Räknare och impedansmätningar

Storlek: px
Starta visningen från sidan:

Download "Räknare och impedansmätningar"

Transkript

1

2 Förberedelser Inför laborationen: Skriv ut den här laborationshandledningen eller ladda ner den till dator/surfplatta (ej mobiltelefon) och ta med handledningen till laborationen. Läs igenom laborationshandledningen, förslagsvis appendix och förberedelseuppgifter först och därefter själva laborationsanvisningarna. Ta med miniräknare till laborationen. Läs i kursboken Elektronisk mätteknik: Kap. 2.2 Standardavvikelse kring globalt medelvärde, s Kap. 3.1 Allmänt om spänningsmätning, s Kap 3.3 Ingångssteget i en DVM/DMM, s Kap 3.4 Integrerande A/D-omvandling, s Kap Mätning av växelspänning/strömmar/resistans, s Kap 3.9 Speciella DMM-funktioner, s Kap s Kap Övriga mätfunktioner, styrning av mätförlopp samt mätosäkerhet, s Kap , sid Kap. 3.8, sid Kap. 7, sid och Du skall känna till och kortfattat kunna beskriva: Likriktat medelvärde, effektivvärde och toppvärde Digital voltmeter Ingångsimpedans Integrerande A/D-omvandling och undertryckning av nätstörningar (50 Hz). Tvåtråds- och fyrtrådsmätning av resistans Konventionell och reciprok frekvensräknare De fem vanligaste mätfelsorsakerna vid frekvens- och tidintervallsmätning Påverkan av hysteresbandets bredd för triggerns känslighet och när olika bredd på hysteresband används Det s.k. ±1 felet vid frekvensmätning Relativ och absolut noggrannhet för konventionell och reciprok frekvensräknare Period- och tidintervallsmätare Stigtid, falltid, amplitud, periodtid, frekvens och pulslängd för en pulsliknande signal DC-kopplad resp. AC-kopplad ingång på frekvensräknare resp. periodtidsmätare Impedansbegreppet och olika modeller för beskrivning av komponenter Ström/spänning-metoden Mätbryggor, Wheatstone Inverkan av kablar vid höga frekvenser (forts. nästa sida) Biomedicinsk teknik vid LTH Sida 2

3 Karakteristisk impedans och reflektionsfaktorn. För godkänd laboration krävs: Godkänt på de skriftliga förberedelsefrågorna. Godkänd laboration Teori: Multimeter och räknare Inledning Multimetern har länge varit ett allsidigt och ofta använt instrument. Kunskap om dess funktioner och egenskaper är därför självklar för varje mätingenjör. I denna teoridel gås den elementära uppbyggnaden av en multimeter igenom, och dess egenskaper beskrivs. Med kunskap om instrumentets konstruktion blir det sedan mycket enklare att förstå hur det kan användas, men kanske också hur det inte bör användas. Den andra delen av teoridelen kommer att ägnas åt den digitala räknaren. En digital räknare kan med enkla grepp fås att mäta frekvens, periodtid, antal pulser samt tidsintervall. Detta skall användas för att göra ett flertal olika mätningar och illustrera både problem och tänkbara felkällor. När en mätning skall utföras är det ofta av största vikt att ta reda på så mycket som möjligt om den "okända" signalen. Detta är verkligen sant för frekvensmätning, då framförallt brus i signalen får de snabba kretsarna att göra felregistreringar om inga åtgärder motverkar att så sker. Ett viktigt hjälpmedel blir därför oscilloskopet, som gör det möjligt att få en detaljerad bild av signalen och därmed den grundläggande kännedomen som behövs för att genomföra en noggrann mätning av t ex frekvensen. Varför använder man då en räknare, när oscilloskopet är så bra? Biomedicinsk teknik vid LTH Sida 3

4 Multimetern Benämningen multimeter kommer naturligt nog från dess egenskap att kunna mäta flera olika (multipla) storheter. De tre grundläggande storheter, som alltid kan mätas med en multimeter, är spänning, ström och resistans. Mätningen av dessa storheter grundar sig på hantering av Ohms lag. Om man genererar en konstant ström, med känt värde, och låter den flyta genom en okänd resistans, kan dess värde beräknas genom att mäta spänningsfallet. På motsvarande sätt beräknas lätt en okänd ström, genom att mäta spänningsfallet över en känd resistans. En av de viktigare kunskaperna att ha med sig vid användningen av multimetern är dess egenresistans. Vid inkoppling kommer man ju med multimetern att påverka den krets på vilken man önskar göra en mätning, och alltså riskerar att mäta ett felaktigt värde. Det är då viktigt att känna till hur detta fel uppkommer och därmed hur man kan korrigera sitt uppmätta värde till det korrekta värdet. De allra enklaste multimetrarna bygger på analog teknik, dvs. de låter ström eller spänning direkt påverka en visare som motsvarar storhetens värde. De flesta instrument idag bygger emellertid på digital teknik för att kunna dra nytta av den högre noggrannhet man på detta sätt kan uppnå. Den digitala multimetern, figur 1, använder en spänningsreferens och en A/D-omvandlare för att bestämma nivån på den okända spänningen. Vid ström eller resistansmätning omvandlas först dessa storheter till en spänning i ingångssteget, som är en viktig del av instrumentet. Figur 1: Blockschema för en digital Voltmeter. Biomedicinsk teknik vid LTH Sida 4

5 Räknarens uppbyggnad Grundidén för en frekvensräknare är att under en mycket väldefinierad tid, till exempel 1s, räkna antal perioder hos den okända signalen. Under förutsättning att den okända signalen håller en lämplig nivå för logiska kretsar, till exempel 5 V amplitud, kan detta enkelt realiseras genom att räkna utpulserna från OCH-grinden i figur 2. En räknare som fungerar enligt denna princip kallas för en konventionell räknare. okänd sig nal Huvudgrind Räknare Binärt tal 1 s Figur 2: Grundidén för frekvensräknare. Sätter vi nu en display efter räknaren har vi en mycket enkel frekvensräknare. Denna konstruktion har dock fortfarande för stora brister. För att kunna användas praktiskt behöver räknaren och displaykretsarna minst tre insignaler: Okänd signal (med pulser som skall räknas) Ett LÄS IN-kommando till displaykretsarna Ett NOLLSTÄLL-kommando till räknaren De två senare signalerna skall ges när den sista pulsen lästs in till räknaren eller, vilket blir samma sak, när en-sekundspulsen går från hög nivå till låg. Ett ytterligare krav är att LÄS IN kommer före NOLLSTÄLL. För att få en väl definierad en-sekunds puls används ofta en 10 MHz-oscillator vars frekvens är mycket stabil. Denna höga frekvens delas sedan ner så att resultatet blir en fyrkantvåg med frekvensen 1 Hz. En signal med frekvensen 1 Hz har dock periodtiden en sekund vilket innebär att frekvensen måste delas ytterligare en faktor två för att en puls med längden en sekund skall erhållas. Steget från denna konstruktion till en tidmätare är heller inte speciellt långt. Om tiden mellan två händelser skall mätas ser man till att varje händelse genererar en puls. Den första pulsen öppnar huvudgrinden och den andra pulsen stänger huvudgrinden, och antal klockpulser räknas under denna tid (motsvarande FÖNSTER). Funktionen kan enkelt realiseras med en så kallad logisk vippa (SR-vippa). Den konventionella räknaren har vissa nackdelar. Eftersom den mäter under exakt en sekund men inte synkroniserar den okända signalen med klockpulsen kan man råka börja eller sluta mäta var som helst i en period. Mätosäkerheten i en konventionell räknare är alltså ±1 ingångscykel. Beroende på vilken frekvens det är på signalen man mäter kommer man alltså att få olika bra Biomedicinsk teknik vid LTH Sida 5

