STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson, 5--9 Lösningförslag skriftlig hemtentamen i Fortsättningskurs i statistik, moment, Statistisk Teori, poäng. Deltentamen : Sannolikhetsteori och statistisk inferens, 5 poäng Måndagen den oktober 5.. Kontinuerlig slumpvariabel med given täthetsfunktion a) Viharatt fx) x förallax medlikhetommx.dessutom x x x fx)dx dx ) S x + Diagram: fx).5.5 - - b) Fördelningsfunktionencdf) beräknas PX x) x ft)dt x t dt t tx t x ) x+ vilket ger x x Fx) + <x< x
Diagram: Fx).75.5.5 - - c) Väntevärde beräknas enligt EX) x dx x4 8 x x 4 8 )4 8 8 8 Varians beräknas tex enligt E X ) x 4 dx x5 x x 5 )5 + 5 VarX)E X ) EX) 5 5. Sannolikheter för olycksfall för olika åldersgrupper givna a) Beteckna dels händelsen "olycka" med tex A, dels resp händelse "försäkringstagare i åldersklass i", tex med C i. Sannolikheten för att en slumpmässigt utvald försäkringstagare råkar ut för ett olycksfall beräknas lagen om total sannolikhet, additionssatsen för disjunkta händelser) PA) PA C )+PA C )+PA C )+PA C 4 ) PA C )PC )+PA C )PC ) +PA C )PC )+PA C 4 )PC 4 ).5.+..55+..+.4.5.8 b) Betingade sannolikheter enligt Bayes sats. PC A) PA C ) PA) PA C )PC ) PA).5..8.7857 PC A) PA C ) PA) PA C )PC ) PA)..55.8.986
. Simultana täthetsfunktion en för de kontinuerliga slumpvariablerna X och Y är given fx,y)x+y för x, y a) Marginalfördelningen för X ges av f x) x+y)dy ) xy+ y y y x+ ) +) x+ respektiveföry gesav f y) x+y)dx x+y)dy ) x x +xy x ) +y +) y+ Eftersom det typiskt gäller att såärx ochy beroende. x+y)dy x+ f x)f y) x+ y+ x +y +xy+ 4 x+yfx,y) b) DenbetingadefördelningenförY givetxxgesav hy x) fx,y) f x) x+y x+ EnformelfördetbetingadeväntevärdetförY,dvs EY Xx) x+ x+ yhy x)dy xy+y ) dy xy + y x+ x+ x+ 6x+ ) y y x+y x+ xy+y x+ dy [ x+ ) + )] x+ 4. Ienamerikanskopinionsundersökningframgickdetatty88avntillfrågade svarade"ja".
a) Ett 9% konfidensintervall för andelen"ja"-svar ges av y y/n) y/n) n ±z 88 88/) 88/) α/ n ±.645.7965 ±.5 avrudnat till KI.5468;.446) 8.% ±.5 b) Varje enskild person kan ses som ett Bernoulliförsök med sannolikhet p att svara "Ja"ochvidefinierarY somsummanavvarjeenkiltutfallx i ochskriver Xi Y n X n Enligt centrala gränsvärdessatsen går fördelningen för X mot en normalfördelning närn.dettaoavsettvaddetärförfördelningfördeenskildaobservationerna i detta fall råkar de vara Bernoullifördelade). Det som krävs är att väntevärde och variansfördennafördelningidettafallgällerattµ X pochσ Xp p)vilket ärändligataleftersom p. 5. AntagattX i Nµ,9)föri,,,4,d.v.s. ettiid stickprovavstorlekn4.utgå ifrån nollhypotesen H : µ 5 och mothypotesen H : µ < 5. En beslutsregel som användsäratth förkastasom x<.5. a) Signifikansnivån α för testet beräknas enligt α PförkastaH H ärsann) P X<.5 µ5 ) ) X 5 P <.5 5 PZ<.67) PZ<.67) 9/4 9/4 eller 4.75%. b) Vi observerar och Φ.67) [enl. tabell].475 x.+4.8+.6+6.8 4 4.5 p-value P X< x H ärsann ) P X<4.5 µ5 ) ) X 5 P < 4.5 5 PZ<.59) PZ<.59) 9/4 9/4 Φ.59) [enl. tabell].776 c) p)antagattdetsannavärdetförväntevärdetärµ.angesannolikhetenatt förkastah givetattµberäknasenligt β PförkastaH H ejsann,µ) P X<.5 µ ) ) X P <.5 PZ<.67) 9/4 9/4 Φ.67) [enl. tabell].955 4
