 Föräldern till nod i har index

Läs mer

Föreläsning 9 Innehåll

Föreläsning 9 Innehåll Föreläsning 9 Innehåll Binära sökträd algoritmer för sökning, insättning och borttagning, implementering effektivitet balanserade binära sökträd, AVL-träd Abstrakta datatyperna mängd (eng. Set) och lexikon

Läs mer

Träd. Rot. Förgrening. Löv

Träd. Rot. Förgrening. Löv Träd Träd Rot Förgrening Löv Exempel: Organisationsschema Rot Överkucku Förgrening Underhuggare Underhuggare Administativ chef Kanslichef Knegare Knegare Knegare Byråchef Löv Intendent Avd. chef Intendent

Läs mer

Föreläsning Datastrukturer (DAT036)

Föreläsning Datastrukturer (DAT036) Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-25 Idag Starkt sammanhängande komponenter Duggaresultat Sökträd Starkt sammanhängande komponenter Uppspännande skog Graf, och en möjlig

Läs mer

Ett generellt träd är. Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn

Ett generellt träd är. Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn Träd allmänt Träd allmänt Ett generellt träd är Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn där t1,..., tn i sin tur är träd och kallas subträd, vars rotnoder kallas

Läs mer

Träd - C&P kap. 10 speciellt binära sökträd sid. 452

Träd - C&P kap. 10 speciellt binära sökträd sid. 452 Föreläsning 10 Träd - C&P kap. 10 speciellt binära sökträd sid. 452 Dessa bilder finns i PDF-format på http://dsv.su.se/courses/pm2/f10/index.html Jozef Swiatycki DSV Bild 1 förälder Träd allmänt Binär-länkad

Läs mer

Inom datalogin brukar man använda träd för att beskriva vissa typer av problem. Om man begränsar sig till träd där varje nod förgrenar sig högst två

Inom datalogin brukar man använda träd för att beskriva vissa typer av problem. Om man begränsar sig till träd där varje nod förgrenar sig högst två Binära träd Inom datalogin brukar man använda träd för att beskriva vissa typer av problem. Om man begränsar sig till träd där varje nod förgrenar sig högst två gånger, talar man om binära träd. Sådana

Läs mer

Abstrakta datastrukturer

Abstrakta datastrukturer Föreläsning 2 Datastrukturer Abstrakta datastrukturer Stack Stack implementerad med array Länkad lista Stack implementerad med länkad lista Inlämningsuppgifter Datastrukturer En datastruktur är en struktur

Läs mer

Föreläsning 4. Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö

Föreläsning 4. Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö Föreläsning 4 Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö Kö (ADT) En kö fungerar som en kö. Man fyller på den längst bak och tömmer den längst fram

Läs mer

Binära sökträd. Seminarium 9 Binära sökträd Innehåll. Traversering av binära sökträd. Binära sökträd Definition. Exempel på vad du ska kunna

Binära sökträd. Seminarium 9 Binära sökträd Innehåll. Traversering av binära sökträd. Binära sökträd Definition. Exempel på vad du ska kunna Seminarium inära sökträd Innehåll inära sökträd inära sökträd Definition Implementering lgoritmer Sökning Insättning orttagning Effektivitet alanserade binära sökträd Eempel på vad du ska kunna Förklara

Läs mer

Algoritmer och datastrukturer 2012, fo rela sning 8

Algoritmer och datastrukturer 2012, fo rela sning 8 lgoritmer och datastrukturer 01, fo rela sning 8 Komplexitet för binära sökträd De viktigaste operationerna på binära sökträd är insert, find och remove Tiden det tar att utföra en operation bestäms till

Läs mer

Trädstrukturer och grafer

Trädstrukturer och grafer Översikt Trädstrukturer och grafer Trädstrukturer Grundbegrepp Binära träd Sökning i träd Grafer Sökning i grafer Programmering tillämpningar och datastrukturer Varför olika datastrukturer? Olika datastrukturer

Läs mer

729G04: Inlämningsuppgift Diskret matematik

729G04: Inlämningsuppgift Diskret matematik 729G04: Inlämningsuppgift Diskret matematik Instruktioner Dessa uppgifter utgör del av examinationen i kursen 729G04 Programmering och diskret matematik. Uppgifterna ska utföras individuellt och självständigt,

Läs mer

Lösningar Datastrukturer TDA

Lösningar Datastrukturer TDA Lösningar Datastrukturer TDA416 2016 12 21 roblem 1. roblem 2. a) Falskt. Urvalssortering gör alltid samma mängd av jobb. b) Sant. Genom att ha en referens till sista och första elementet, kan man nå både

