Biologisk reducering av nitrat och nitrit i vatten

Relevanta dokument
Välkommen på Utbildningsdag. Processer i avloppsreningsverk

Stockholms framtida avloppsrening MB Komplettering

Utvärdering av reningsfunktionen hos Uponor Clean Easy

SÄTTERSVIKENS AVLOPPSRENINGSVERK. Hammarö kommun

FERMAWAY vattenreningssystem - i korthet -

Sammanställning av mätdata, status och utveckling

Hur reningsverket fungerar

Laboratorier MoRe Research Örnsköldsvik AB Örnsköldsvik Ackrediteringsnummer A

Vägen till en förbättrad biologisk rening på ett koksverk. Erika Fröjd, SSAB Oxelösund

Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:

2 ANLÄGGNINGENS UTFORMING

ÄMNEN SOM INTE FÅR TILLFÖRAS AVLOPPS- VATTNET. Exempel på ämnen som inte får tillföras avloppsledningsnätet är;

Anammox - kväverening utan kolkälla. Var ligger forskningsfronten? E. Płaza J.Trela J. Yang A. Malovanyy

KILENE AVLOPPSRENINGSVERK. Hammarö kommun

Biogasanläggning Energibesparing med avloppsvatten Peter Larsson ver 2

Metodik för att identifiera behandlingsbehov av industriellt avloppsvatten före vidare rening i kommunalt avloppsreningsverk.

Miljörapport halvår 2015 Stora Enso Skoghall AB

PRISLISTA VA Kvalitetskontroll

Parameter Metod (Referens) Mätprincip Provtyp Mätområde. Ammonium SS EN-ISO 11732:2005 Autoanalyzer III 1:1, 2, 4 0,04 0,2 mg/l

Lärarhandledning för arbetet med avlopp, för elever i år 4 6. Avloppsvatten

Räkneuppgifter i Vattenreningsteknik - 2

Informationsmöte på Margretelunds reningsverk. Mikael Algvere AOVA chef

VAD ÄR AVLOPPSVATTEN? VARFÖR BEHÖVS AVLOPPSVATTENRENING? AVLOPPSRENINGSVERKETS DELAR

Går igenom populärversion av aktivt slam. Hur man kontrollerar slam visuellt Vad händer när det blir slamflykt och flytslam Vad bör man tänka på när

Dnr KK18/456. Taxa för provtagning av vatten- och avloppsprover på Vattenlaboratoriet. Antagen av Kommunfullmäktige

RENING AV KVÄVEHALTIGT GRUVVATTEN. Seth Mueller. VARIM 2014 (Jan-Eric Sundkvist, Paul Kruger)

Tekniker Va*enbruk. Landbaserad & havsbaserad småskalig verksamhet. Ane*e Ungfors & Susanne Lindegarth, Va*enbruksCentrum Väst, Göteborgs Universitet

Långtidsserier från. Husö biologiska station

RENINGSVERKETS MIKROBIOLOGI BIOLOGISKA RENINGSSTEGET KVÄVETS KRETSLOPP ANDRA BIOLOGISKA RENINGSMETODER

SYREHALTER I ÖSTERSJÖNS DJUPBASSÄNGER

Årsrapport för mindre avloppsreningsverk

Utreda möjligheter till spridningsberäkningar av löst oorganiskt kväve och löst oorganiskt fosfor från Ryaverket

4,3 6,4 9,5 11,9 13,3 12,8 9,2 8,9 4,8 5,8 8,3 5,2 7,5 10,0 12,4 15,0 14,9 9,8 9,1 5,2 7,5 8,1 4,6 6,6 9,9 11,8 13,4 13,4 9,3 8,1 4,8 6,3 8,4 7,1 9,2

BAT-slutsatser för produktion av massa och papper Olof Åkesson Naturvårdsverket

Vatten och luft. Åk

Tillfällig magasinering av flödestoppar i kombination med direktfällning minskar utsläppen. Maria Mases processingenjör VA SYD

Statens naturvårdsverks författningssamling

KÄLLBY AVLOPPSRENINGSVERK

MILJÖTEKNIK FÖR BEHANDLING AV AVLOPPSVATTEN

En låg temperatur är i de flesta fall det bästa för livet i ett vattendrag. I ett kallt vatten blir det mer syre.