6 upplösning. En lågfrekvent signal ger ett ganska stort fel medan en högfrekvent signal ger ett ganska marginellt fel. För att få bukt med dessa problem så används istället en reciprok räknare. Den reciproka räknaren använder sig av två räknekedjor, en för ingångssignalen och en för klockpulserna. Genom att kombinera dessa och använda sig av en mikroprocessor kan man se till att man mäter över ett exakt antal hela ingångcykler. Tiden man mäter över kan oftast väljas av användaren och ju längre mättid man har, desto högre noggrannhet får man i sin mätning. Figur 3: Blockschema över en reciprok räknare. Mätosäkerheten i en reciprok räknare kommer inte vara beroende av frekvensen utan ger en ganska hög relativ upplösning även för låga frekvenser. Mätfelet här blir istället ±1 klockcykel och felet härstammar från att man inte har kontroll över fasläget på klockan när mätningen startar. För att få en ännu noggrannare räknare kan man sätta in en så kallad interpolatorkrets i den reciproka räknaren som då istället kallas för en interpolerande räknare. Den interpolerande räknaren håller reda på var någonstans i klockpulsen man startar och stoppar sin mätning, fasläget, och man kan på så sätt få en upplösning som är gånger högre än en vanlig reciprok räknare. Denna typ av räknare är den idag vanligast förekommande. Biomedicinsk teknik vid LTH Sida 6

7 Förberedelseuppgifter 1. Räknare kan arbeta antingen som reciproka eller som konventionella. a) Vilken av de båda typerna har bäst upplösning (flest värdesiffror) vid mätning på signaler med låga frekvenser? b) Antag att en reciprok räknare behöver mäta över 10 hela perioder av en insignal. Hur lång blir mättiden vid 100 Hz respektive 0,1 Hz? 2. En vanlig temperatursensor är ett s.k. Pt-100 elementet, som är en platinatråd som ändrar sin resistans med temperaturen och som har en resistans på 100 Ω vid 0 C, därav namnet. För att utnyttja ett Pt-100 elementet som en termometer i en Wheatstonebrygga är det förstås opraktiskt att manuellt behöva balansera bryggan varje gång en avläsning ska ske. Direkt mätning med en multimeter kan vara en bättre lösning men eftersom resistansförändringen per grad är ganska liten så kan det bli problem med upplösningen i mätningen om små temperaturskillnader ska mätas, t.ex. mellan 0 och 100 grader C. Anledningen är att Pt-100 elementet har resistansen 100 Ω vid 0 C och denna resistans kommer att hamna som en offset i mätningen (resistansförändringen mellan 0 och 100 C rör sig om några tiotals Ohm, se tabell i laborationsdelen). Situationen kan förbättras genom att använda en Wheatstonebrygga och balansera den vid en referenstemperatur, t.ex. 0 C. Genom att mäta den obalansspänning som uppkommer mellan bryggans mittuttag då temperaturen är skild från 0 C erhålls ett mätvärde utan offset som kan räknas om till resistans hos Pt-100 och därigenom temperatur. Ge ett förslag på en koppling där de fasta motstånden utgörs av 100 ohms resistorer och visa hur resistansändringen hos Pt-100 elementet kan beräknas ur obalansspänningen. Biomedicinsk teknik vid LTH Sida 7

8 3. Vid resistansmätning med fyrtrådsmätning har en strömkontakt hamnat innanför spänningsanslutningarna på motståndet R, R=1,0 Ω 0,1%, se den undre figuren nedan. Normalt ligger en kontaktresistans på ca 100 mω. Vilket fel i mätningen av R får du pga. detta? Biomedicinsk teknik vid LTH Sida 8

9 Laboration: Inledning Syftet med denna laboration är att du ska bekanta dig med några av de mer fundamentala mätinstrumenten och mätmetoderna som en civilingenjör sannolikt kan stöta på i sin yrkesutövning. Bland dessa instrument finns förutom oscilloskopet, som du redan bekantat dig med, även multimetern och räknaren. Materiel Digital räknare Hewlett Packard 53131A Bänkmultimeter HP/Agilent Handmultimeter Fluke 77 Signalgenerator Leader LFG-1310 Digitalt oscilloskop TDS210 / TDS1002 / TDS2002C Spänningsaggregat Uppställning för mätning av reaktionstid Pt-100 temperaturgivare Lång koaxialkabel RG-58, Z 0 = 50 Ω, v = 0,66c Kort koaxialkabel, RG-58 Kort antennkabel, 75 Ω. BNC T-kontakt BNC öppen BNC kortsluten 3 st BNC med mätobjekt Biomedicinsk teknik vid LTH Sida 9

10 Allmän instrumentkännedom Inledningsvis är det lämpligt att bekanta sig med signalgenerator, frekvensräknare och multimeter. Kortfattade beskrivningar av funktionen hos instrumenten finns i appendix A. Börja gärna med att förutsättningslöst studera utsignalen från signalgeneratorn med hjälp av oscilloskop, multimeter och frekvensräknare. Mätning med multimetrarna HP/Agilent och Fluke För att bestämma spänningen på tre olika signaler som genereras med funktionsgeneratorn har du till din hjälp två olika typer av multimetrar. Gör mätningarna för sågtandsignal, fyrkantsignal och sinussignal. Frekvens, amplitud och likspänningsnivå för signalerna ska vara f = 430 Hz, Offset = 1,5 V; U = 3,0V pp (V pp= Volt peak-to-peak, dvs. botten till toppen ). Kontrollera att signalerna ser rätt ut genom att studera dem i oscilloskopet. 2. Mät upp både växelspännings- och likspänningskomponent för de tre signalerna med hjälp av bänkmultimetern. Sinussignal: Fyrkantsignal: växelspänningskomponent: likspänningskomponent: växelspänningskomponent: Likspänningskomponent: Sågtandsignal: växelspänningskomponent: likspänningskomponent: 3. Mät även upp signalen med den handhållna Fluke 77-multimetern. Sinussignal: Fyrkantsignal: Sågtandsignal: växelspänningskomponent: likspänningskomponent: växelspänningskomponent: likspänningskomponent: växelspänningskomponent: likspänningskomponent: 4. Varför skiljer sig mätvärdena åt mellan de båda multimetrarna? Mäts likspänningskomponenten i signalen vid växelspänningsmätningen? Ledning finns i kursboken på s Biomedicinsk teknik vid LTH Sida 10

11 5. Beräkna signalens sanna effektivvärde! (det räcker att beräkna för en av vågformerna) 6. Genom att öka antalet siffror på bänkmultimetern så ökas också mätnoggrannheten. En effekt av att mätnoggrannheten ökar för instrumentet är att tiden mellan två uppdateringar av skärmen också ökar. Vad är det egentligen som påverkar mätnoggrannheten för multimetern när du väljer att öka upplösningen (visa fler siffror)? Resistansmätning En av funktionerna hos en multimeter är att den kan mäta resistans. Denna funktion uppnås genom att en krets i multimetern alstrar en konstant ström som, när den flyter genom mätobjektet, ger upphov till ett spänningsfall. Eftersom strömmen är känd (storleksordningen ma) är det enkelt att beräkna resistansen för det aktuella objektet. En vanligt förekommande mätuppgift är temperaturmätning, där temperaturberoendet hos resistansen hos en temperatursensor utnyttjas. En vanlig precisions-temperatursensor är Pt-100 där platina utnyttjas som sensormaterial och denna tillverkas så att resistansen är 100 ohm vid 0 C, med ett temperaturberoende enligt tabellen nedan. 7. Du kan på en mer avancerad multimeter, som den på labben, välja att använda antingen vanlig 2-terminalmätning (tvåtrådsmätning, 2-wire) eller den mer avancerade 4- terminalmätningen (fyrtrådsmätning, 4-wire). När är det lämpligt att använda dessa? Biomedicinsk teknik vid LTH Sida 11