Läs mer

Träd Hierarkiska strukturer

Träd Hierarkiska strukturer Träd Hierarkiska strukturer a 1 a 2 a 3 a 4 a 2 a 5 a 6 a 7 Hierarki: Korta vägar till många Hur korta? Linjär lista: n 2 Träd: Antal element på avståndet m: g m a 1 a 3 a 8 a 12 m = log g n a 9 a 10 Väglängden

Läs mer

Programmeringsmetodik DV1 Programkonstruktion 1. Moment 8 Om abstrakta datatyper och binära sökträd

Programmeringsmetodik DV1 Programkonstruktion 1. Moment 8 Om abstrakta datatyper och binära sökträd Programmeringsmetodik DV1 Programkonstruktion 1 Moment 8 Om abstrakta datatyper och binära sökträd PK1&PM1 HT-06 moment 8 Sida 1 Uppdaterad 2005-09-22 Tabeller En viktig tillämpning är tabellen att ifrån

Läs mer

TENTAMEN: Algoritmer och datastrukturer. Läs detta!

TENTAMEN: Algoritmer och datastrukturer. Läs detta! (6) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt idnummer på varje blad (så att vi inte

Läs mer

Tabeller. Programkonstruktion. Moment 8 Om abstrakta datatyper och binära sökträd. Implementering av tabellen. Operationer på tabellen

Tabeller. Programkonstruktion. Moment 8 Om abstrakta datatyper och binära sökträd. Implementering av tabellen. Operationer på tabellen Programkonstruktion Moment 8 Om abstrakta datatyper och binära sökträd Tabeller En viktig tillämpning är tabellen att ifrån en nyckel kunna ta fram ett tabellvärde. Ett typiskt exempel är en telefonkatalog:

Läs mer

Abstrakta datatyper. Primitiva vektorer. Deklarera en vektor

Abstrakta datatyper. Primitiva vektorer. Deklarera en vektor Abstrakta datatyper 1 Primitiva vektorer Vektorer kan skapas av primitiva datatyper, objektreferenser eller andra vektorer. Vektorer indexeras liksom i C från 0. För att referera en vektor används hakparenteser.

Läs mer

TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.

TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. 1 (8) TENTMEN: lgoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. örja varje uppgift på ett nytt blad. Skriv inga lösningar i tesen. Skriv ditt idnummer

Läs mer

Träd. Kapitel Definition av träd

Träd. Kapitel Definition av träd Kapitel 5 Träd 5.1 Definition av träd I figur 5.1 ser du ett träd, sådant det avbildas i datalogin. Till skillnad från vanliga träd har dataträden roten högst upp. Varje ring i figuren är ett element i

Läs mer

Träd, binära träd och sökträd. Koffman & Wolfgang kapitel 6, avsnitt 1 4

Träd, binära träd och sökträd. Koffman & Wolfgang kapitel 6, avsnitt 1 4 Träd, binära träd och sökträd Koffman & Wolfgang kapitel 6, avsnitt 1 4 1 Träd Träd är ickelinjära och hierarkiska: i motsats till listor och fält en trädnod kan ha flera efterföljare ( barn ) men bara

Läs mer

Tentamen Datastrukturer (DAT036/DAT037/DIT960)

Tentamen Datastrukturer (DAT036/DAT037/DIT960) Tentamen Datastrukturer (DAT036/DAT037/DIT960) Datum och tid för tentamen: 2016-04-07, 14:00 18:00. Författare: Nils Anders Danielsson. (Tack till Per Hallgren och Nick Smallbone för feedback.) Ansvarig:

Läs mer

Datastrukturer. Föreläsning 5. Maps 1

Datastrukturer. Föreläsning 5. Maps 1 Datastrukturer Föreläsning 5 Maps 1 Traversering av träd Maps 2 Preordningstraversering Traversera = genomlöpa alla noderna i ett träd Varje nod besöks innan sina delträd Preordning = djupet först Exempel:

Läs mer

Tabeller. Programkonstruktion. Moment 8 Om abstrakta datatyper och binära sökträd. Specifikationer för tabellfunktionerna. Operationer på tabellen

