Strömavtagare kontaktledningsinteraktion Gröna Tåget slutseminarium 6 Mars Sebastian Stichel, Per-Anders Jönsson och Zhendong Liu

Relevanta dokument
Elektrifiering av tunga fordon

Module 6: Integrals and applications

Gradientbaserad Optimering,

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)

A study of the performance

Semantic and Physical Modeling and Simulation of Multi-Domain Energy Systems: Gas Turbines and Electrical Power Networks

SVENSK STANDARD SS-EN ISO 19108:2005/AC:2015

Strömavtagning på befintlig kontaktledning. Regina 250- Gröna Tåget, sommaren 2008

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

What Is Hyper-Threading and How Does It Improve Performance

Heavy Transport on Existing Lines: the Assessment of Bearing Capacity of Track-bed based on Track Stiffness Measurements and Theoretical Studies

D-RAIL AB. All Rights Reserved.

PFC and EMI filtering

SVENSK STANDARD SS-EN 13612/AC:2016

12.6 Heat equation, Wave equation

Senaste trenderna från testforskningen: Passar de industrin? Robert Feldt,

LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik

Forskningstrender inom mekanisk fogning vid Centre for Joining and Structures Svets- och fogningsteknik, Elmia

Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm

Mönster. Ulf Cederling Växjö University Slide 1

MOLECULAR SHAPES MOLECULAR SHAPES

säkerhetsutrustning / SAFETY EQUIPMENT

Optimering av kontakt med kontaktledning hos tåg

Beijer Electronics AB 2000, MA00336A,

Accelererad provning i

Questionnaire on Nurses Feeling for Hospital Odors

Alias 1.0 Rollbaserad inloggning

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version

Kursplan. FÖ1038 Ledarskap och organisationsbeteende. 7,5 högskolepoäng, Grundnivå 1. Leadership and Organisational Behaviour

Undergraduate research:

Information technology Open Document Format for Office Applications (OpenDocument) v1.0 (ISO/IEC 26300:2006, IDT) SWEDISH STANDARDS INSTITUTE

FOI MEMO. Jonas Hallberg FOI Memo 5253

Mekanik FK2002m. Kraft och rörelse II

Hållbar utveckling i kurser lå 16-17

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik

Modeling of pore pressure in a railway embankment

Eurokod 8: Dimensionering av bärverk med avseende på jordbävning Del 2: Broar

Kursplan. FÖ3032 Redovisning och styrning av internationellt verksamma företag. 15 högskolepoäng, Avancerad nivå 1

Examensarbete i matematik på grundnivå med inriktning mot optimeringslära och systemteori

Designmönster för sociala användningssituationer

Second handbook of research on mathematics teaching and learning (NCTM)

Mekanik FK2002m. Kraft och rörelse I

Vågkraft. Verification of Numerical Field Model for Permanent Magnet Two Pole Motor. Centrum för förnybar elenergiomvandling

Managing addresses in the City of Kokkola Underhåll av adresser i Karleby stad

Module 1: Functions, Limits, Continuity

Fatigue Properties in Additive manufactured Titanium & Inconell

Kvalitetsarbete I Landstinget i Kalmar län. 24 oktober 2007 Eva Arvidsson

Styrteknik: Binära tal, talsystem och koder D3:1

Könsfördelningen inom kataraktkirurgin. Mats Lundström

Make a speech. How to make the perfect speech. söndag 6 oktober 13

Parking garage, Gamletull. MDM-piles, pre-installation testing RÄTT FRÅN GRUNDEN!

SVENSK STANDARD SS-ISO :2010/Amd 1:2010

Aborter i Sverige 2008 januari juni

and u = och x + y z 2w = 3 (a) Finn alla lösningar till ekvationssystemet

The Finite Element Method, FHL064

Module 4 Applications of differentiation

Dokumentnamn Order and safety regulations for Hässleholms Kretsloppscenter. Godkänd/ansvarig Gunilla Holmberg. Kretsloppscenter

Preschool Kindergarten

Företagsnamn: Grundfos Skapad av: Magnus Johansson Tel: +46(0) Datum:

Michael Q. Jones & Matt B. Pedersen University of Nevada Las Vegas

Collaborative Product Development:

KOL med primärvårdsperspektiv ERS Björn Ställberg Gagnef vårdcentral

8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.