12 8. Mät rumstemperaturen så noggrant som möjligt med Pt-100-elementet (se tabell 1, nedan) med både 2-terminal- och 4-terminalmätning. Hur stort temperaturfel ger kontaktresistanserna? Vilken metod rekommenderar du i detta fall? Tabell 1. Resistans som funktion av temperatur för en Pt-100 givare. Biomedicinsk teknik vid LTH Sida 12

13 Transmissionsledare och reflektionsmetoden Vid mätningar vid framför allt höga frekvenser är det viktigt att kabelanslutningar i mätsystemen är avslutade för att undvika mätfel pga. reflektioner och stående vågor. Detta moment ska illustrera effekter vid pulsformade signaler där de elektriska vågornas begränsade utbredningshastighet ger upphov till en del (kanske oväntade) effekter. I mätuppgifterna utnyttjas genomgående en funktionsgenerator inställd på 10 khz fyrkantsvåg med maximal amplitud. En BNC T-koppling sätts på ett digitalt oscilloskop och ansluts i ena änden till funktionsgeneratorn med en kort koaxialkabel. 9. Anslut den långa koaxialkabeln till andra änden av T-kopplingen, låt bortre änden av kabeln vara öppen. Studera vad som händer i stegögonblicket vad kan vara ett lämpligt område för sveptiden (tidbasen)? Rita in i nedanstående diagram och förklara utseendet. Öppen ände 10. Gör på motsvarande sätt med kortsluten ände. Rita och förklara. Kortsluten ände Biomedicinsk teknik vid LTH Sida 13

14 11. Genom att mäta och beräkna reflektionsfaktorn när en okänd impedans ansluts till den bortre änden går det att beräkna värdet på impedansen. Mät upp och beräkna värdet på de tre okända impedanserna A, B och C som finns monterade på BNC-kontakter. Rita utseendet på oscilloskopskärmen för de tre impedanserna. A =. Ω B = Ω C = Ω 12. Vad kan man säga om noggrannheten i reflektionsmetoden för mycket stora respektive mycket små impedanser? Biomedicinsk teknik vid LTH Sida 14

15 13. Prova vad som händer med pulsutseendet om koaxialkabeln förlängs med en bit TVantennkabel med 75 Ohms karakteristisk impedans. Skissa kurvan. Varför ser den ut som den gör? Avslutning med 75 Ohms antennkabel Den teknik som utnyttjats i föregående mätningar kallas för TDR (Time Domain Reflectometry) eller pulsekometri. Metoden utnyttjas av t.ex. Telia eller E.ON för att lokalisera kabelfel. De instrument som används är då specialdesignade för uppgiften och det går att bestämma läget för t.ex. kortslutning eller avbrott med hög noggrannhet under förutsättning att man känner utbredningshastigheten. Därigenom kan man undvika onödigt grävande och sparar på så sätt både tid och pengar. Biomedicinsk teknik vid LTH Sida 15

16 Mätning med räknare HP 53131A En frekvensräknare kan arbeta på två olika sätt: a) Direkt frekvens (dvs. konventionell), då räknaren direkt mäter hur många pulser av den okända signalen som detekteras under en väl definierad tid (t.ex. en sekund). b) Reciprok räkning, då räknaren under en eller flera perioder av den okända signalen räknar antal perioder av en intern högfrekvent referenssignal. 14. Ställ in signalgeneratorn på ca 1 MHz sinusvåg. Mät den exakta frekvensen, periodtiden och stigtiden. 15. Undersök vilken metod HP-räknaren använder (förberedelseuppgift 1 kan ge dig vägledning kring hur du kan undersöka den). 16. Vilken funktion fyller mättidens längd (gate time)? Mätning av reaktionstid 17. Vad är ett rimligt värde att förvänta på (den mänskliga) reaktionstiden? I denna uppställning skall du använda ett labbkort som genererar en signal (stimulans) för dig att reagera på. Stimulansen är antingen en lysdiod som tänds, en summer som ljuder eller en extern elmotor som börjar vibrera. För att stoppa stimulansen trycker du på en inkopplad stoppknapp. Samtidigt som stimulansen startar ger labbkortet en startsignal som mäts på kontakten Start och när du trycker på stoppknappen ger labbkortet en stoppsignal som mäts på kontakten Stopp. Tiden mellan startsignal och stoppsignal är således din egen reaktionstid. Vid mätning av reaktionstid för ljus (LED) finns en omkopplare för två olika stimulansmoder. I det ena läget (R) fås en röd ljussignal varje gång, och i det andra (R/G) kommer den röda signalen ibland att bytas ut mot en grön ljussignal. Spänningsmata labbkortet med 5V, koppla in stoppknapp och elmotor (vibrator). Studera med hjälp av oscilloskopet hur start- och stoppsignalerna ser ut och ställ därefter in räknaren så att mätningen sker korrekt. Framförallt måste triggningen ske på rätt flank och på en lämplig triggnivå. Biomedicinsk teknik vid LTH Sida 16

17 18. Varför bör ingångsimpedansen på räknaren vara ställd till 1MΩ? 19. a) Mät reaktionstiden för lysdiod med hjälp av räknaren för din laborationskamrat. Gör 10 mätningar med omkopplaren i läge R och skriv ner mätvärdena i protokollet nedan. Det går även bra att skriva in direkt i miniräknare; i många miniräknare går det att lägga in mätvärdena i listor/vektorer och sen kan miniräknaren själv räkna ut medelvärde och standardavvikelse. Upprepa mätserierna av reaktionstid även för stimulans från ljud (SUMMER) och vibration (VIBRATOR i hand). b) Beräkna medelvärde och standardavvikelse för gjorda mätningar (om du behöver friska upp minnet kring beräkning av standardavvikelse, se kursboken s ). Vilka slutsatser kan du dra utifrån medelvärdena och standardavvikelserna? Stäm av dina slutsatser med laborationshandledaren! OBS: det är viktigt att samma person gör samtliga mätningar Medelvärde: Standardavvikelse: Lysdiod Summer Vibrator 20. Fundera igenom vad som kan förbättras i denna mätning! Handledning reviderad: JG, JG, JG Biomedicinsk teknik vid LTH Sida 17

18 Appendix A - en kort introduktion till instrumenten Knappar och dylikt utan förklarande text behöver inte användas för att lösa labbuppgifterna, men du får naturligtvis gärna prova att använda dem ändå! Multimeter Hewlett Packard / Agilent Frekvensräknare HP 53131A Biomedicinsk teknik vid LTH Sida 18

Multimeter och räknare

Multimeter och räknare Multimeter och räknare Inför laborationen: Skriv ut den här laborationshandledningen eller ladda ner den till dator/surfplatta (ej mobiltelefon) och ta med handledningen till laborationen. Läs igenom laborationshandledningen,

Läs mer

Sensorer och Mätteknik 2015

Sensorer och Mätteknik 2015 Sensorer och Mätteknik 2015 Lab Räknare och impedansmätningar Biomedicinsk teknik LTH Förberedelser Inför laborationen: Skriv ut den här laborationshandledningen eller ladda ner den till dator/surfplatta

Läs mer

Sensorer och Mätteknik 2014

Sensorer och Mätteknik 2014 Sensorer och Mätteknik 2014 Lab Impedans Biomedicinsk teknik LTH Lektion: Impedans Läsanvisningar Carlson, Johansson: Elektronisk Mätteknik. Kap. 1.3 1.5, sid. 15 40. Kap. 3.8, sid. 166 169. Kap. 7, sid.