Dränering och växtnäringsförluster

Trender för vattenkvaliteten i länets vattendrag

Övningar Homogena Jämvikter

RAPPORT OM TILLSTÅNDET I JÄRLASJÖN. sammanställning av data från provtagningar Foto: Hasse Saxinger

Modellering och styrning av ett biologiskt reningsverk

Effektiv onlinemätning ger energibesparingar och minskade utsläpp

markbädd på burk BIOROCK Certifierad avloppsvattenrening på burk utan el

markbädd på burk BIOROCK Certifierad avloppsvattenrening på burk utan el.

AOT/AOP Avancerade OxidationsProcesser

Rena fakta om Gryaab och ditt avloppsvatten.

NYA FÖRESKRIFTER FÖR STÖRRE AVLOPPSRENINGS ANLÄGGNINGAR


Miljöpåverkan från avloppsrening

Kyvett-test LCK 380 TOC Totalt organiskt kol

Prov i kemi kurs A. Atomens byggnad och periodiska systemet 2(7) Namn:... Hjälpmedel: räknedosa + tabellsamling

1006 ISO/IEC Metodbeteckning Analys/Undersökning av Resultat Mätosäkerhet

TENTAMEN i Kommunal och industriell avloppsvattenrening

Bilaga 1. Teknisk beskrivning av. Tångens avloppsreningsverk H2OLAND. Mark de Blois/Behroz Haidarian

Minskade NOx- utsläpp med nya tillämpningar i rökgasrening

Ackrediteringens omfattning

Vatten och avlopp i Uppsala. Av: Adrian, Johan och Lukas

Passiva system Infiltrationer och markbäddar. nafal ab. Naturens egen reningsmetod

TENTAMEN i Kommunal och industriell avloppsvattenrening - 1RT361

Spillvatten- bestämmelser för Skövde kommuns allmänna VAanläggning. Beslutad av kommunfullmäktige 15 december 2014, 174. Dnr KS2014.

Provtagningar i Igelbäcken 2006

Brandholmens avloppsreningsverk.

TENTAMEN i Kommunal och industriell avloppsvattenrening

Vattenkemi och transportberäkningar vid Hulta Golfklubb 2008

Rapport gällande provtagning av renat vatten efter sedimentering i nyinstallerat sedimenteringsmagasin i Blekholmstunneln

Rening vid Bergs Oljehamn

Dricksvattenkvalitet Vålberg, Edsvalla och Norsbron

Bränsleanalys och rökgaskalkyl. Oorganisk Kemi I Föreläsning

/193 Ackrediteringens omfattning Nyköpings kommun, Nyköping Vatten, laboratoriet-1104

Laboratorier Örebro kommun, Tekniska förvaltningen Örebro Ackrediteringsnummer 4420 Verksamhetsstöd VA, Laboratoriet A

Ekosystemets kretslopp och energiflöde

TENTAMEN i Vattenreningsteknik 1TV361

4. Kemisk jämvikt när motsatta reaktioner balanserar varandra

Uponor minireningsverk för enskilt avlopp: 5pe, 10pe och 15pe.

Molekyler och molekylmodeller. En modell av strukturen hos is, fruset vatten

Kyvett-test LCK 555 BOD 7

Pilotförsök Linje 1 MembranBioReaktor

Biogas i skogsindustrin. Anna Ramberg, Holmen (Hallsta Pappersbruk)

Laboratorier Karlskrona kommuns Laboratorium Lyckeby Ackrediteringsnummer 1042 Laboratoriet i Lyckeby A

Rapporten är gjord av Vattenresurs på uppdrag av Åke Ekström, Vattengruppen, Sollentuna kommun.

Utvärdering av flotationsanläggningen vid Sjölunda avloppsreningsverk i Malmö

Papper spelar en viktig roll i kommunikation mellan människor. Vi använder mer

Tentamen för KEMA02 lördag 14 april 2012, 08-13

Provningslaboratorier Kretslopp och vatten Mölndal Ackrediteringsnummer 0045 Lackarebäcks vattenverk Laboratorium A

Recipientkontroll 2013 Vattenövervakning Snuskbäckar

Förklaring av kemiska/fysikaliska parametrar inom vattenkontrollen i Saxån-Braån

Årsrapport för mindre avloppsreningsverk

Laboratorier SYNLAB Analytics & Services Sweden AB Umeå Ackrediteringsnummer 1006 Umeå A

Temperatur ( C) Österlenåar - temperatur 22,0 C 20,0 18,0 16,0 14,0 12,0 10,0 8,0 6,0 4,0 2,0