Kursplan. MT1051 3D CAD Grundläggande. 7,5 högskolepoäng, Grundnivå 1. 3D-CAD Basic Course

Kursplan. AB1029 Introduktion till Professionell kommunikation - mer än bara samtal. 7,5 högskolepoäng, Grundnivå 1

Produktens väg från idé till grav

Swedish framework for qualification

Examensarbeten L Sammanställning av arbeten utförda med MSB. 1 Orientering. 1 Orientering 1 2 Sammanställning 2 3 Referenser 5

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

2.1 Installation of driver using Internet Installation of driver from disk... 3

KRISTOFFER PETERSSON, MEDICINSK STRÅLNINGSFYSIK, LUND

Resultat av den utökade första planeringsövningen inför RRC september 2005

denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell

Affärsmodellernas förändring inom handeln

Uttagning för D21E och H21E

Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:

Boiler with heatpump / Värmepumpsberedare

Tentamen i Matematik 2: M0030M.

Custom-made software solutions for increased transport quality and creation of cargo specific lashing protocols.

Datasäkerhet och integritet

Minskat Buller och Högre Hastigheter

Grafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions:

High-Speed Rail in Sweden - Actual plans

SNÄCKVÄXLAR WORM GEARBOXES

Chapter 2: Random Variables

UTLYSNING AV UTBYTESPLATSER VT12 inom universitetsövergripande avtal

The present situation on the application of ICT in precision agriculture in Sweden

Consumer attitudes regarding durability and labelling

The reception Unit Adjunkten - for newly arrived pupils

SOLAR LIGHT SOLUTION. Giving you the advantages of sunshine. Ningbo Green Light Energy Technology Co., Ltd.

Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering

CHARMEC project SP13 Alarm limits for wheel damage / Larmgränser för hjulskador

Luftfartsavdelningen Sektionen för flygutbildning MANUALER VÄLKOMNA EN KORT SAMMANFATTNING AV INNEHÅLLET I RESPEKTIVE MANUAL

J. Japan Association on Odor Environment Vol. -1 No. 0,**0 431

Ringmaster RM3 - RM 5 RM3 RM 4 RM 5

Pre-Test 1: M0030M - Linear Algebra.

Styr- och kontrolldiagram ( )

Surfaces for sports areas Determination of vertical deformation. Golvmaterial Sportbeläggningar Bestämning av vertikal deformation

The Academic Career Path - choices and chances ULRIKKE VOSS

OPTRAM Kontaktledning

Transkript:

Strömavtagare kontaktledningsinteraktion Gröna Tåget slutseminarium 6 Mars 2014 Sebastian Stichel, Per-Anders Jönsson och Zhendong Liu

Innehåll Verifiering av 2D modellen Jämförelse FE-MBS Förbättringar 3D modellen Aktiva strömavtagare några första steg Benchmark Parameterstudier Diskussion om framtiden 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 2

CaPaSIM 2D FE-modell Kontaktledning - Kontakttråd Balkelement - Bärlina Stångelement - Y-lina Stångelement - Bärtrådar Wire element - Tillsatsrör Fjäderelement + punktmassa - Klämmor Punktmassor Kontaktelement Strömavtagare - Punktmassor - Kopplingselement 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 3

CaPaSIM Dynamisk analys Strömavtagarhöjd Kontaktledningshöjd Kontaktkraft (P) Tid [s] Tid [s] P Tid [s] v 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 4

Verifiering av 2D-modellen Bakgrund Uppdatering till aktuell ANSYS version Ny kontaktmodell implementerad Verifiering av den nya kontaktmodellen Jämförelse med POLIMI s beräkningsprogram Jämförelse med Gröna Tåget mätningar 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 5

Verifiering av 2D-modellen Jämförelse med POLIMI s program (PCaDA) Sammarbete med Politecnico di Milano där doktoranden Marco Carnevale arbetade på KTH under ett halvår. KTH Railway Group Centre for Research and Education in Railway Technology