Läs mer

Multimeter & Räknare 2015

Multimeter & Räknare 2015 Laborationshandledning, EEM007 Multimeter & Räknare 2015 INSTITUTIONEN FÖR BIOMEDICINSK TEKNIK, LTH Multimeter och räknare Läsanvisningar Carlson, Johansson: Elektronisk Mätteknik Kap. 2.2 Standardavvikelse,

Läs mer

Mätteknik för E & D Impedansmätning Laborationshandledning Institutionen för biomedicinsk teknik LTH

Mätteknik för E & D Impedansmätning Laborationshandledning Institutionen för biomedicinsk teknik LTH Mätteknik för E & D Impedansmätning Laborationshandledning 2016 Institutionen för biomedicinsk teknik LTH Lektion: Impedans Inför laborationen Skriv ut den här laborationshandledningen eller ladda ner

Läs mer

Sensorer och mätteknik Laborationshandledning

Sensorer och mätteknik Laborationshandledning Sensorer och mätteknik Laborationshandledning Institutionen för biomedicinsk teknik LTH Introduktion Välkommen till introduktionslaborationen! Syftet med dagens laboration är att du ska få bekanta dig

Läs mer

Mätteknik för E & D Laborationshandledning Tid & frekvens Institutionen för biomedicinsk teknik LTH

Mätteknik för E & D Laborationshandledning Tid & frekvens Institutionen för biomedicinsk teknik LTH Mätteknik för E & D Laborationshandledning Tid & frekvens 2018 Institutionen för biomedicinsk teknik LTH Inför laborationen Skriv ut den här laborationshandledningen eller ladda ner den till dator/surfplatta

Läs mer

Mätteknik för E & D Tid- och frekvensmätning Laborationshandledning Institutionen för biomedicinsk teknik LTH

Mätteknik för E & D Tid- och frekvensmätning Laborationshandledning Institutionen för biomedicinsk teknik LTH Mätteknik för E & D Tid- och frekvensmätning Laborationshandledning 2016 Institutionen för biomedicinsk teknik LTH Inför laborationen Skriv ut den här laborationshandledningen eller ladda ner den till

Läs mer

Multimeter och räknare

Multimeter och räknare Multimeter och räknare Förberedelser Multimeter och räknare Inför laborationen: Skriv ut den här laborationshandledningen eller ladda ner den till dator/surfplatta (ej mobiltelefon) och ta med handledningen

Läs mer

Laborationshandledning för mätteknik

Laborationshandledning för mätteknik Laborationshandledning för mätteknik - digitalteknik och konstruktion TNE094 LABORATION 1 Laborant: E-post: Kommentarer från lärare: Institutionen för Teknik och Naturvetenskap Campus Norrköping, augusti

Läs mer

Multimeter och räknare AD-omvandling. Multimeter

Multimeter och räknare AD-omvandling. Multimeter Multimeter och räknare AD-omvandling 1 Multimeter 2 1 Praktiskt prov E:1325 Tre stationer för övning Anmälan på lista 3 Upplägg Multimeter Grundprincip Inre resistans Spänningsmätning Resistansmätning

Läs mer

Multimeter och räknare Del 2: Räknare. Räknare - varför

Multimeter och räknare Del 2: Räknare. Räknare - varför Multimeter och räknare Del 2: Räknare 1 Räknare - varför! Mätning av tid eller frekvens! Ett oscilloskop har normalt 3 4 siffors upplösning som bäst! En räknare kan ha 9 eller fler siffror 2 Räknare -

Läs mer

Operationsförstärkaren. Den inverterande förstärkaren. Integrerande A/D-omvandlare. Multimeter - blockschema. Integratorn. T ref *U x = -T x *U ref

Operationsförstärkaren. Den inverterande förstärkaren. Integrerande A/D-omvandlare. Multimeter - blockschema. Integratorn. T ref *U x = -T x *U ref Multimeter)och)räknare) Multimeter och räknare Läsanvisningar Carlson,)Johansson:)Elektronisk)Mätteknik) Multimeter och räknare! Kap.)2.2) )Standardavvikelse),)s.72@73)! Kap.)3.) )Allmänt)om)spänningsmätning,)s.27)

Läs mer

Multimeter & Räknare

Multimeter & Räknare Multimeter & Räknare LARS WALLMAN, BIOMEDICINSK TEKNIK Läsanvisningar Kap. 2.2 Standardavvikelse, s. 72-73 Kap. 3.1 Allmänt om spänningsmätning, s. 127 130 Kap 3.3 Ingångssteget i en DVM/DMM, s. 136 137

Läs mer

LTK010, vt 2017 Elektronik Laboration

LTK010, vt 2017 Elektronik Laboration Reviderad: 20 december 2016 av Jonas Enger jonas.enger@physics.gu.se Förberedelse: Du måste känna till följande Kirchoffs ström- och spänningslagar Ström- och spänningsriktig koppling vid resistansmätning

Läs mer

Elektroteknikens grunder Laboration 1

Elektroteknikens grunder Laboration 1 Elektroteknikens grunder Laboration 1 Grundläggande ellära Elektrisk mätteknik Elektroteknikens grunder Laboration 1 1 Mål Du skall i denna laboration få träning i att koppla elektriska kretsar och att

Läs mer

Elektronik grundkurs Laboration 1 Mätteknik

Elektronik grundkurs Laboration 1 Mätteknik Elektronik grundkurs Laboration 1 Mätteknik Förberedelseuppgifter: Uppgifterna skall lösas före laborationen med papper och penna och vara snyggt uppställda med figurer. a) Gör beräkningarna till uppgifterna

Läs mer

Multimeter och räknare AD-omvandling. Multimeter

Multimeter och räknare AD-omvandling. Multimeter Multimeter och räknare AD-omvandling 1 Multimeter 2 1 Fördjupningsarbete T.ex. Givarsystem i bilar Kemiska givarsystem Mikromekaniska givarsystem Nanosystem Patch-clamp system System för mätning på nervaktivitet

Läs mer

Laborationsrapport Elektroteknik grundkurs ET1002 Mätteknik

Laborationsrapport Elektroteknik grundkurs ET1002 Mätteknik Laborationsrapport Kurs Lab nr Elektroteknik grundkurs ET1002 1 Laborationens namn Mätteknik Namn Kommentarer Utförd den Godkänd den Sign 1 Elektroteknik grundkurs Laboration 1 Mätteknik Förberedelseuppgifter:

Läs mer

Laborationshandledning för mätteknik

Laborationshandledning för mätteknik Laborationshandledning för mätteknik - digitalteknik och konstruktion TNE094 LABORATION 2 Laborant: E-post: Kommentarer från lärare: Institutionen för Teknik och Naturvetenskap Campus Norrköping, augusti

Läs mer

Elektricitetslära och magnetism - 1FY808. Lab 3 och Lab 4

Elektricitetslära och magnetism - 1FY808. Lab 3 och Lab 4 Linnéuniversitetet Institutionen för fysik och elektroteknik Elektricitetslära och magnetism - 1FY808 Lab 3 och Lab 4 Ditt namn:... eftersom labhäften far runt i labsalen. 1 Laboration 3: Likström och

Läs mer

Tid- och frekvensmätning Ola Jakobsson Johan Gran, labbhandledare

Tid- och frekvensmätning Ola Jakobsson Johan Gran, labbhandledare Tid- och frekvensmätning Ola Jakobsson Johan Gran, labbhandledare Ola.jakobsson@elmat.lth.se johangran@gmail.com Plan för dagen och morgondagen Måndag -Genomgång av kapitel 4 -Räkneuppgifter i boken (frivilligt

Läs mer

Apparater på labbet. UMEÅ UNIVERSITET 2004-04-06 Tillämpad fysik och elektronik Elektronik/JH. Personalia: Namn: Kurs: Datum:

Apparater på labbet. UMEÅ UNIVERSITET 2004-04-06 Tillämpad fysik och elektronik Elektronik/JH. Personalia: Namn: Kurs: Datum: UMEÅ UNIVERSITET 2004-04-06 Tillämpad fysik och elektronik Elektronik/JH Apparater på labbet Personalia: Namn: Kurs: Datum: Återlämnad (ej godkänd): Rättningsdatum Kommentarer Godkänd: Rättningsdatum Signatur

Läs mer

Tid- och frekvensmätning - inför laborationen del 2 -

Tid- och frekvensmätning - inför laborationen del 2 - Tid- och frekvensmätning - inför laborationen del 2 - Lars Wallman Johan Gran Lektionsplan Kapitel 4: Mätning av tid och frekvens - 4.6 Mätning av höga frekvenser (>1 GHz) - 4.7 Tidbasoscillatorn - 4.8

Läs mer

Multimeter och räknare Del 1: Multimetern. Multimeter

Multimeter och räknare Del 1: Multimetern. Multimeter Multimeter och räknare Del 1: Multimetern 1 Multimeter 2 1 Multimeter - bakgrund Numera nästan alltid digitala Klarar av att mäta många storheter Mäter t ex spänning, resistans, ström, kortslutning, temperatur

Läs mer

Laborationsrapport. Kurs El- och styrteknik för tekniker ET1015. Lab nr. Laborationens namn Lik- och växelström. Kommentarer. Utförd den.