ESKILSTUNA ENERGI & MILJÖ VATTEN & AVLOPP LABORATORIUM

Bestämning av fluoridhalt i tandkräm

Minireningsverk. från. För ett grönare tänkande

ENVISYS HÖSTMÖTE I LUND, ENVISYS HÖSTMÖTE I LUND,

Ammoniakavgång från jordbruket. Johan Malgeryd Jordbruksverket, Linköping

Lärande i arbete

Biofilmsprocess med rörligt bärarmaterial för nedbrytning av läkemedelsrester. Sofia Johannesson

Transkript:

Fakulteten för teknik- och naturvetenskap Avdelningen för kemiteknik Thomas Sohlberg Biologisk reducering av nitrat och nitrit i vatten Biologic reduce of nitrate and nitrite in water Examensarbete 15 poäng Högskoleingenjör i kemiteknik Karlstads universitet 651 88 Karlstad Tfn 054-700 10 00 Fax 054-700 14 60 Information@kau.se www.kau.se 1 Datum/Termin: Höstterminen 2007 Handledare: Ola Holby Examinator: Reidar Lyng

Sammanfattning Under sommaren 2007 testades en skrubber i pilotskala vid Gruvön bruk i Grums. Skrubbern minskade halten NO x med 90 % i rökgas. NO x överfördes från rökgas till en skrubbervätska i form av nitrat och nitrit. Skrubbervätskan behöver genomgå en rening av nitrat och nitrit. En lösning kan vara att rena skrubbervätskan i Gruvöns biologiska reningsanläggning. Mikroorganismer i reningsanläggningen behöver assimilera kväve. I reningsanläggningen finns syrefria miljöer. I syrefria miljöer kan mikroorganismer reducera nitrat. Vid genomförandet byggdes en labmodell av de två första reningsstegen från Gruvöns bruk. Avloppsvatten hämtades från Gruvöns bruk. Avloppsvattnet doserades med salter av nitrat och nitrit och pumpades in i labmodellen. Resultaten visade att nitrat och nitrit kan minskas i halt med hjälp av Gruvöns biologiska reningsanläggning. 2

Abstract During the summer 2007 was a scrubber tested at Gruvön papper mill in Grums. The scrubber reduced NO x with 90 % in flue gas. NO x was transferred from the flue gas to a scrubber liquid as nitrate and nitrite. The scrubber liquid needs to be purified from nitrate and nitrite. One possible solution is to clean the scrubber liquid in Gruvön biologic cleaning construction. Microorganisms in the biologic cleaning construction need to assimilate nitrogen. There are environments free from oxygen in the cleaning construction. Microorganisms can reduce nitrate in environments free from oxygen. At the implementation was a labmodel built of the two first steps from Gruvön papper mill. Wastewater was collected from Gruvön papper mill. The wastewater was dosed with salts of nitrate and nitrite and pumped into the labmodel. The results showed that nitrate and nitrite can be reduced in content with help of the biological cleaning construction.

Innehållsförteckning Sammanfattning... 2 Abstract... Innehållsförteckning... 4 1. Inledning... 5 2. Bakgrund... 6. Genomförande... 8.1 Labmodell... 8.2 Bärare... 9.2 Försök och referens... 9. Hämtning av avloppsvatten... 9.4 Nitrat, nitrit och ammonium... 10.5 Klorat... 12.6 Bestämningar... 12 4. Resultat... 14 5. Utvärdering... 16 6. Slutsats... 17 7. Tackord... 17 Referenslista... 17 4

1. Inledning Detta examensarbete är utfört på Karlstads universitet höstterminen 2007. Examensarbetet omfattar 22,5 högskolepoäng motsvarande 15 veckor. Handledare är Ola Holby vid avdelningen för energi-, miljö- och byggteknik. Examinator är Reidar Lyng vid avdelningen för kemi. Syfte Att studera om nitrat och nitrit kan renas ur vatten i Gruvöns biologiska reningsanläggning. Mål Bestämma om nitrat och nitrit kan användas som kvävetillskott i Gruvöns biologiska reningsanläggning utan att reduktionen av COD störs. Bestämma om nitrat och nitrit kan reduceras i Gruvöns biologiska reningsanläggning utan att kloratreduktionen störs. Avgränsning De två första stegen i Gruvöns biologiska reningsanläggning studeras. 5