Dettaäralltsåtestetsstyrka dådetsannavärdetpåµär. Observeraattbeslutsregelnärdensamma,viförkastarH om x<.5oavsett. 6. Mankastarentärning88gångerochlåterX betecknaantaletgångermanfårenetta ellerensexa. VidarefårY betecknaantaletgångermanintefårenettaellerensexa. a) Sannolikheten för "etta eller sexa" är /6+/6 / p. Sannolikheten för komplementhändelsen"varkenettaellersexa"blir // p.omkasten är oberoende så gäller att X Bin och det gäller alltså att b) VäntevärdeochvariansförX är ochviharatt 88, ) och Y Bin 88, ) Y 88 X X88 Y EX) np88 96 VarX) np p)88 64 E X ) VarX)+EX) 64+96 98 c) För att normalapproximation skall kunna användas krävs enligt en tumregel att Härharvi np p)>5eller np p)64 så det borde vara ok. För Poissonapproximering brukar mankräva att n är stort ochp<.vilketinteärfallethär. d) Sannolikheterna beräknas med normalapproximering enligt 79.5 96 PX8) P79.5 X 8.5) P X 96 8.5 96 ) 64 64 64 P.6 Z.94) Φ.6) Φ.94) [enligt tabell].98.978.65 och PX>8) PX 8) P X 96 8 96 ) 64 64 PZ.94) Φ.94) [enligt tabell].978 5
däralltsåz N,)ochΦz)PZ z). Kommentar: Exakta beräkningar med datorhjälp ger resp PX8) PX>8) 88 8 88 x8 ) 88 x ) 8 ) 88 8.666556 ) ) x ) 88 x.97495 7. AntagandenärattX Nµ X,σ X )ochy Nµ Y,σ Y )samttvåoberoendeiidstickprov avstorlekn6förx ochmföry samtföljandeobservationer x45.6, s x56.75, ȳ47.4, s y69. a) Hypotesprövning under antagande om lika varianser ger H :µ X µ Y mot H :µ X µ Y > och signifikansnivån α.. Testfunktion och dess fördelning är T X Ȳ S p n + m tn+m )t7) därs p ärenpooladvariansskattningsomberäknasenligt H förkastasommanobserverar Vi observerar och S p n )S x +m )S y n+m T obs t. 7) [enligttabell].47 S p 5 56.75+ 69. 7 T obs 45.6 47.4 6.99 + ) 6 6.99 5.57.47 och H förkastas; den observerade skillnaden mellan genomsnittliga vikter är signifikant skild från noll, hanfåglar väger i snitt mer än honfåglar. b) Hypotesprövning enligtunder samma antaganden som tidigare) H : σ X σ Y mot H : σ X σ Y ochsignifikansnivånα.5.testfunktionochdessfördelningunderh är F S x S y Fn,m )F5,) 6
H förkastasommanobserverar F obs F.5 5,) [enligttabell].96 eller om F obs F.5,5) [enligttabell].8 Obs! Det senare är ekvivalent med F obs F.5,5).8.45 Vi observerar F obs s x s y 56.75 69..96 dvs.45<f obs <.96 ochh kaninteförkastas;stickprovsvariansernaärintesignifikantskilda,vikaninte säga att antagandet om lika varianser inte håller. 8. PåsistasidanfinnerduenbilagamedenhärledningavML-estimatornförenparameter β för en given fördelning. Vi tänker oss ett iid stickprov som grund för skattningen. a) Pdfär dvsen β x exp x ) β Γ)β x exp x ) β Gamma,β) där β är en okänd parameter i Hogg&Tanis används θ isf β). Väntevärde och varians blir EX)β, VarX)β b) För kommentarer kring beräknnigarna se kurslitteratur och föreläsnings-oh. MLestimatorn för β är ˆβ ML X c) ML-estimatorns väntevärde och varians beräknas enligt ) ) X E ˆβML E E X ) EX) ββ dvs det är en väntevärdesriktig estimator) respektive ) VarˆβML Var ) X 9 Var X) VarX) β 9 n 9n β n vilketmansergårmotnollnärn,dvsdetärenkonsistentestimator) 7
Centrala gränsvärdessatsen CGS) kan användas för att approximera fördelningen för ML-estimatorn eftersom ˆβ ML X och X ΣX Normalfördeling när n n eller mer specifikt X distr N β, β ) n CGS säger ju att summan av iid slumpvariabler går mot en normalfördelning när antalet slumpvariabler går mot.) 8