Laborationsrapport. Kurs El- och styrteknik för tekniker ET1015. Lab nr. Laborationens namn Lik- och växelström. Kommentarer. Utförd den. Laborationsrapport Kurs El- och styrteknik för tekniker ET1015 Lab nr 1 version 1.2 Laborationens namn Lik- och växelström Namn Kommentarer Utförd den Godkänd den Sign 1 Inledning I denna laboration skall

Läs mer

Spä nningsmä tning äv periodiskä signäler

Spä nningsmä tning äv periodiskä signäler UMEÅ UNIVERSITET v, 6-- Tillämpad fysik och elektronik Sverker Johansson Bo Tannfors Nils Lundgren Ville Jalkanen Spä nningsmä tning äv periodiskä signäler Introduktion Laborationen går ut på att med mätinstrument

Läs mer

ELEKTROTEKNIK. Laboration E701. Apparater för laborationer i elektronik

ELEKTROTEKNIK. Laboration E701. Apparater för laborationer i elektronik UMEÅ UNIVERSITET Tillämpad fysik och elektronik Håkan Joëlson 2008-11-03 v 1.2 ELEKTROTEKNIK Laboration E701 Apparater för laborationer i elektronik Innehåll Mål... Teori... Uppgift 1...Spänningsaggregat

Läs mer

Laborationsrapport. Kurs Elinstallation, begränsad behörighet. Lab nr 2. Laborationens namn Växelströmskretsar. Kommentarer. Utförd den.

Laborationsrapport. Kurs Elinstallation, begränsad behörighet. Lab nr 2. Laborationens namn Växelströmskretsar. Kommentarer. Utförd den. Laborationsrapport Kurs Elinstallation, begränsad behörighet Lab nr 2 version 3.1 Laborationens namn Växelströmskretsar Namn Kommentarer Utförd den Godkänd den Sign 1 Inledning I denna laboration skall

Läs mer

IDE-sektionen. Laboration 5 Växelströmsmätningar

IDE-sektionen. Laboration 5 Växelströmsmätningar 9428 IDEsektionen Laboration 5 Växelströmsmätningar 1 Förberedelseuppgifter laboration 4 1. Antag att vi mäter spänningen över en okänd komponent resultatet blir u(t)= 3sin(ωt) [V]. Motsvarande ström är

Läs mer

Mätteknik (ESSF10) Kursansvarig: Johan Nilsson Översiktligt kursinnehåll

Mätteknik (ESSF10) Kursansvarig: Johan Nilsson Översiktligt kursinnehåll Biomedicinsk teknik Mätteknik (ESSF10) Kursansvarig: Johan Nilsson (johan.nilsson@bme.lth.se) Översiktligt kursinnehåll Metoder för mätning av elektriska storheter som: Spänning, Ström, Impedans, Tid,

Läs mer

4 Laboration 4. Brus och termo-emk

4 Laboration 4. Brus och termo-emk 4 Laboration 4. Brus och termoemk 4.1 Laborationens syfte Detektera signaler i brus: Detektera periodisk (sinusformad) signal med hjälp av medelvärdesbildning. Detektera transient (nästan i alla fall)

Läs mer

Mätning av elektriska storheter. Oscilloskopet

Mätning av elektriska storheter. Oscilloskopet Mätning av elektriska storheter Oscilloskopet Mål Känna till egenskaperna hos grundtyperna av instrument för mätning av elektrisk spänning, ström, resistans och effekt Ha förståelse för onoggrannhet och

Läs mer

Extralab fo r basterminen: Elektriska kretsar

Extralab fo r basterminen: Elektriska kretsar Extralab fo r basterminen: Elektriska kretsar I denna laboration får du träna att koppla upp kretsar baserat på kretsscheman, göra mätningar med multimetern samt beräkna strömmar och spänningar i en krets.

Läs mer

Impedans och impedansmätning

Impedans och impedansmätning 2016-09- 14 Impedans och impedansmätning Impedans Många givare baseras på förändring av impedans Temperatur Komponentegenskaper Töjning Resistivitetsmätning i jordlager.... 1 Impedans Z = R + jx R = Resistans

Läs mer

Ett urval D/A- och A/D-omvandlare

Ett urval D/A- och A/D-omvandlare Ett urval D/A- och A/D-omvandlare Om man vill ansluta en mikrodator (eller annan digital krets) till sensorer och givare så är det inga problem så länge givarna själva är digitala. Strömbrytare, reläer

Läs mer

Laboration 1: Styrning av lysdioder med en spänning

Laboration 1: Styrning av lysdioder med en spänning TSTE20 Elektronik Laboration 1: Styrning av lysdioder med en spänning v0.3 Kent Palmkvist, ISY, LiU Laboranter Namn Personnummer Godkänd Översikt I denna labroation ska en enkel Analog till Digital (A/D)

Läs mer

Introduktion till fordonselektronik ET054G. Föreläsning 3

Introduktion till fordonselektronik ET054G. Föreläsning 3 Introduktion till fordonselektronik ET054G Föreläsning 3 1 Elektriska och elektroniska fordonskomponenter Att använda el I Sverige Fas: svart Nolla: blå Jord: gröngul Varför en jordkabel? 2 Jordning och

Läs mer

210 manual.pdf Tables 4

210 manual.pdf Tables 4 1 Illustrations 2 Tables 3 Tables 4 Tables 5 Tables 6 Tables English... 8 Svenska... 19 Norsk... 25 Dansk... 29 Suomi... 37 Deutsch... 44 Netherlands... 52 Français... 60 Italiano... 68 Español... 76 Português...

Läs mer

Ellära. Laboration 4 Mätning och simulering. Växelströmsnät.

Ellära. Laboration 4 Mätning och simulering. Växelströmsnät. Ellära. Laboration 4 Mätning och simulering. Växelströmsnät. Labhäftet underskrivet av läraren gäller som kvitto för labben. Varje laborant måste ha ett eget labhäfte med ifyllda förberedelseuppgifter

Läs mer

Tid- och frekvensmätning -inför laborationen-

Tid- och frekvensmätning -inför laborationen- Tid- och frekvensmätning -inför laborationen- Martin Bengtsson Johan Gran martin.bengtsson@bme.lth.se johan.gran@bme.lth.se Plan för dagen och morgondagen Måndag kl. 13 - genomgång av kapitel 4 tisdag

Läs mer

Tid- och frekvensmätning - inför laborationen 2 - Ola Jakobsson Johan Gran

Tid- och frekvensmätning - inför laborationen 2 - Ola Jakobsson Johan Gran Tid- och frekvensmätning - inför laborationen 2 - Ola Jakobsson Johan Gran per.augustsson@elmat.lth.se johangran@gmail.com Lektionsplan Kapitel 4: Mätning av tid och frekvens - 4.6 Mätning av höga frekvenser

Läs mer

Spänningsmätning av periodiska signaler

Spänningsmätning av periodiska signaler UMEÅ UNIVERSITET Tillämpad fysik och elektronik Sverker Johansson Bo Tannfors 1996-05-15 Spänningsmätning av periodiska signaler Laboration E8 ELEKTRO Laboration E8 Spänningsmätning av periodiska signaler

Läs mer

Impedans! och! impedansmätning! Temperatur! Komponentegenskaper! Töjning! Resistivitetsmätning i jordlager!.!.!.!.!