2. Bakgrund Gruvön är ett massa och pappersbruk som ligger i Grums cirka mil från Karlstad. Gruvöns bruk ingår i Billerudkoncernen. Billerudkoncernen består av Gruvöns bruk samt pappersbruken Karlsborg, Skärblacka och Beetham. Med cirka 1100 anställda är Gruvön en av Värmlands största arbetsgivare. Gruvöns bruk testade under sommaren 2007 en skrubber i pilotskala. Skrubbern minskade NO x i rökgas från sodapannan. NO x är ett samlingsnamn för de kväveoxider som bildas vid förbränning. En skrubber är en reningsmetod där förorenad luft blir sprejad med en vätska. Föroreningarna binds till vätskan och blir separerade från luften. Gruvöns bruk använde en skrubberteknik patenterat av Metso (patent FI 9687 C) [2]. Metsos skrubberteknik består av två steg. I det första steget oxideras kväveoxid (NO) till kvävedioxid (NO 2 ). 2NO(g) + ClO 2 (g) + H 2 O(aq) NO 2 (g) + HNO (aq) + HCl(aq) [2] Efter första skrubbersteget har halten kväveoxid (NO) i rökgas reducerats. I det andra skrubbersteget reduceras kvävedioxid (NO 2 ) till kvävgas (N 2 ). 2NO 2 (g) + 4Na 2 SO (aq) N 2 (g) + 4Na 2 SO 4 (aq) [2] Efter försök konstaterade Gruvön att steg 2 i Metsos skrubberteknik inte fungerar. Gasformig NO 2 övergick istället till nitrit (NO 2 - ) i steg 2. Resultat från försöken visade att skrubbertekniken reducerar halten NO x med 90 % över de båda stegen [2]. Steg 1 gav nästan en fullständig oxidation av NO till NO 2 [2]. NO x reduktionen över steg 1 var 50-60 % [2]. I steg 2 minskades halten NO 2 med 80 % [2]. NO x återfanns i skrubbervätskan i form av nitrat (NO - ) och nitrit (NO 2 - ). Nitrat (NO - ) och nitrit (NO 2 - ) bidrar bland annat till övergödning. I maj 2006 togs en ny reningsanläggning i drift på Gruvöns bruk. Den luftade dammen från 1985 ersattes med en multibio-anläggning. I en multibio-anläggning renas vatten i flera steg av mikroorganismer. Gruvöns multibio-anläggning består av fem luftade reningssteg och en efterföljande sedimentering. Vid tillverkningsprocessen i ett massa och pappersbruk används stora mängder vatten. Vattnet används till tvättning, transport av massa och tillverkning av kemikalielösningar. Tillverkningsprocessen gör att organiskt material från veden hamnar i vattnet. Genom att tillsätta syre kan mikroorganismer bryta ned organiskt material i avloppsvattnet. Detta görs i den biologiska reningsanläggningen på Gruvön. Det organiska materialet mäts som COD. I det första steget i Gruvöns reningsanläggning finns bärare. Inuti bärarna bildas syrefria zoner. I de syrefria zonerna reduceras klorat av mikroorganismer. Klorat är ett giftigt ämne. Mikroorganismer som används i biologiska reningsmetoder behöver näringsämnena kväve och fosfor. Kväve och fosfor assimileras av mikroorganismer. Gruvön tillsätter i dagsläget fosforsyra och ammonium till behovet av fosfor och kväve i reningsanläggningen. 6

Ammonium, nitrat och nitrit kan under biologiska förhållanden omvandlas via olika processer. Ammonium kväve assimilering Organiskt kväve O 2 nitrifikation Nitrit (NO 2 - ) O 2 Organiskt kol Nitrat (NO - ) Kvävgas (N 2 ) denitrifikation Figur 1 Omvandling av kväveföreningar med nitrifikation och denitrifikation []. Genom nitrifikation omvandlas ammonium till nitrat. Nitrifikationen sker i två steg. I det första oxideras ammonium till nitrit. I det andra oxideras nitrit till nitrat. Nitrifikation kräver syre och gynnas av låga halter organiskt material. Med denitrifikation omvandlas nitrat till kvävgas. Vid denitrifikation reduceras nitrat för att ge syre till nedbrytningen av organiskt material. Processen kräver syrefria förhållanden och tillgång på organiskt material. Nitrat och ammonium kan assimileras av mikroorganismer []. Mikroorganismer kan assimilera nitrat och därefter reducera nitrat till ammonium []. Gruvöns reningsanläggning har ett behov av kväve på 850 kg per dygn [2]. Normalt i brukets avloppsvatten finns 150 kg kväve per dygn [2]. Gruvön tillsätter 700 kg kväve per dygn med ammonium. En fråga är om det går att ersätta en del av dagens kvävetillskott med nitratkväve i skrubbervätskan Gruvön har uppskattat att 00 kg kväve per dygn kan fås från en skrubberanläggning i fullstor skala [2].. 7