Verifiering av 2D-modellen Contact wire Jämförelse av modeller - POLIMI s 2D modell och CaPaSIM - Statisk analys - SYT 7.0/9.8 Static def. [mm] Skillnad i modellering av tillsatsrör. Static def. [mm] [m] Messenger wire [m] KTH Railway Group Centre for Research and Education in Railway Technology

Verifiering av 2D-modellen Jämförelse mellan programsystem - POLIMI - CaPaSIM Test CaPaSIM Jämförelse mätning och simulering System - SYT 7.0/9.8 POLIMI Teststräcka - Skövde - Töreboda 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 8

Verifiering av 2D-modellen Sammanfattning Implementerad ny kontaktmodell Jämfört simuleringsresultat från 2D-modellen - Med POLIMI s model - Med mätningar utförda inom Gröna Tåget Publicerat ett papper tillsammans med POLIMI P 1 P 2 v L 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 9

Master Thesis Roberto Tieri 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 10

Enkel flerkroppsdynamikmodell Real pantograph Mathematical 3 d.o.f model 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 11

Proposed model Uplift force (aerodynamic test) 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 12

Proposed model Pantograph (12/17) Static air spring pre-load 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 13

Proposed model Contact model Contact wire informations Catenary informations Pantograph informations 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 14

Comparison of contact force Västerås- Grillby Real Time analysis SYT 15/15 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 15

Simulation Results Application Shaped ±300 mm Pantograph s Strips 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 16

Förbättringar - 3D modellen Skillnader i 3D modell relativt 2D Kontaktledning - Zick-zack geometri - Tillsatsrör Strömavtagare - Rollfrihetsgrad hos huvudet Kontaktformulering - Linje Linje (korsande) 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 17

Förbättringar - 3D modellen Egenfrekvenser 3D 2D f1 5.6 5.6 f2 5.9 - f 1 f 2 f 1 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 18

Förbättringar - 3D modellen Skillnader mellan 2D och 3D-model Styvhet k Styvhet Sidoläge Kontaktledning Strömavtagare Tillsatsrör k/2 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 19

Förbättringar - 3D modellen 2D 3D Validering SYT 7.0/9.8 Bra överensstämmelse med mätresultat Något bättre överensstämmelse med 3D än med 2D modell upp till 280 km/h Test 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 20

Förbättringar - 3D modellen 2D 3D Skillnader mellan 2D och 3D-model Kraft [N] Kraft [N] SYT 7.0/9.8 Hastighet [km/h] Hastighet [km/h] 2D/3D Kraft [-] Hastighet [km/h] 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 21

Förbättringar - 3D modellen Sammanfattning 3D modell implementerad God överensstämmelse med mätresultat Lägre transienter vid stolppassage Markant skillnad i respons mellan 2d/3D modellerna för frekvensintervallet 5-20 Hz 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 22

Active Control Two master theses Thesis 1: Cosimulation between GENSYS and SIMULINK Cosimulation block in SIMULINK 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 23

Active Control Optimal control Ca. 15% reduktion av standardavvikelse av kontaktkraften active 50 km/h högre hastighet 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 24

Active control master thesis Schaer Controller design in Matlab/Simulink Simulation with a full finite element model in ANSYS H control 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 25

Time domain result 280 km/h Without Control Standard Deviation Force [N] 200 180 160 140 120 100 80 60 40 20 0 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 Time [s] With Control Mean Value 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 26

Results two pantographs Including a controller, same reference value Standard Deviation Reduction: First: 1.6 to 4.4 N 7 to 18% Second: 1 to 10 N 5 to 23 % 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 27

Conclusions master thesis Schaer Two pantographs within 100 meter distance are possible up to 280 km/h Reduction is smaller compared with the simpler model in GENSYS 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 28

Benchmark Partners Benchmark av programvara för analys av dynamisk interaktion mellan kontaktledning och strömavtagare Politecnico di Milano KTH Stockholm Instituto Superior Tecnico Lisboa Universidad Pontificia Comillas de Madrid Universitat Tecnica Valencia Southwest Jaotong University Chengdu DB Systemtechnik GmbH Société nationale des chemins de fer français SNCF Korea Railroad Research Institute Railway Technical Research Institute Japan 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 29