Impedans! och! impedansmätning! Temperatur! Komponentegenskaper! Töjning! Resistivitetsmätning i jordlager!.!.!.!.! Impedans och impedansmätning Impedans Temperatur Komponentegenskaper Töjning Resistivitetsmätning i jordlager.... Impedans Z = R + jx R = Resistans = Re(Z), X = Reaktans = Im(Z) Belopp Fasvinkel Impedans

Läs mer

Elektro och Informationsteknik LTH. Laboration 6 A/D- och D/A-omvandling. Elektronik för D ETIA01

Elektro och Informationsteknik LTH. Laboration 6 A/D- och D/A-omvandling. Elektronik för D ETIA01 Elektro och Informationsteknik LTH Laboration 6 A/D- och D/A-omvandling Elektronik för D ETIA01 Peter Hammarberg Anders J Johansson Lund April 2008 Mål Efter laborationen skall du ha studerat följande:

Läs mer

DIGITAL MULTIMETER BRUKSANVISNING MODELL DT9201

DIGITAL MULTIMETER BRUKSANVISNING MODELL DT9201 DIGITAL MULTIMETER BRUKSANVISNING MODELL DT9201 1. INLEDNING Den digitala serie 92-multimetern är ett kompakt, batteridrivet instrument med 3½ LCD-skärm. Fördelar: Stor noggrannhet Stor vridbar LCD (flytande

Läs mer

IDE-sektionen. Laboration 5 Växelströmsmätningar

IDE-sektionen. Laboration 5 Växelströmsmätningar 080501 IDE-sektionen Laboration 5 Växelströmsmätningar 1 1. Bestämning av effektivvärde hos olika kurvformer Uppgift: Att mäta och bestämma effektivvärdet på tre olika kurvformer. Dels en fyrkantssignal,

Läs mer

FYD101 Elektronik 1: Ellära

FYD101 Elektronik 1: Ellära FYD101 Elektronik 1: Ellära Laboration 1: Grundläggande instrumenthantering Förberedelse: Du måste känna till följande Ström- och spänningsriktig koppling vid resistansmätning Hur ett digitalt instruments

Läs mer

4:4 Mätinstrument. Inledning

4:4 Mätinstrument. Inledning 4:4 Mätinstrument. Inledning För att studera elektriska signaler, strömmar och spänningar måste man ha lämpliga instrument. I detta avsnitt kommer vi att gå igenom de viktigaste, och som vi kommer att

Läs mer

Grundläggande ellära - - 1. Induktiv och kapacitiv krets. Förberedelseuppgifter. Labuppgifter U 1 U R I 1 I 2 U C U L + + IEA Lab 1:1 - ETG 1

Grundläggande ellära - - 1. Induktiv och kapacitiv krets. Förberedelseuppgifter. Labuppgifter U 1 U R I 1 I 2 U C U L + + IEA Lab 1:1 - ETG 1 IEA Lab 1:1 - ETG 1 Grundläggande ellära Motivering för laborationen: Labmomenten ger träning i att koppla elektriska kretsar och att mäta med oscilloskop och multimetrar. Den ger också en koppling till

Läs mer

Laboration 2 Elektriska kretsar Online fjärrstyrd laborationsplats Blekinge Tekniska Högskola (BTH)

Laboration 2 Elektriska kretsar Online fjärrstyrd laborationsplats Blekinge Tekniska Högskola (BTH) Laboration 2 Elektriska kretsar Online fjärrstyrd laborationsplats Blekinge Tekniska Högskola (BTH) Växelspänningsexperiment Namn: Elektriska kretsar Online fjärrstyrd laborationsplats Blekinge Tekniska

Läs mer

Experiment med schmittrigger

Experiment med schmittrigger dlab00a Experiment med schmittrigger Namn Datum Handledarens sign. Varför denna laboration? Schmittriggern är en mycket användbar koppling inom såväl analog- som digitaltekniken. Ofta används den för att

Läs mer

IF1330 Ellära KK1 LAB1 KK2 LAB2 KK4 LAB4. tentamen

IF1330 Ellära KK1 LAB1 KK2 LAB2 KK4 LAB4. tentamen IF1330 Ellära F/Ö1 F/Ö4 F/Ö2 F/Ö5 F/Ö3 Strömkretslära Mätinstrument Batterier Likströmsnät Tvåpolsatsen KK1 LAB1 Mätning av U och I F/Ö6 F/Ö7 Magnetkrets Kondensator Transienter KK2 LAB2 Tvåpol mät och

Läs mer

Mätteknik (ESSF10) Kursansvarig: Johan Nilsson Översiktligt kursinnehåll

Mätteknik (ESSF10) Kursansvarig: Johan Nilsson Översiktligt kursinnehåll Biomedicinsk teknik Mätteknik (ESSF10) Kursansvarig: Johan Nilsson (johan.nilsson@bme.lth.se) Översiktligt kursinnehåll Metoder för mätning av elektriska storheter som: Spänning, Ström, Impedans, Tid,

Läs mer

LABORATION 2. Oscilloskopet

LABORATION 2. Oscilloskopet Chalmers Tekniska Högskola november 2012 Fysik 12 sidor Kurs: Elektrisk mätteknik och vågfysik. FFY616 LABORATION 2 Oscilloskopet UPPGIFTER: 1. Oscilloskopets grunder I mätning av likspänning 2. Oscilloskopets

Läs mer

Mätteknik Digitala oscilloskop

Mätteknik Digitala oscilloskop Mätteknik 2018 Digitala oscilloskop Läsanvisningar Modern elektronisk mätteknik: Kap. 5 - Probens uppbyggnad och egenskaper (326-336) Kap. 6 - Digitala minnesoscilloskop (347-381) Kap. 8 - Frekvensanalys

Läs mer

Lab 3. Några slides att repetera inför Lab 3. William Sandqvist

Lab 3. Några slides att repetera inför Lab 3. William Sandqvist Lab 3 Några slides att repetera inför Lab 3 Medelvärde och effektivvärde Alla rena växelspänningar har medelvärdet 0. Intressantare är effektivvärdet det kvadratiska medelvärdet. U med T 0 = 1 T u( t)dt

Läs mer

Elektro och Informationsteknik LTH. Laboration 3 RC- och RL-nät i tidsplanet. Elektronik för D ETIA01

Elektro och Informationsteknik LTH. Laboration 3 RC- och RL-nät i tidsplanet. Elektronik för D ETIA01 Elektro och Informationsteknik LTH Laboration 3 R- och RL-nät i tidsplanet Elektronik för D ETIA01??? Telmo Santos Anders J Johansson Lund Februari 2008 Laboration 3 Mål Efter laborationen vill vi att

Läs mer

Ellära. Laboration 2 Mätning och simulering av likströmsnät (Thevenin-ekvivalent)

Ellära. Laboration 2 Mätning och simulering av likströmsnät (Thevenin-ekvivalent) Ellära. Laboration 2 Mätning och simulering av likströmsnät (Thevenin-ekvivalent) Labhäftet underskrivet av läraren gäller som kvitto för labben. Varje laborant måste ha ett eget labhäfte med ifyllda förberedelseuppgifter

Läs mer

Lösningar till övningsuppgifter i

Lösningar till övningsuppgifter i Lösningar till övningsuppgifter i mätteknik 1. Wheatstonebrygga a. Beräkning av spänningarna U 1 och U 2 Spänningarna kan t ex beräknas med hjälp av spänningsdelning. U 1 = E R 3 R 1 + R 3 U 2 = E R 4

Läs mer

APPARATER PÅ ELEKTRONIKLABBET

APPARATER PÅ ELEKTRONIKLABBET UMEÅ UNIVERSITET Tillämpad fysik och elektronik Agneta Bränberg 1999-09-06 Rev 1.0 APPARATER PÅ ELEKTRONIKLABBET Laboration E101 ELEKTRO Personalia: Namn: Kurs: Datum: Återlämnad (ej godkänd): Rättningsdatum

Läs mer

Mät resistans med en multimeter

Mät resistans med en multimeter elab003a Mät resistans med en multimeter Namn Datum Handledarens sign Laboration Resistans och hur man mäter resistans Olika ämnen har olika förmåga att leda den elektriska strömmen Om det finns gott om

Läs mer

Att fjärrstyra fysiska experiment över nätet.