Tabeller. Programkonstruktion. Moment 8 Om abstrakta datatyper och binära sökträd. Specifikationer för tabellfunktionerna. Operationer på tabellen Programkonstruktion Moment 8 Om abstrakta datatyper och binära sökträd Tabeller En viktig tillämpning är tabeller att ifrån en nyckel kunna ta fram ett tabellvärde. Ett typiskt exempel är en telefonkatalog:

Läs mer

Självbalanserande träd AVL-träd. Koffman & Wolfgang kapitel 9, avsnitt 1 2

Självbalanserande träd AVL-träd. Koffman & Wolfgang kapitel 9, avsnitt 1 2 Självbalanserande träd AVL-träd Koffman & Wolfgang kapitel 9, avsnitt 1 2 1 Balanserade träd Nodbalanserat träd: skillnaden i antalet noder mellan vänster och höger delträd är högst 1 Höjdbalanserat träd:

Läs mer

Föreläsning Datastrukturer (DAT036)

Föreläsning Datastrukturer (DAT036) Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-27 Idag Balanserade sökträd Splayträd Skipplistor AVL-träd AVL-träd Sökträd Invariant (för varje nod): Vänster och höger delträd har samma

Läs mer

F5: Debriefing OU2, repetition av listor, träd och hashtabeller. Carl Nettelblad

F5: Debriefing OU2, repetition av listor, träd och hashtabeller. Carl Nettelblad F5: Debriefing OU2, repetition av listor, träd och hashtabeller Carl Nettelblad 2017-04-24 Frågor Kommer nog inte att täcka 2 timmar Har ni frågor på OU3, något annat vi har tagit hittills på kursen, listor

Läs mer

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Prioritetskö Heap Representation som

Läs mer

Vad har vi pratat om i kursen?

Vad har vi pratat om i kursen? Vad har vi pratat om i kursen? Föreläsning 1 & 2 Systemminnet och systemstacken Rekursion Abstrakta datatyper Föreläsning 3 ADT:n Länkad lista Föreläsning 4 ADT:n Kö ADT:n Stack Föreläsning 5 Komplexitet

Läs mer

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Jonas Lindgren, Institutionen för Datavetenskap, LiU

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Jonas Lindgren, Institutionen för Datavetenskap, LiU TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Träd Traversering Insättning, borttagning

Läs mer

Programmering i C++ EDA623 Dynamiska datastrukturer. EDA623 (Föreläsning 11) HT / 31

Programmering i C++ EDA623 Dynamiska datastrukturer. EDA623 (Föreläsning 11) HT / 31 Programmering i C++ EDA623 Dynamiska datastrukturer EDA623 (Föreläsning 11) HT 2013 1 / 31 Dynamiska datastrukturer Innehåll Länkade listor Stackar Köer Träd EDA623 (Föreläsning 11) HT 2013 2 / 31 Länkade

Läs mer

Upplägg. Binära träd. Träd. Binära träd. Binära träd. Antal löv på ett träd. Binära träd (9) Binära sökträd (10.1)

Upplägg. Binära träd. Träd. Binära träd. Binära träd. Antal löv på ett träd. Binära träd (9) Binära sökträd (10.1) Binära träd Algoritmer och Datastrukturer Markus Saers markus.saers@lingfil.uu.se Upplägg Binära träd (9) Binära sökträd (0.) Träd Många botaniska termer Träd, rot, löv, gren, Trädets rot kan ha ett antal

Läs mer

Tentamen, Algoritmer och datastrukturer

Tentamen, Algoritmer och datastrukturer UNDS TEKNISKA ÖGSKOA (6) Institutionen för datavetenskap Tentamen, Algoritmer och datastrukturer 23 8 29, 8. 3. Anvisningar: Denna tentamen består av fem uppgifter. Totalt är skrivningen på 36 poäng och

Läs mer

Föreläsning 4 Datastrukturer (DAT037)

Föreläsning 4 Datastrukturer (DAT037) Föreläsning 4 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-10 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra

Läs mer

TDDI16 Datastrukturer och algoritmer. Prioritetsköer, heapar, Union/Find

TDDI16 Datastrukturer och algoritmer. Prioritetsköer, heapar, Union/Find TDDI16 Datastrukturer och algoritmer Prioritetsköer, heapar, Union/Find Prioritetsköer En vanligt förekommande situation: Väntelista (jobbhantering på skrivare, simulering av händelser) Om en resurs blir

Läs mer

Algoritmer och datastrukturer

Algoritmer och datastrukturer Algoritmer och datastrukturer Binära sökträd Hash Tabeller Sökning Många datastukturer försöker uppnå den effektivaste sökningen I arrayer - linjer sökning, och binärt sökning när arrayen kan vara sörterad

