Miljöfysik Föreläsning 5 Användningen av kärnenergi Hanteringen av avfall Radioaktivitet Dosbegrepp Strålningsmiljö Fusion
Energikällor
Kärnkraftverk i världen
Fråga Ange tre fördelar och tre nackdelar med kärnenergi.
Fråga Tror du att verkningsgraden i ett kärnkraftverk är högre eller lägre än verkningsgraden i ett kolkraftverk?
Fördelar Ingen CO 2 -emissioner Färre luftföreningar än fossilenergi Man får kontinuerlig energi Nackdelar Avfall En olycka kan påverka hela landet Kostnaden när man vill avveckla ett kärnkraftverk
Radioaktivt avfall Radioaktivt avfall är radioaktivt material, en restprodukt. Lågaktivt avfall Kärnkraft, sjukhus. T.ex. gamla skyddskläder Bör förvaras 20-40år Medelaktivt avfall Högaktivt avfall Filter och jonbytarmassor. Enstrålskärm (betong) behöver. Bör förvaras > 40 år. Kärnbränsle (klyvningprodukter). Detmåste strålskärmas och kylas. Det bör förvaras i upp till 100000 år.
Farliga fissionsprodukta
Hanteringen av avfall I Sverige : SFR: Slutförvar för radioaktivt driftavfall. Forsmark För låg- och medelaktivt avfall. Anläggningen ligger 60m under havsbotten. Den byggs 1981 - kapaciteten = 63000 m Årligen tar man 1000m 3. 3. Högaktiva i Centralt meanlager för använt kärnbränsle (Clab) Nära Oskarharmn och Kärnkraftverket. > 5300 ton använt kärnbränsle. Materialet ska flyttas till ett slutförvar.
Yucca Mountain En bergsrygg i Nevada. Yucca Mountain Repository - ska användas som ett förvar för använt kärnbränsle och annat radioaktivt avfall. 8 Kapaciteten 1.35 10 kg
Radioaktivitet N = N e N 0 1 2 0 λt = antalet radioaktiva kärnor vid tiden t = N = antalet kvarande kärnor vid tiden t λ = Sönderfallskonstant T ln 2 = = halveringstiden λ 0 N 0 N0 2 T 12 Aktiviteten R = Antalet sönderfall per tidsenhet R = R e R 0 0 λt = aktiviteten vid tiden t = 0 R = aktiviteten vid tiden t Enhet : Becquerel. 1 becquerel =1 Bq = 1sönderfall/sek. α, β, γ -strålning.
Alpha-sönderfall Alpha-sönderfall X Y + α α 4 ( = He) För att rymma måste en α partikel besegra en potentialbarrier.den tunnlar igenom barriärn! α-partikel fångad i en kärna. α-partikels typiska energy 4-8 MeV. En α-partikel kan jonisera material. Typiskt räckvidd i luft : 2-4cm.
A A + Z Z 1 e A A Z Z + 1 e ν e X X Y + β + ν Y + β + ν Beta-sönderfall Beta-sönderfall via den svaga kraften = neutrino, ν = antineutrino e En β kan jonisera material. Energi mellan : 100 KeV 10 MeV. Elektroner i materians elektronmoln repelleras. Typiskt räckvidd i luft ~m. Längre räckvidd än en α-partikel Bättre strålskydd behövs.
γ strålar γ -strålar produceras när en kärna deexciteras från en högre till en lägre energinivå. Energierna : 1 kev 10 MeV. Kan ha längre en längre räckvidd än α, β -partiklar. µ x Intensitet: I = I0e ln 2 x1 = = halveringstjocklek : den 2 µ sträcka som gör att intensiteten går ned till hälften.
Dosbegrepp Om en levande organism utsätts för joniserande strålning, kan olika effekter och skador uppkomma. Vi behöver ett begrepp som beskriver omfattningen av bestrålningen, dosen. Absorberad dos D Energimängd Q som den joniserande strålningen överför i en massa m. Q D = ; enheten : J/kg =Gy (gray) m Ekvivalent dos H α-partiklar stoppas tidigt mer concentrerad energi än β, γ. H = w w D w R w T T R ( viktningsfaktor) = 20( α),1( β, γ) är en viktningsfaktor för olika delar av kroppen.
Dosbegrepp Organ ellervävnad w T Könskörtlar 0.20 Röd benmärg 0.12 Tjocktarm 0.12 Lungor 0.12 Mage 0.12 Urinblåsa 0.05 Bröst 0.05 Lever 0.05 Hud 0.01 Övriga organ 0.05
Faktorer som påverkar stråldosen Aktivitet Avstånd Energi Strålslag Tid Skärmning
Att mäta strålning Strålning ska jonisera en gas. Man mäter en förändring i spänningen. Strålning (en partikel) Anod Strömm ätning Luft eller en annan gas Katod
Strålningsmiljön Källa Ekvivalent dos/msv Naturlig bakgrundsstrålning 1 Radon i bostäder 2 Medicinska undersökningar 0.7 Medicinska behandlingar 0.7 Övrigt 0.1
Fråga 5 Gy är en dödlig dos vid helkroppsbestrålning. Hur mycket ökar kroppens temperatur av denna stråldos? 5J per kg absorberad. Anta att kroppen består av vatten. J Vattnets specifika värmekapacitet c = 4190. O kg C Q = mc T 5 O Temperaturökningen T = = 0.001 C 4190 1 Det är omöjligt att uppfatta joniserande strålning som värme även om man får en dödande dos!
Hur kan man få kärnenergi? B A = bindningsenergi per nukleon (proton/neutron) De lätta kärnorna Ba och Kr har större bindningsenergi per nukleon än U Fission!! Finns det ett annat sätt att få ut kärnenergi? A
Den proton-proton cykeln i solen + H + H H + e + ν Q = 1 1 2 H + H He + γ Q = 1 2 3 3 3 4 1 1 0.4 MeV 5.5 MeV He + He He + H + H Q = 12.9 e MeV 0.4 MeV 0.4 MeV Den total energin = 24.7 MeV kinetiska energi av reaktion-fragment. 5.5 MeV 12.9 MeV 5.5 MeV
Fusion som en energikälla Fusion skulle vara en bra energikälla! Ingen förorening i atmosfären. Säker. Radioaktiva fragment sönderfalla snabbt. Följande mekanismer studeras: H + H He + n Q = 3.27 MeV 2 2 3 1 1 2 H + H H + H Q = 4.03 MeV H + H He + n Q = 17.6 MeV 2 2 3 1 1 1 1 2 3 4 1 1 1 2 0 8 Man behöver : höga temperaturer ( > 10 K) som tar bort elektroner från atomerna. Den joniserade gasen blir en plasma. : hög partikeltäthet ( n partiklar/vol) : Lång fångenskap-tid τ för att tillåta reaktioner att ske: Lawsons kriterium nτ > 10 s/m 20 3
Fusion i laboratoriet Joint European Torus (JET) Oxford, UK. Plasma fångas av ett magnetfält 6 och värms till 40-50 grader. 10 Man får energi ut men den är mindre än energin som används för att inducera fusionen. Nästa steg är i Frankrike. International Thermonuclear Experimental Reactor (ITER)
Sammanfattning Kärnenergi ger ett bidrag till världens energi Att hantera avfall är ett stort problem Radioaktivitet joniserar material. Många faktorer som bestämmer hur farlig strålning kan vara för oss. Fusion kan kanske ge oss ren energi i framtiden