Att fjärrstyra fysiska experiment över nätet. 2012-05-11 Att fjärrstyra fysiska experiment över nätet. Komponenter, t ex resistorer Fjärrstyrd labmiljö med experiment som utförs i realtid Kablar Likspänningskälla Lena Claesson, Katedralskolan/BTH

Läs mer

Elektricitetslära och magnetism - 1FY808

Elektricitetslära och magnetism - 1FY808 Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Laborationshäfte för kursen Elektricitetslära och magnetism - 1FY808 Ditt namn:... eftersom labhäften far runt i labsalen. 1 1. Instrumentjämförelse

Läs mer

Mätteknik. Biomedicinsk teknik (Elektrisk Mätteknik), LTH

Mätteknik. Biomedicinsk teknik (Elektrisk Mätteknik), LTH Mätteknik Biomedicinsk teknik (Elektrisk Mätteknik), LTH www.bme.lth.se Kursansvariga: Johan Nilsson, Lars Wallman johan.nilsson@bme.lth.se, lars.wallman@bme.lth.se Idag Introduktion av kursen Vad är Mätteknik

Läs mer

TENTAMEN Tillämpad mätteknik, 7,5 hp

TENTAMEN Tillämpad mätteknik, 7,5 hp Umeå Universitet Tillämpad Fysik och Elektronik Stig Esko Nils Lundgren Jan-Åke Olofsson TENTAMEN Tillämpad mätteknik, 7,5 hp Fredag 20 januari, 2012 Kl 9.00-15.00 Tillåtna hjälpmedel: Miniräknare. Tentamen

Läs mer

Digitala kretsars dynamiska egenskaper

Digitala kretsars dynamiska egenskaper dlab00a Digitala kretsars dynamiska egenskaper Namn Datum Handledarens sign. Laboration Varför denna laboration? Mycket digital elektronik arbetar med snabb dataöverföring och strömförsörjs genom batterier.

Läs mer

Laboration 5. Temperaturmätning med analog givare. Tekniska gränssnitt 7,5 p. Förutsättningar: Uppgift: Temperatur:+22 C

Laboration 5. Temperaturmätning med analog givare. Tekniska gränssnitt 7,5 p. Förutsättningar: Uppgift: Temperatur:+22 C Namn: Laborationen godkänd: Tekniska gränssnitt 7,5 p Vt 2014 Laboration 5 LTH Ingenjörshögskolan vid Campus Helsingborg Temperaturmätning med analog givare. Syftet med laborationen är att studera analog

Läs mer

Mätteknik E-huset. Digitalt oscilloskop Vertikal inställning. Digitalt oscilloskop. Digitala oscilloskop. Lab-lokal 1309 o 1310

Mätteknik E-huset. Digitalt oscilloskop Vertikal inställning. Digitalt oscilloskop. Digitala oscilloskop. Lab-lokal 1309 o 1310 Schema Mätteknik F 2015 Läsvecka 1 (v13) måndag 23-mar Förel 13-15 (E:B) Läsvecka 2 (v14) DigOsc måndag 30-mar Förel 13-15 (E:B) PÅSK!! Mätteknik 2015 Läsvecka 3 (v15) DigOsc tisdag 07-apr Lab 8-12 onsdag

Läs mer

2E1112 Elektrisk mätteknik

2E1112 Elektrisk mätteknik 2E1112 Elektrisk mätteknik Mikrosystemteknik Osquldas väg 10, 100 44 Stockholm Tentamen för fd E3 2007-12-21 kl 8 12 Tentan består av: 1 uppgift med 6 kortsvarsfrågor som vardera ger 1 p. 5 uppgifter med

Läs mer

SENSORER OCH MÄTTEKNIK

SENSORER OCH MÄTTEKNIK Räknare & Impedans SENSORER OCH MÄTTEKNIK 2017 Räknare - varför Ett oscilloskop har normalt 3 4 siffors noggrannhet som bäst En räknare kan ha upp till 9 siffor 1 Räknare - frekvens Frekvens anger hur

Läs mer

D/A- och A/D-omvandlarmodul MOD687-31

D/A- och A/D-omvandlarmodul MOD687-31 D/A- och A/D-omvandlarmodul MOD687-31 Allmänt Modulen är helt självförsörjande, det enda du behöver för att komma igång är en 9VAC väggtransformator som du kopplar till jacket J2. När du så småningom vill

Läs mer

1 SÄKERHET FARA VARNING VIKTIGT FUNKTIONER... 4

1 SÄKERHET FARA VARNING VIKTIGT FUNKTIONER... 4 DIGITAL MULTIMETER MED AC/DC STRÖMTÅNG KEW MATE MODEL2001 Innehållsförteckning 1 SÄKERHET... 3 1.1 FARA... 3 1.2 VARNING... 3 1.3 VIKTIGT... 3 2 FUNKTIONER... 4 3 SPECIFIKATIONER... 4 3.1 AC STRÖM... 4

Läs mer

DN-SERIEN 5.00 (1/2) E - Ed 1. Icke-bindande dokument

DN-SERIEN 5.00 (1/2) E - Ed 1. Icke-bindande dokument Pinces Strömtänger ampèremetriques för AC-ström pour courant AC DN-SERIEN D N-serien omfattar en rad högpresterande AC-strömtänger utvecklade för högströmsmätningar. Deras utmärkta strömtransformatoromsättning

Läs mer

Mät kondensatorns reaktans

Mät kondensatorns reaktans Ellab012A Mät kondensatorns reaktans Namn Datum Handledarens sign Varför denna laboration? Avsikten med den här laborationen är att träna grundläggande analys- och mätteknik vid mätning på växelströmkretsar

Läs mer

STÖRNINGAR. Laboration E15 ELEKTRO. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Sverker Johansson Johan Pålsson Rev 1.0.

STÖRNINGAR. Laboration E15 ELEKTRO. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Sverker Johansson Johan Pålsson Rev 1.0. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Sverker Johansson Johan Pålsson 2004-01-21 Rev 1.0 STÖRNINGAR Laboration E15 ELEKTRO Personalia: Namn: Kurs, utbildningsprogram och termin: Datum: Återlämnad

Läs mer

ETE115 Ellära och elektronik, vt 2015 Laboration 1

ETE115 Ellära och elektronik, vt 2015 Laboration 1 ETE5 Ellära och elektronik, vt 205 Laboration Sammanfattning Syftet med denna laboration är att ge tillfälle till praktiska erfarenheter av elektriska kretsar. Grundläggande mätningar görs med hjälp av

Läs mer

RC-kretsar, transienta förlopp

RC-kretsar, transienta förlopp 13 maj 2013 Labinstruktion: RC-kretsar, magnetiska fält och induktion Ellära, 92FY21/27 1(5) RC-kretsar, transienta förlopp I den här laborationen kommer du att titta på urladdning av en RC-krets och hur

Läs mer

DET ÄR INGEN KONST ATT MÄTA SPÄNNING OCH STRÖM

DET ÄR INGEN KONST ATT MÄTA SPÄNNING OCH STRÖM DE ÄR INGEN KONS A MÄA SPÄNNING OCH SRÖM OM MAN VE HR DE FNGERAR! lite grundläggande el-mätteknik 010 INNEHÅLL Inledning 3 Grunder 3 Växelspänning 4 Effektivvärde 5 Likriktat medelvärde 6 Överlagrad spänning