Läs mer

Föreläsning Datastrukturer (DAT036)

Föreläsning Datastrukturer (DAT036) Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-18 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Prims algoritm. Kruskals algoritm. Djupet först-sökning. Cykel

Läs mer

Träd, speciellt binära sökträd. Träd allmänt

Träd, speciellt binära sökträd. Träd allmänt Datalogi gk 2I1027 - Föreläsning 10 Träd, speciellt binära sökträd presenteras av Jozef Swiatycki, DSV Litteratur: Main, kap. 9 Jozef Swiatycki DSV Bild 1 Träd allmänt Länkad, hierarkisk (icke-linjär)

Läs mer

Föreläsning 3 Datastrukturer (DAT037)

Föreläsning 3 Datastrukturer (DAT037) Föreläsning 3 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-07 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra

Läs mer

Programkonstruktion och. Datastrukturer

Programkonstruktion och. Datastrukturer Programkonstruktion och Datastrukturer Repetitionskurs, sommaren 2011 Datastrukturer (Listor, Träd, Sökträd och AVL-träd) Elias Castegren elias.castegren.7381@student.uu.se Datastrukturer Vad är en datastruktur?

Läs mer

Tentamen Datastrukturer, DAT037 (DAT036)

Tentamen Datastrukturer, DAT037 (DAT036) Tentamen Datastrukturer, DAT037 (DAT036) Datum och tid för tentamen: 2017-01-11, 14:00 18:00. Ansvarig: Fredrik Lindblad. Nås på tel nr. 031-772 2038. Besöker tentamenssalarna ca 15:00 och ca 17:00. Godkända

Läs mer

Föreläsning 14. Träd och filhantering

Föreläsning 14. Träd och filhantering Föreläsning 14 Träd och filhantering Träd Ett träd är en datastruktur som tillåter oss att modellera sådant som vi inte kan modellera med linjära datastrukturer. Ett datavetenskapligt träd består av noder

Läs mer

13 Prioritetsköer, heapar

13 Prioritetsköer, heapar Prioritetsköer, heapar 31 13 Prioritetsköer, heapar U 101. En prioritetskö är en samling element där varje element har en prioritet (som används för att jämföra elementen med). Elementen plockas ut i prioritetsordning

Läs mer

Tentamen TEN1 HI

Tentamen TEN1 HI Tentamen TEN1 HI1029 2015-03-17 Skrivtid: 8.15-13.00 Hjälpmedel: Referensblad (utdelas), papper (tomma), penna Logga in med tentamenskontot ni får av skrivvakten. Det kommer att ta tid att logga in ha

Läs mer

Tentamen *:58/ID100V Programmering i C Exempel 3

Tentamen *:58/ID100V Programmering i C Exempel 3 DSV Tentamen *:58/ID100V Sid 1(5) Tentamen *:58/ID100V Programmering i C Exempel 3 Denna tentamen består av fyra uppgifter som tillsammans kan de ge maximalt 22 poäng. För godkänt resultat krävs minst

Läs mer

Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: Tid: Hjälpmedel: Inga hjälpmedel

Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: Tid: Hjälpmedel: Inga hjälpmedel Data- och Programstrukturer Provmoment: Ladokkod: Tentamen ges för: Tentamen NDP011 Systemarkitektprogrammet 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum:

Läs mer

Seminarium 13 Innehåll

Seminarium 13 Innehåll Seminarium 13 Innehåll Prioritetsköer och heapar Prioritetsköer ADTn Klassen PriorityQueue i java.util Implementering med lista Heapar ADTn För implementering av prioritetskö För sortering Efter seminariet

Läs mer

Tentamen Programmeringsteknik II Inledning. Anmälningskod:

Tentamen Programmeringsteknik II Inledning. Anmälningskod: Tentamen Programmeringsteknik II 2016-01-11 Inledning I bilagan finns ett antal mer eller mindre ofullständiga klasser. Några ingår i en hierarki: List, SortedList, SplayList och ListSet enligt vidstående

Läs mer

Algoritmer och Komplexitet ht 08. Övning 5. Flöden. Reduktioner. Förändrat flöde

Algoritmer och Komplexitet ht 08. Övning 5. Flöden. Reduktioner. Förändrat flöde Algoritmer och Komplexitet ht 08. Övning 5 Flöden. Reduktioner Förändrat flöde a) Beskriv en effektiv algoritm som hittar ett nytt maximalt flöde om kapaciteten längs en viss kant ökar med en enhet. Algoritmens