Benchmark System Arbetet organiseras i 2 steg: Steg 1: Analys av ett fiktivt idealt system 1. non linear static configuration of the catenary (3D catenary model); 2a. dynamic interaction of the catenary with a single pantograph (2D catenary model); 2b. dynamic interaction of the catenary with a single pantograph (3D catenary model); 3. dynamic interaction of the catenary with multiple pantographs (2D catenary model). Steg 2: Jämförelse med mätningar för ett verkligt system 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 30

Benchmark System i steg 1 Systemet inspererat av Franska LN2 och Italienska C270 systemen L= 55 [m] H s = 1.2 [m] h c = 55 [mm] (1:1000 av L) S c = 22 [kn] S m = 16 [kn] 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 31

Benchmark System i steg 1 Data inspererat av en höghastighets strömavtagare 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 32

General Benchmark Institution sw name FEM/FD 2D/3D DB PROSA FD 2D IST PantoCat FEM 3D KRRI SPOPS FEM 2D (**) KTH CaPaSIM FEM 3D POLIMI PCaDA FEM 3D RTRI Gasen-do FE FEM 3D SNCF OSCAR FEM 3D Element types beams, strings Velocityproportional Euler- Bernoulli- Timoshenko Beams Euler- Bernoulli Beams Euler- Bernoulli beams, bar elements Euler- Bernoulli Beams Euler- Bernoulli Beams Euler- Bernoulli Beams Droppers Registration arms Damping piecewise linear with slackening Beam elements with slackening mass-spring-damper with slackening bar elements with slackening non-linear visco-elastic with slackening Bar Elements with Slackening Non-linear with slackening SWJTU PCRUN FEM 3D Beams Spring Element UPCo CANDY FEM 2D UPV PACDIN FEM(*) 3D Corotational beams and bars ANCF beams, bars Catenary bar elements with slackening bar elements with slackening (*) Absolute Node Coordinate Formulation (**) Change of lateral postion of the contact point due to stagger can be considered Linear spring-mass system Lumped Mass Pantograph Flexiblity contact Multi-Body strips Multiple pantos Penalty method Constraint Yes Yes* Yes* Yes No Yes beam elements Proportional Yes Yes Yes Yes Yes No mass-spring mass+stiffness / bar element Velocityproportional Yes No (Rolling considered) Numerical integration Method Catenary: explicit 2-step method, pantograph trapezoidal rule integration or 2-step backward difference (BDF) Catenary: Newmark, pantograph: Gear (in cosimulation) No Yes Yes Yes Alpha method Proportional Yes Yes No Yes Yes No Newmark method mass-spring / FEM Proportional Yes Yes No Yes Yes No Newmark method Bar Element Proportional Yes No No Yes Yes No beam elements Linear spring-mass system Linear spring-mass system for 2D Proportional or Rayleigh or modal Sliding contact Implicit Newmark + Newton Raphson Yes Yes Yes Yes Yes No Implicit Newmark Modal Yes No Yes Yes Yes No Newmark method Rayleigh Yes No No Yes Yes No Non-linear bar element Proportional Yes No No Yes Yes No Alpha method + Newton Rapshon Newmark, Alphamethod, 4th order RK 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 33

Parameter studies The following parameters are investigated: Type of catenary (x4) Number of pantographs (x1, x2, x3) Running speed (150-300 km/h) Spacing distance between pantographs (60-80 m) Position of a pantograph in the whole system 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 34

Parameter studies Single pantograph operation with respect to different types of catenaries Mean contact force (N) 150 100 50 SYT 7.0/9.8 STY 15/15 ST 9.8/9.8 ST 15/15 Standard deviation (N) 60 50 40 30 20 10 SYT 7.0/9.8 SYT 15/15 ST 9.8/9.8 ST 15/15 0 180 200 220 240 260 280 300 Train speed (km/h) 0 180 200 220 240 260 280 300 Train speed (km/h) Comment: The catenary systems with s2tch wires have less fluctua2on of contact force than those without the s2tch wire With Pantograph SSS400 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 35