. Genomförande.1 Labmodell Två kopior av de två första reningsstegen byggdes i labskala. Labmodellen har tidigare tagits fram av Maria Sandberg vid avdelningen för energi-, miljö- och byggteknik på Karlstads universitet. Varje steg i bioreningen motsvarade en glasbehållare på lab. Syre tillsattes med tryckluft. Luft in Avloppsvatten in Vatten ut 0,9 l Vatten in Avloppsvatten ut Avlopp Figur 2 Försöksuppställning på lab. Avloppsvatten pumpades från dunken in i första reningssteget (bärarsteget). Efter en uppehållstid på,4 h transporterades avloppsvattnet vidare till steg 2. Labmodellen kördes med samma driftförhållanden som reningsanläggningen på Gruvön. Flöde, volym och uppehållstid Enligt rapporten är volymen i de två första stegen 6000 m respektive 500 m [4]. Medelflödet i reningsanläggningen är 1750 m /h. uppehållstid steg 1 =,4 h uppehållstid steg 2 = 2 h Dunk med avloppsvatten 8

Ett litet flöde var prioriterat. Den minsta volymen med ett konstant flöde in i behållaren var 0,9 liter. Volymen gick till nivån för det hål där avloppsvattnet rann ut. Med volymen 0,9 liter och uppehållstiden,4 h beräknades flödet till 0,27 liter/h. Uppehållstiden för steg 1 valdes för att beräkna flödet. Steg 2 har en mindre volym än steg 1 i Gruvöns reningsanläggning. Den minsta volymen på labb var 0,9 liter. Steg 2 fick samma uppehållstid som steg 1. Temperatur Enligt rapporten är temperaturen 5 C [1]. DO (dissolved oxygen) Enligt rapporten är DO 0,4 mg/l i första steget och 0,8 mg/l i det andra [1]. ph Enligt rapporten är ph 7,5 [1]. Figur Bild på labmodell..2 Bärare Bärare från Gruvöns biologiska reningsanläggning användes. I reningsanläggningen på Gruvön finns 1100 m bärare i det första steget [1]. Det första steget har en volym på 6000 m [1]. Volymsandelen bärare är 18 %. I labanläggningen var volymen i första steget 0,9 liter. 18 % andel av detta är 0,16 dm. Denna volym motsvarade 2 stycken bärare från Gruvöns reningsanläggning..2 Försök och referens Två kopior byggdes i labskala. I försöksmodellen doserades nitrat, nitrit och ammonium. I referensmodellen doserades enbart ammonium.. Hämtning av avloppsvatten Avloppsvatten hämtades i dunkar från Gruvöns biologiska reningsanläggning. Avloppsvattnet togs vid en provtagningspunkt där det inte hade doserats med ammonium. Två dunkar kopplades in direkt till labanläggningen. De resterande dunkarna lades i frysen och tinades upp vid behov. 9

.4 Nitrat, nitrit och ammonium Nedan anges flöden i den biologiska reningsanläggningen och flödet från en skrubber i fullstor skala. Skrubber (fullstor skala) Flöde = 100 m /h Avloppsflöde = 1700-1800 m /h Biorening Figur 4 Flöden i Gruvöns biologiska reningsanläggning och flödet från en skrubber i fullstor skala [1]. Försöksmodell Skrubbervätskan innehållande nitrat och nitrit tillsätts i avloppsflödet. Avloppsflödet för med sig skrubbervätskan in i bioreningen. Beräkning gjordes med ett medelvärde på avloppsflödet. Medelvärdet är 1750 m /h. Summan av skrubberflödet och avloppsflödet är 1850 m /h. m m dm flöde = 1850 = 44400 = 44400000 h dygn dygn Gruvön har uppskattat att en skrubber i fullstor skala ger 00 kg kväve per dygn i form av nitrat och nitrit. 00000 g nitratkväv e + nitritkväve = = 0, 00675 g dm 44400000 dm 400000 g kväve ammoniumkv äve = = 0, 0090 g 44400000 dm dm Avloppsflödet doseras med 0,00675 g kväve per liter från skrubbervätskans nitrat och nitrit. Doseringen av ammoniumkväve blir 0,0090 g kväve per liter. 10