Läs mer

Datastrukturer. föreläsning 9. Maps 1

Datastrukturer. föreläsning 9. Maps 1 Datastrukturer föreläsning 9 Maps 1 Minsta uppspännande träd Maps 2 Minsta uppspännande träd Uppspännande träd till graf fritt delträd innehåller alla noderna Minsta uppspännande träd (MST) är det uppspännande

Läs mer

Tentamen Datastrukturer för D2 DAT 035

Tentamen Datastrukturer för D2 DAT 035 Tentamen Datastrukturer för D2 DAT 035 17 december 2005 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.) Betygsgränser:

Läs mer

Tillämpad Programmering (ID1218) :00-13:00

Tillämpad Programmering (ID1218) :00-13:00 ID1218 Johan Montelius Tillämpad Programmering (ID1218) 2014-03-13 09:00-13:00 Förnamn: Efternamn: Regler Du får inte ha något materiel med dig förutom skrivmateriel. Mobiler etc, skall lämnas till tentamensvakten.

Läs mer

Dugga Datastrukturer (DAT036)

Dugga Datastrukturer (DAT036) Dugga Datastrukturer (DAT036) Duggans datum: 2012-11-21. Författare: Nils Anders Danielsson. För att en uppgift ska räknas som löst så måste en i princip helt korrekt lösning lämnas in. Enstaka mindre

Läs mer

Föreläsning 13 och 14: Binära träd

Föreläsning 13 och 14: Binära träd Föreläsning 13 och 14: Binära träd o Binärträd och allmänna träd o Rekursiva tankar för binärträd o Binära sökträd Binärträd och allmänna träd Stack och kö är två viktiga datastrukturer man kan bygga av

Läs mer

Två fall: q Tom sekvens: () q Sekvens av element: (a b c) ; (sum-rec '(2 4 6)) = 12. q Första elementet uppfyller vissa villkor: (2 a b c)

Två fall: q Tom sekvens: () q Sekvens av element: (a b c) ; (sum-rec '(2 4 6)) = 12. q Första elementet uppfyller vissa villkor: (2 a b c) Programmönster: # Listan som sekvens, Rekursiv process Enkel genomgång av sekvens (element på toppnivån i en lista)) TDDC60 Programmering: abstraktion och modellering Föreläsning 5 Rekursiva och iterativa

Läs mer

ADT Prioritetskö. Föreläsning 12 Innehåll. Prioritetskö. Interface för Prioritetskö. Prioritetsköer och heapar

ADT Prioritetskö. Föreläsning 12 Innehåll. Prioritetskö. Interface för Prioritetskö. Prioritetsköer och heapar Föreläsning 1 Innehåll Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util Heapar Implementering av prioritetskö med heap Sortering med hjälp av heap

Läs mer

SORTERING OCH SÖKNING

SORTERING OCH SÖKNING Algoritmer och Datastrukturer Kary FRÄMLING Kap. 9, Sid 1 C-språket 2/Kary Främling v2000 och Göran Pulkkis v2003 SORTERING OCH SÖKNING Sortering är ett av de bästa exemplen på problem där valet av lösningsalgoritm

Läs mer

Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), Tiden det tar att utföra en iteration av loopen är oberoende av värdet på

Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), Tiden det tar att utföra en iteration av loopen är oberoende av värdet på Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), 2017-01-11 1. Loopen upprepas n gånger. getat på en dynamisk array tar tiden O(1). member på ett AVL-träd av storlek n tar tiden O(log n).

Läs mer

TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.

TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. 1 (7) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt idnummer på varje blad (så att vi

Läs mer

OMTENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 09:00 14:00

OMTENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 09:00 14:00 OMTENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 160402 kl. 09:00 14:00 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna eller i bilogarna. *** OBS ***

Läs mer

Ekvivalensrelationer

Ekvivalensrelationer Abstrakt datatyp för disjunkta mängder Vi skall presentera en abstrakt datatyp för att representera disjunkta mängder Kan bl.a. användas för att lösa ekvivalensproblemet avgör om två godtyckliga element

Läs mer

Tentamen Programmeringsteknik II och NV2 (alla varianter) 2008-12-10. Skriv bara på framsidan av varje papper.