Mean contact force (N) Standard deviation (N) 150 100 50 Parameter studies Two pantographs operation with respect to pantographs at different spacing distances Leading pantograph 60m 80m 100m 120m 0 150 200 250 300 Train speed (km/h) 60 50 40 30 20 10 60m 80m 100m 120m Mean contact force (N) Standard deviation (N) 150 100 50 Trailing pantograph 60m 80m 100m 120m 0 150 200 250 300 Train speed (km/h) 60 50 40 30 20 10 60m 80m 100m 120m Comment: The mean contact forces is much less influenced by other pantographs. The standard devia2on of the leading pantograph is less influenced by the trailing one, while the standard devia2on of the trailing one is significantly influenced by the one ahead. SYT 7.0/9.8 WBL 88 0 150 200 250 300 Train speed (km/h) 0 150 200 250 300 Train speed (km/h) 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 36

Mean contact force (N) 150 100 50 Parameter studies Two pantographs operation with respect to different types of catenary Leading pantograph 60m 80m 100m 120m Mean contact force (N) 150 100 50 Trailing pantograph 60m 80m 100m 120m Comment: the performance on different systems varies a lot. 0 180 200 220 240 260 280 300 Train speed (km/h) 60 0 180 200 220 240 260 280 300 Train speed (km/h) 60 Standard deviation (N) 50 40 30 20 10 60m 80m 100m 120m Standard deviation (N) 50 40 30 20 10 60m 80m 100m 120m SYT 15/15 WBL 88 0 180 200 220 240 260 280 300 Train speed (km/h) 0 180 200 220 240 260 280 300 Train speed (km/h) 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 37

Standard deviation (N) 60 50 40 30 20 10 Comment: The spacing distance between pantographs is a cri2cal factor that decides the dynamic behavior of a mul2- pantograph system. Parameter studies Three pantographs operation with respect to pantographs at different spacing distances First Second Third Min Max 60m 0 150 200 250 300 Train speed (km/h) Standard deviation (N) 60 50 40 30 20 10 First Second Third Max Min 100m Standard deviation (N) 60 50 40 30 20 10 First Second Third Max Min 0 150 200 250 300 Train speed (km/h) 80m 0 150 200 250 300 Train speed (km/h) 120m 60 Standard deviation (N) 50 40 30 20 10 First Second Third Min Max F min = F mean 3σ 0 N F max = F mean +3σ 200 N σ σ max =F mean /3 σ σ min =( 200 F mean )/3 SYT 7.0/9.8 WBL 88 0 150 200 250 300 Train speed (km/h) BVS 543.330 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 38

F min = F mean 3σ 0 N F max = F mean +3σ 200 N Standard deviation (N) 60 50 40 30 20 Parameter studies Three pantographs operation with respect to pantographs at different spacing distances First Secong Third Max Min 60m Standard deviation (N) 60 50 40 30 20 10 First Second Third Max Min 80m σ σ max =F mean /3 σ σ min =( 200 F mean )/3 SYT 15/15 WBL 88 BVS 543.330 10 180 200 220 240 260 280 300 Train speed (km/h) Comment: The type of the catenary system is also a cri2cal factor that influences the performance. The SYT 15/15 allows trains to run at a high speed Standard deviation (N) 60 50 40 30 20 10 First Second Third Max Min 100m 0 180 200 220 240 260 280 300 Train speed (km/h) 0 180 200 220 240 260 280 300 Train speed (km/h) Standard deviation (N) 60 50 40 30 20 10 First Second Third Max Min 120m 0 180 200 220 240 260 280 300 Train speed (km/h) 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 39

Parameter studies Conclusions: The pantograph-catenary systems with the stitch wire have less fluctuation of contact force The mean contact forces are not sensitive to both the number of pantographs and their spacing distances A trailing pantograph is heavily influenced by all pantographs in front of it The dynamic behavior of the system does not always get worse with the number of pantographs increasing The spacing distance between pantographs and the type of catenary in use are critical factors in multi-pantograph operation 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 40

Framtida arbete Benchmark Jämförelse med uppmätta resultat Vidareutveckla 3D modellen Kontaktledningssystem för framtida höghastighetsbanor i Sverige Aktiva strömavtagare ev. tillsammans med POLIMI Testa aktiva strömavtagare 24/04/14 KTH Railway Group Centre for Research and Education in Railway Technology 41