Förhållandet mellan nitrat och nitrit beräknades. Skrubbervätska 1 [2] Ämne Prov 1 [mg/l] Prov 2 [mg/l] Prov [mg/l] Medelvärde [mg/l] Totalkväve 42 1 67 Nitratkväve 5 66 47 49 Nitritkväve 0 0 0 0 Skrubbervätska 2 [2] Ämne Prov 1 [mg/l] Prov 2 [mg/l] Prov [mg/l] Medelvärde [mg/l] Totalkväve 90 140 154 Nitratkväve 1 9 14 18 Nitritkväve 79 101 104 95 Flöde skrubbervätska 1 = 1 l/minut [5]. Flöde skrubbervätska 2 = 0,7 l/minut [5]. På 1 minut strömmade 1 liter av skrubbervätska 1. Medelvärdet av nitrat i skrubbervätska 1 var 49 mg/l. Mängden nitrat från skrubbervätska 1 blev 49 mg. Skrubbervätska 1 innehöll ingen nitrit. På 1 minut strömmade 0,7 liter av skrubbervätska 2. Medelvärdet av nitrat i skrubbervätska 2 var 18 mg/l. Mängden nitrat från skrubbervätska 2 blev 0,7*18 = 12,6 mg. Medelvärdet av nitrit i skrubbervätska 2 var 95 mg/l. Mängden nitrit från skrubbervätska 2 blev 0,7*95 = 66,5 mg. Efter blandning innehåller 1,7 liter skrubbervätska 61,6 mg nitrat och 66,5 mg nitrit. Förhållandet nitratkväve till nitritkväve är 61,6:66,5 eller 1:1,0795. Mängden nitratkväve och nitritkväve beräknades: g kväve x + 1,0795* x = 0,00675 l där x = mängd nitratkväve och 1,0795* x = mängd nitritkväve koncentration nitratkväve = x = 0,0024 g nitratkväve / l koncentration nitritkväve =1,128*x = 0,0050 g nitritkväve / l Avloppsflödet doserades med natriumnitrat (NaNO ), natriumnitrit (NaNO 2 ) och ammoniumsulfat (NH 4 SO 4 ). Nitratkväve, nitritkväve och ammoniumkväve räknades om till mängder av natriumnitrat, natriumnitrit och ammoniumsulfat. 11

g natriumnitrat natriumnitrat = 0,0196 dm g natriumnitrit natriumnitrit = 0,0172 dm g ammoniumsulfat ammoniumsulfat = 0,0740 dm Referensmodell Kvävedoseringen i referensmodellen: ammonium kväve = ammoniumsulfat = 0,127 700000 g 44400000 dm = 0,0157 g g ammoniumsulfat dm dm.5 Klorat Klorat reduceras under syrefria förhållanden. I dunken med avloppsvatten bryter mikroorganismer ned COD. Vid nedbrytningen används syre. Syrefria förhållanden kunde uppstå i dunken. Klorat kunde reduceras redan i dunkarna med avloppsvatten. Den 26 november doserades halva halten klorat som normalt finns i avloppsvattnet på Gruvöns biologiska reningsanläggning. Prover för klorat togs senare samma dag. Halten normalt är -4 ton/dygn [1]. Ett medelvärde fås på,5 ton/dygn. Halva detta ger en halt på 1,75 ton/dygn. Doseringen gjordes med natriumklorat NaClO. g klorat = 1750000 = 0,094 g dm 44400000 dm g natriumklorat natriumklorat = 0,050 l 0,050 g natriumklorat doseras per liter avloppsvatten..6 Bestämningar Nitrat (NO - ) Bestämdes fotometriskt med en FIA (Flow injection analysis). Det filtrerade provet innehållande nitrat får reagera med reagens. Slutligen bestäms halten nitrat fotometriskt vid våglängden 540 nm. Metoden ger summan av halten nitrat och nitrit i provet. Genom att subtrahera halten nitrit från summan får man halten nitrat. Metoden var från Aquatec referensnummer ASN 14-01/90. 12