Tentamen Programmeringsteknik II och NV2 (alla varianter) 2008-12-10. Skriv bara på framsidan av varje papper. Tentamen Programmeringsteknik II och NV2 (alla varianter) 2008-12-10 Skrivtid: 0800-1300 Inga hjälpmedel. Tänk på följande Maximal poäng är 40. För betygen 3 krävs 18 poäng. För betygen 4, 5 kommer något

Läs mer

Rekursiva algoritmer sortering sökning mönstermatchning

Rekursiva algoritmer sortering sökning mönstermatchning Anders Haraldsson 1 Anders Haraldsson 2 Dagens föreläsning Programmering i Lisp Fö 6-7 Rekursiva strukturer rekursiva definitioner rekursiva funktioner rekursiva bevis: induktion - rekursion strukturell

Läs mer

Sätt att skriva ut binärträd

Sätt att skriva ut binärträd Tilpro Övning 3 På programmet idag: Genomgång av Hemtalet samt rättning Begreppet Stabil sortering Hur man kodar olika sorteringsvilkor Inkapsling av data Länkade listor Användning av stackar och köer

Läs mer

TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.

TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. 1 (12) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt namn och personnummer på varje blad

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2013-03-27 Sal Tid 08:00 12:00 Kurskod Provkod Kursnamn/benämning Institution Antal uppgifter som ingår i tentamen Antal

Läs mer

Föreläsning 10. Grafer, Dijkstra och Prim

Föreläsning 10. Grafer, Dijkstra och Prim Föreläsning 10 Grafer, Dijkstra och Prim Föreläsning 10 Grafer Representation av grafer Dijkstras algoritm Implementation av Dijkstras algoritm Minimium spanning tree Läsanvisning och uppgifter Broarna

Läs mer

Tentamen Datastrukturer D DAT 036/INN960

Tentamen Datastrukturer D DAT 036/INN960 Tentamen Datastrukturer D DAT 036/INN960 18 december 2009 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. Betygsgränser, CTH: 3 = 24 p, 4 = 36 p, 5 = 48 p, GU:

Läs mer

Lämna in ifylld kursvärdering tillsammans med tentamen! Lösningarna till tentamensuppgifterna sätts ut på kurssidan på nätet i dag kl 13.

Lämna in ifylld kursvärdering tillsammans med tentamen! Lösningarna till tentamensuppgifterna sätts ut på kurssidan på nätet i dag kl 13. 1(11) ÖREBRO UNIVERSITET INSTITUTIONEN FÖR TEKNIK Lämna in ifylld kursvärdering tillsammans med tentamen! Lösningarna till tentamensuppgifterna sätts ut på kurssidan på nätet i dag kl 13. Denna tenta kommer

Läs mer

Föreläsning 5 Datastrukturer (DAT037)

Föreläsning 5 Datastrukturer (DAT037) Föreläsning 5 Datastrukturer (DAT037) Nils Anders Danielsson, Fredrik Lindblad 2016-11-14 Förra gången: Cirkulära arrayer Prioritetskö Binära heapar Leftistheapar merge Det verkar inte gå att slå ihop

Läs mer

Datastrukturer och algoritmer. Föreläsning 15 Inför tentamen

Datastrukturer och algoritmer. Föreläsning 15 Inför tentamen Datastrukturer och algoritmer Föreläsning 15 Inför tentamen 1 Innehåll Kursvärdering Vi behöver granskare! Repetition Genomgång av gammal tenta 2 Första föreläsningen: målsättningar Alla ska höja sig ett

Läs mer

Datastrukturer och algoritmer. Innehåll. Trie. Informell specifikation. Organisation av Trie. Föreläsning 13 Trie och Sökträd.

Datastrukturer och algoritmer. Innehåll. Trie. Informell specifikation. Organisation av Trie. Föreläsning 13 Trie och Sökträd. Datastrukturer och algoritmer Föreläsning 13 rie och ökträd Innehåll rie rådar rie ökträd tterligare en variant av träd. Vi har tidigare sett: Oordnat träd där barnen till en nod bildar en mängd Ordnat

Läs mer

DD1320 Tillämpad datalogi. Lösnings-skiss till tentamen 2010-10-18

DD1320 Tillämpad datalogi. Lösnings-skiss till tentamen 2010-10-18 DD1320 Tillämpad datalogi Lösnings-skiss till tentamen 2010-10-18 1. Mormors mobil 10p M O R M O R S M O B I L M O R M O R S M O B I L i 1 2 3 4 5 6 7 8 9 10 11 12 next[i] 0 1 1 0 1 1 4 0 1 3 1 1 Bakåtpilarna/next-värde

Läs mer

Funktionspekare, inledning: funktionsanropsmekanismen. Anrop via pekare

Funktionspekare, inledning: funktionsanropsmekanismen. Anrop via pekare Funktionspekare, inledning: funktionsanropsmekanismen Vid funktionsanrop läggs aktuella argumentvärden och återhoppsadressen på stacken, därefter sker ett hopp till adressen för funktionens första instruktion.