Läs mer

Elektro och Informationsteknik LTH. Laboration 2 Elektronik för D ETIA01

Elektro och Informationsteknik LTH. Laboration 2 Elektronik för D ETIA01 Elektro och Informationsteknik LTH Laboration 2 Elektronik för D ETIA01 Anders J Johansson Lund Juni 2008 Laboration 2 Vi kommer att använda en liten robot, se figur 1, under laborationerna i ETIA01. Det

Läs mer

Ellära. Laboration 3 Oscilloskopet och funktionsgeneratorn

Ellära. Laboration 3 Oscilloskopet och funktionsgeneratorn Ellära. Laboration 3 Oscilloskopet och funktionsgeneratorn Labhäftet underskriven av läraren gäller som kvitto för labben. Varje laborant måste ha ett eget labhäfte med ifyllda förberedelseuppgifter och

Läs mer

Laborationshandledning

Laborationshandledning Laborationshandledning Utbildning: ED Ämne: TNGE11 Digitalteknik Laborationens nummer och titel: Nr 5 Del A: Schmittrigger Del B: Analys av sekvensnät Laborant: E-mail: Medlaboranters namn: Handledarens

Läs mer

Lab Tema 2 Ingenjörens verktyg

Lab Tema 2 Ingenjörens verktyg Lab Tema 2 Ingenjörens verktyg Agneta Bränberg, Ville Jalkanen Syftet med denna laboration är att alla i gruppen ska kunna handskas med de instrument som finns på labbet på ett professionellt sätt. Och

Läs mer

Strömdelning. och spänningsdelning. Strömdelning

Strömdelning. och spänningsdelning. Strömdelning elab005a Strömdelning och spänningsdelning Namn Datum Handledarens sign Laboration I den här laborationen kommer du omväxlande att mäta ström och spänning samt även använda metoden för indirekt strömmätning

Läs mer

Elektro och Informationsteknik LTH. Laboration 2 Elektronik för D ETIA01

Elektro och Informationsteknik LTH. Laboration 2 Elektronik för D ETIA01 Elektro och Informationsteknik LTH Laboration 2 Elektronik för D ETIA01 Anders J Johansson Lund Januari 2008 Laboration 2 Vi kommer att använda en liten robot, se figur 1, under laborationerna i ETIA01.

Läs mer

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D Lars-Erik Cederlöf Tentamen i Grundläggande ellära och digitalteknik ET 013 för D1 1999-04-28 Tentamen omfattar 40 poäng, 2 poäng för varje uppgift. 20 poäng ger godkänd tentamen. Tillåtet hjälpmedel är

Läs mer

TSTE20 Elektronik Lab5 : Enkla förstärkarsteg

TSTE20 Elektronik Lab5 : Enkla förstärkarsteg TSTE20 Elektronik Lab5 : Enkla förstärkarsteg Version 0.3 Mikael Olofsson Kent Palmkvist Prakash Harikumar 18 mars 2014 Laborant Personnummer Datum Godkänd 1 1 Introduktion I denna laboration kommer ni

Läs mer

Mätteknik 2016 Mätsystem

Mätteknik 2016 Mätsystem Mätteknik 2016 Mätsystem Per Augustsson [per.augustsson@bme.lth.se] Inst. för Biomedicinsk Teknik 1 Upplägg Mätsystem Om laborationen Lab View Laborationsövningar Inst. för Biomedicinsk Teknik 2 http://www.fitbit.com/jobs

Läs mer

Palm Size Digital Multimeter. Operating manual

Palm Size Digital Multimeter. Operating manual Palm Size Digital Multimeter 300 Operating manual Fig 1. Voltage measurement DC and AC Illustrations Fig 2. DC Current Measurement Fig 3. Diode test Continuity test Fig 4. Temperature measurement Fig 5.

Läs mer

Laborationshandledning

Laborationshandledning Laborationshandledning Utbildning: ED Ämne: TNE094 Digitalteknik och konstruktion Laborationens nummer och titel: Nr 5 Del A: Schmittrigger Del B: Analys av sekvensnät Laborant: E-mail: Medlaboranters

Läs mer

ETE115 Ellära och elektronik, vt 2013 Laboration 1

ETE115 Ellära och elektronik, vt 2013 Laboration 1 ETE115 Ellära och elektronik, vt 2013 Laboration 1 Sammanfattning Syftet med denna laboration är att ge tillfälle till praktiska erfarenheter av elektriska kretsar. Grundläggande mätningar görs på ett

Läs mer

Op-förstärkarens grundkopplingar. Del 2, växelspänningsförstärkning.

Op-förstärkarens grundkopplingar. Del 2, växelspänningsförstärkning. Op-förstärkarens grundkopplingar. Del 2, växelspänningsförstärkning. I del 1 bekantade vi oss med op-förstärkaren som likspänningsförstärkare. För att kunna arbeta med op-förstärkaren vill vi kunna mäta

Läs mer

DEL-LINJÄRA DIAGRAM I

DEL-LINJÄRA DIAGRAM I Institutionen för Tillämpad fysik och elektronik Ulf Holmgren 95124 DEL-LINJÄRA DIAGRAM I Laboration E15 ELEKTRO Personalia: Namn: Kurs: Datum: Återlämnad (ej godkänd): Rättningsdatum Kommentarer Godkänd:

Läs mer

Spolens reaktans och resonanskretsar

Spolens reaktans och resonanskretsar Ellab013A Spolens reaktans och resonanskretsar Namn Datum Handledarens sign Laboration Varför denna laboration? Avsikten med den här laborationen är att träna grundläggande analys- och mätteknik vid mätning

Läs mer

Läsinstruktioner. Materiel

Läsinstruktioner. Materiel Läsinstruktioner Häftet om AD- och DA-omvandlare skrivet av Bertil Larsson Appendix till denna laborationshandledning. Läs igenom resten av handledningen så att ni vet vilka uppgifter som kommer. Gör förberedelseuppgifter

Läs mer

Spänning, ström och energi!

Spänning, ström och energi! Spänning, ström och energi! Vi lever i ett samhälle som inte hade haft den höga standard som vi har nu om inte vi hade lärt oss att utnyttja elektricitet. Därför är det viktigt att lära sig förstå några

Läs mer

Laboration 2 Instrumentförstärkare och töjningsgivare

Laboration 2 Instrumentförstärkare och töjningsgivare Laboration 2 Instrumentförstärkare och töjningsgivare 1 1 Introduktion Denna laboration baseras på två äldre laborationer (S4 trådtöjningsgivare samt Instrumentförstärkare). Syftet med laborationen är

Läs mer

OSCILLOSKOPET. Syftet med laborationen. Mål. Utrustning. Institutionen för fysik, Umeå universitet Robert Röding 2004-06-17

OSCILLOSKOPET. Syftet med laborationen. Mål. Utrustning. Institutionen för fysik, Umeå universitet Robert Röding 2004-06-17 Institutionen för fysik, Umeå universitet Robert Röding 2004-06-17 OSCILLOSKOPET Syftet med laborationen Syftet med denna laboration är att du ska få lära dig principerna för hur ett oscilloskop fungerar,

Läs mer

Konstruktion av volt- och amperemeter med DMMM

Konstruktion av volt- och amperemeter med DMMM UMEÅ UNIVERSITET Tillämpad fysik och elektronik Lars Wållberg Stig Esko 1999-10-12 Rev 1.0a Konstruktion av volt- och amperemeter med DMMM LABORATION E233 ELEKTRO Personalia: Namn: Kurs: Datum: Återlämnad

Läs mer

LABORATION 3. Växelström

LABORATION 3. Växelström Chalmers Tekniska Högskola november 01 Fysik 14 sidor Kurs: Elektrisk mätteknik och vågfysik. FFY616 LABORATION 3 Växelström Växelströmskretsar (seriekoppling), Serieresonans. Förberedelse: i) Läs noggrant

Läs mer