Nitrit (NO 2 - ) Bestämdes fotometriskt med en FIA (Flow injection analysis). Metoden var från Aquatec referensnummer ASN 144-01/90. Ammonium (NH 4 + ) Bestämdes fotometriskt med en FIA (Flow injection analysis). Det filtrerade provet innehållande ammonium får reagera med reagens. Slutligen bestäms halten ammonium fotometriskt vid våglängden 590 nm. Metoden var från Aquatec referensnummer ASN 140-01/90. Figur 5 Bilder på instrumentet FIA. Klorat Klorat bestäms vanligen med jonbyteskromatografi. Det fanns inga möjligheter att göra detta på universitetet så proverna skickades till Stora Enso i Skoghall. COD Bestämdes fotometriskt med en metod enligt HACH-LANGE LCK214. Totalfosfor Bestämdes fotometriskt med en metod enligt HACH-LANGE. Provpunkter Prover togs från ingående och utgående avloppsvatten. Datum Ammonium, nitrat och nitrit bestämdes 20, 21, 22, 2, 26, 27 november. 1

4. Resultat I tabellerna nedanför visas resultaten från de bestämningar som gjordes mellan den 20- november till den 27-november. Ammonium N-NH4+ [mg/l] Inreferens Utreferens Reduktion [%] 20-nov 6,40 5,4 15 21-nov 4,50 1,14 75 22-nov 4,56 2,0 55 2-nov,20 1,49 54 26-nov 1,77 0,76 57 Införsök Utförsök 20-nov 5,66 0,1 98 21-nov,85 0,10 98 22-nov 2,0 0,7 84 2-nov 2,60 2,74 0 26-nov 6,68 5,6 20 Nitrit N-NO2- [mg/l] In-referens Ut-referens Reduktion [%] 20-nov 0,025 0,04-21-nov 0,041 0,056-22-nov 0,055 0,046-2-nov 0,040 0,027-26-nov 0,02 0,016-27-nov 0,015 0,040 - In-försök Ut-försök Reduktion [%] 20-nov 1,66 0,02 98 21-nov 0,7 0,01 92 22-nov 0,041 0,08 8 2-nov 0,018 0,055-26-nov 1,19 0,057 95 27-nov 0,050 0,042 0 Nitrat N-NO- [mg/l] In-referens Ut-referens Reduktion [%] 20-nov 0,01 0-21-nov 0 0-22-nov 0 0-2-nov 0 0-14

26-nov 0 0-27-nov 0 0 - In-försök Ut-försök 20-nov 0,5 0,024 95 21-nov 0 0,014-22-nov 0 0-2-nov 0 0-26-nov 1,41 0 100 27-nov 0 0 - COD COD In-referens Ut-referens Reduktion [%] 20-nov 1050 795 25 21-nov 1145 920 20 22-nov 100 787 24 2-nov 1090 898 18 26-nov 1010 800 21 In-försök Ut-försök 20-nov 110 860 24 21-nov 1152 8 28 22-nov 1078 865 20 2-nov 95 740 21 26-nov 1065 901 16 Klorat Klorat [mg/l] In-referens Mellan-referens Ut-referens Reduktion [%] 26-nov 21,5 <0,1 <0,1 99 In-försök Mellan-försök Ut-försök 26-nov 52,6 <0,1 <0,1 99 15