Läs mer

Programmering för Språkteknologer II. Innehåll. Associativa datastrukturer. Associativa datastrukturer. Binär sökning.

Programmering för Språkteknologer II. Innehåll. Associativa datastrukturer. Associativa datastrukturer. Binär sökning. Programmering för Språkteknologer II Markus Saers markus.saers@lingfil.uu.se Rum -040 stp.lingfil.uu.se/~markuss/ht0/pst Innehåll Associativa datastrukturer Hashtabeller Sökträd Implementationsdetaljer

Läs mer

Algoritmer, datastrukturer och komplexitet

Algoritmer, datastrukturer och komplexitet Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 9 oktober 2015 Anton Grensjö ADK Övning 6 9 oktober 2015 1 / 23 Översikt Kursplanering Ö5: Grafalgoritmer och undre

Läs mer

Föreläsning 10. Grafer, Dijkstra och Prim

Föreläsning 10. Grafer, Dijkstra och Prim Föreläsning 10 Grafer, Dijkstra och Prim Föreläsning 10 Grafer Representation av grafer Dijkstras algoritm Implementation av Dijkstras algoritm Minimium spanning tree Broarna i Königsberg, Euler, 17 Grafer

Läs mer

Föreläsning 2. AVL-träd, Multi-Way -sökträd, B-träd TDDD71: DALG. Innehåll. Innehåll. 1 Binära sökträd

Föreläsning 2. AVL-träd, Multi-Way -sökträd, B-träd TDDD71: DALG. Innehåll. Innehåll. 1 Binära sökträd Föreläsning AVL-träd, Multi-Wa -sökträd, B-träd DDD7: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer november 5 omm Färnqvist, IDA, Linköpings universitet. Innehåll Innehåll Binära

Läs mer

Grafik, grafiska användargränssnitt och rörliga bilder

Grafik, grafiska användargränssnitt och rörliga bilder (22 maj 2015 F14.1 ) Grafik, grafiska användargränssnitt och rörliga bilder Viktigt: Grafiska komponenter: Fönster, etiketter, knappar, textfält,... Tekniken med att med genom arv definiera t ex sitt eget

Läs mer

Datastrukturer. föreläsning 9. Maps 1

Datastrukturer. föreläsning 9. Maps 1 Datastrukturer föreläsning 9 Maps 1 Grafer och grafalgoritmer Hur implementerar man grafer? Hur genomsöker (traverserar) man grafer? Hur genomsöker man viktade grafer (och hittar kortaste vägen)? Hur beräknar

Läs mer

Skriv i mån av plats dina lösningar direkt i tentamen. Skriv ditt kodnummer längst upp på varje blad.

Skriv i mån av plats dina lösningar direkt i tentamen. Skriv ditt kodnummer längst upp på varje blad. 5(16) Tentamen på kurserna Programmeringsteknik med C och Matlab Programmering i C Tid: 2/11-11, kl. 9-13 Lärare: Jonny Pettersson Totalt: 60 poäng Betyg 3: 30 poäng Betyg 4: 39 poäng Betyg 5: 48 poäng

Läs mer

ORDINARIE TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 08:15 13:15

ORDINARIE TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 08:15 13:15 ORDINARIE TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 150112 kl. 08:15 13:15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna eller i bilogarna. ***

Läs mer

Tentamen Programmeringsteknik II Skrivtid: Hjälpmedel: Java-bok (vilken som helst) Skriv läsligt! Använd inte rödpenna!

Tentamen Programmeringsteknik II Skrivtid: Hjälpmedel: Java-bok (vilken som helst) Skriv läsligt! Använd inte rödpenna! Tentamen Programmeringsteknik II 2013-10-22 Skrivtid: 0800-1300 Hjälpmedel: Java-bok (vilken som helst) Tänk på följande Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper. Börja

Läs mer

Föreläsning 14. Filhantering

Föreläsning 14. Filhantering Föreläsning 14 Filhantering Filhantering Att hantera filer, dvs att läsa eller skriva data till en fil är en viktig del i de flesta program. Ur Javas synvinkel är filer objekt med egenskaper och metoder

Läs mer

TDDC Terminologi Uppdaterad Fö #1

TDDC Terminologi Uppdaterad Fö #1 Det här dokumentet ska inte ses som en uttömmande förklaring av varje term, utan snarare som en snabb påminnelse om vad varje enskild term betydde. För en mer noggrann beskrivning, se kursmaterialet eller

Läs mer

Tentamen. Programmeringsmetodik, KV: Java och OOP. 17 januari 2004

Tentamen. Programmeringsmetodik, KV: Java och OOP. 17 januari 2004 Tentamen Programmeringsmetodik, KV: Java och OOP 17 januari 2004 Examinator: Johan Karlsson Skrivtid: 9-15 Hjälpmedel: En av följande böcker: Barnes & Kölling: Objects First With Java a practical introduction

Läs mer

Länkade listor kan ingå som en del av språket, dock ej i C Länkade listor är ett alternativ till:

Länkade listor kan ingå som en del av språket, dock ej i C Länkade listor är ett alternativ till: Länkade listor i C Länkade listor kan ingå som en del av språket, dock ej i C Länkade listor är ett alternativ till: Dynamiskt allokerad array Arrayer allokerade på stacken Kan alltså användas till att

Läs mer

Lösningsförslag till tentamen 150317

Lösningsförslag till tentamen 150317 Uppgift 1 Lösningsförslag till tentamen 150317 1) Sant 2) Falskt. I ett RAM-minne är åtkomsttiden densamma för alla minnesadresser.) 3) Falskt. Det är TCP som använder sig av en fast kommunikationsförbindelse.)

Läs mer

Föreläsning 9. struct

Föreläsning 9. struct Föreläsning 9 struct Dagens kluring #include #include void fun(char s[]) int i=-1; while(s[++i]!=0) if('a'

Läs mer

Föreläsningsanteckningar F6

Föreläsningsanteckningar F6 Föreläsningsanteckningar F6 Martin Andersson & Patrik Falkman Kortaste vägen mellan en nod och alla andra noder Detta problem innebär att givet en graf G = (E,V) hitta den kortaste vägen över E från en

Läs mer

Hitta k största bland n element. Föreläsning 13 Innehåll. Histogramproblemet

Hitta k största bland n element. Föreläsning 13 Innehåll. Histogramproblemet Föreläsning 13 Innehåll Algoritm 1: Sortera Exempel på problem där materialet i kursen används Histogramproblemet Schemaläggning Abstrakta datatyper Datastrukturer Att jämföra objekt Om tentamen Skriftlig

Läs mer

TDIU01 - Programmering i C++, grundkurs

TDIU01 - Programmering i C++, grundkurs TDIU01 - Programmering i C++, grundkurs Pekare och Listor Eric Elfving Institutionen för datavetenskap 31 oktober 2014 Översikt 2/41 Internminne Pekare Dynamiska datastrukturer (Enkellänkade) listor Arbeta

Läs mer

Tommy Färnqvist, IDA, Linköpings universitet. 1 ADT Map/Dictionary 1 1.1 Definitioner... 1 1.2 Implementation... 2

Tommy Färnqvist, IDA, Linköpings universitet. 1 ADT Map/Dictionary 1 1.1 Definitioner... 1 1.2 Implementation... 2 Föreläsning 4 ADT Map/Dictionary, hashtabeller, skip-listor TDDC91: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 9 september 2015 Tommy Färnqvist, IDA, Linköpings universitet 4.1

Läs mer

Föreläsning 6. Slumptal Testa slumptal Slumptal för olika fördelningar Grafer Datastrukturen graf

Föreläsning 6. Slumptal Testa slumptal Slumptal för olika fördelningar Grafer Datastrukturen graf Föreläsning 6 Slumptal Testa slumptal Slumptal för olika fördelningar Grafer Datastrukturen graf Repetition En dator kan inte generera slumptal då den är helt deterministisk, däremot kan den generera pseudo-slumptal

Läs mer

Tentamen i. TDDC67 Funktionell programmering och Lisp

Tentamen i. TDDC67 Funktionell programmering och Lisp 1 Linköpings tekniska högskola Institutionen för datavetenskap Anders Haraldsson Tentamen i TDDC67 Funktionell programmering och Lisp och äldre kurser TDDC57 Programmering, Lisp och funktionell programmering

Läs mer