5. Utvärdering Resultaten från FIA visade att halten nitrat och nitrit minskade i försöksmodellen. Både halten nitrat och nitrit minskade redan i dunkarna. Nitrat kan reduceras med denitrifikation. Denitrifikation kräver syrefria förhållanden och tillgång på organiskt material. Syrefria förhållanden fanns i bärarna i det första reningssteget och kunde även finnas i dunkarna. Organiskt material fanns i avloppsvattnet. Förhållandena är gynnsamma för denitrifikation. Det är troligt att nitrat kan ha reducerats med denitrifikation. Ett intressant resultat är hur halten COD in i försöksmodellen har minskat. Resultat för referensmodellen visar inte alls samma minskning av halten COD in. Detta tyder på att mikroorganismer brutit ned COD i försöksmodellen redan i dunken med avloppsvatten. Halten syre i dunkarna med avloppsvatten var låg. Med denitrifikation kan mikroorganismer ha reducerat nitrat för att få syre till nedbrytningen av organiskt material. Nitrat kan assimileras av mikroorganismer. Ingen slutsats kan göras om nitrat har omvandlats med denitrifikation eller har assimilerats. Nitrit kan omvandlas till nitrat under biologiska processer. Reaktionen kräver syre och gynnas av vatten med en låg halt av organiskt material. Avloppsvattnet i dunkarna innehöll en hög halt av organiskt material. Dunkarna med avloppsvatten och det första reningssteget hade låga halter syre. Dessa förhållanden gör att reaktionen missgynnas. Ingen slutsats kan göras om hur halten nitrit har minskats. Det är dock klart att halten nitrat och nitrit kan minskas under de biologiska förhållanden som råder i försöksmodellen. Föroreningsproblemet är då löst. Resultaten av avloppsvattnet från referensmodellen visar helt riktigt att det inte finns några halter av nitrat eller nitrit. Detta eftersom inget natriumnitrat eller natriumnitrit tillsattes i referensmodellen. Halten ammonium minskade redan i dunkarna med avloppsvatten. Försöksmodellen hade en reduktion på 84-98 % de första dagarna. Referensmodellen hade en mer varierande reduktion av ammonium. En förklaring till den varierande reduktionen kan vara driftstörningar under analysen. FIA:n mätte ibland varierande och osäkra värden. Reduceringen av klorat var 99 % i både referensmodellen och försöksmodellen. Närvaro av nitrat och nitrit påverkade inte reduceringen av klorat i försöksmodellen. Lufttillförseln varierade varje dag. Varierande lufttillförsel påverkade DO i reningsstegen. Varierande DO påverkade inte nedbrytningen av organiskt material. De flesta dagar låg CODreduktionen på 20-25 %. En varierande DO halt kan påverka denitrifikation och kloratreduktion som sker i de syrefria miljöerna inuti bärarna. Vid för höga halter DO kan processerna som sker i syrefria förhållanden missgynnas. Kloratreduktionen fungerade trots varierande DO. Om nitrat har reducerats med denitrifikation så har inte den processen påverkats av varierande DO. Det svåraste problemet för projektet var att FIA:n hade störningar i driften. Problemet gjorde att instrumentet ibland mätte varierande och osäkra värden. Instrumentet fick då startas om och ges service. Efter omstart mätte instrumentet mer noggrant. Projektet kan utvecklas och förbättras. Varje behållare rekommenderas ha en egen lufttillförsel så att rätt DO kan ställas in. Vid genomförande tillsattes nitrat och nitrit kontinuerligt till försöksmodellen via dunkar med avloppsvatten. Nitrat och nitrit rekommenderas istället tillsättas direkt i första reningssteget i försöksmodellen. På detta sätt fås en mer klar bild över hur reningsstegen i försöksmodellen minskar halten nitrat och nitrit. För att få en ännu mer klar bild över hur försöksmodellen renar nitrat och nitrit kan alla fem reningsstegen byggas. Vid genomförandet tillsattes klorat under en dag. Klorat borde tillsättas 16

under flera dagar. Detta för att få fler resultat på om klorat kan reduceras i närvaro av nitrat och nitrit. 6. Slutsats Halter av nitrat och nitrit kan minskas i vatten med Gruvöns biologiska reningsanläggning utan att reduktionen av klorat störs. 7. Tackord Mitt första tack går till Eddy Sandström och Therese Olsson på Gruvöns bruk i Grums för deras svar på mina frågor. Ett stort tack till Maria Malmström som hjälpte mig med analyser med FIA:n. Stort tack Ola Holby vid avdelningen för energi-, miljö- och byggteknik för ditt stöd vid frågor om projektet. Slutligen ett stort tack till Maria Sandberg vid avdelningen för energi-, miljö- och byggteknik som hjälpt mig med laboratoriearbete och hämtning av avloppsvatten. Referenslista 1. Eddy Sandström, Ny reningsanläggning ett år efter igångkörning, Billerud AB Gruvöns bruk, 2007, Paper province miljömöte. 2. Eddy Sandström, Per Jansson och Jonas Messfeldt, Pilotförsök med NO x skrubber i Gruvön, 2007.. Wastewater Engineering, Metcalf & Eddy, 4th edition, 200, ISBN 0-07-041878-0. 4. Dimensioneringsunderlag VA-ingenjörerna, Maria Sandberg, instutionen för energi-, miljö- och byggteknik, Karlstads universitet. 5. Eddy Sandström, Billerud AB Gruvöns bruk i Grums. 17