3. Redovisning av de uppgifter som finns i projekthandledningen. Ange (om så är lämpligt):

Relevanta dokument
3. Redovisning av de uppgifter som finns i projekthandledningen. Ange (om så är lämpligt):

Lunds univrsitet Matematikcentrum Matematisk statistik. Biostatistisk grundkurs, MASB11 Projektuppgift VT-2015, lp3

Instruktioner. Utformning av projektredovisning BIOSTATISTISK GRUNDKURS, MASB11 PROJEKTUPPGIFT VT-09

1 Grundläggande begrepp vid hypotestestning

Regler för grupparbeten, inlämnings- och laborationsuppgifter

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering

Studietyper, inferens och konfidensintervall

Allmänna krav på utformningen och användandet av inlämningsuppgifter i kurser som ges av Brandteknik

Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT Laboration P3-P4. Statistiska test

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)

Laboration 2 Inferens S0005M VT16

InStat Exempel 4 Korrelation och Regression

Instruktioner till arbetet med miniprojekt II

Gör uppgift 6.10 i arbetsmaterialet (ingår på övningen 16 maj). För 10 torskar har vi värden på variablerna Längd (cm) och Ålder (år).

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer

Vad handlade studien om? Varför behövdes studien? Vilka läkemedel studerades? BI

Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II

Statistik Lars Valter

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 HT11. Laboration. Statistiska test /16

FACIT (korrekta svar i röd fetstil)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 ( ) OCH INFÖR ÖVNING 7 ( )

Medicinsk statistik II

Statistik för Brandingenjörer. Laboration 1

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg. Laboration 1. Simulering

Hur skriver man statistikavsnittet i en ansökan?

Idag. EDAA35, föreläsning 4. Analys. Exempel: exekveringstid. Vanliga steg i analysfasen av ett experiment

Examinationsuppgift 2014

Studiehandledning. Projektplan för ett evidensbaserat vårdutvecklingsprojekt HT-12

EXAMINATION KVANTITATIV METOD vt-11 (110204)

Allmänna krav för inlämningsuppgifter vid V- programmet LTH

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 7 ( ) OCH INFÖR ÖVNING 8 ( )

Idag. EDAA35, föreläsning 4. Analys. Kursmeddelanden. Vanliga steg i analysfasen av ett experiment. Exempel: exekveringstid

Laboration 2: Styrkefunktion samt Regression

Bästa omhändertagande. av astma och KOL 27 augusti 2012 Eva Wikström Jonsson

Kursutvärdering av Introduktionskursen, 7 poäng, ht 2006

BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 1, OCH ÖVNING 2, SAMT INFÖR ÖVNING 3

Mefelor 50/5 mg Tabletter med förlängd frisättning. Metoprololtartrat/Felodipi n AbZ 50 mg/5 mg Retardtabletten

Datasammanställning av KOL-studie

Resultat från 2018 års PPM* Aktuella läkemedelslistor

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Omtentamen i Metod C-kurs

Superiority, equivalence och non-inferiority designs. Erika Nyman Carlsson

Laboration 4: Hypotesprövning och styrkefunktion

Laboration 4 Statistiska test

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK

Statistik 1 för biologer, logopeder och psykologer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 8 ( ) OCH INFÖR ÖVNING 9 ( )

Instruktioner till arbetet med miniprojekt II

Statistik och epidemiologi T5

Tentamen består av 12 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 32 poäng för att få väl godkänt.

OBS! Vi har nya rutiner.

Laboration 4 Statistiska test Del I: Standardtest Del II: Styrkefubktion

ska tillämpa dina kunskaper och med hjälp av Matlab analysera ett miljöstatistiskt datamaterial;

13.1 Matematisk statistik

OBS! Vi har nya rutiner.

Forskarutbildningskurs DATAHANTERING OCH DATABEARBETNING

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering

STATISTISK POWER OCH STICKPROVSDIMENSIONERING

EXAMINATION KVANTITATIV METOD

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski

Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta. Tentamensresultaten anslås med hjälp av kodnummer.

Tentamen består av 14 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 32 poäng för att få väl godkänt.

Laboration 3 Inferens fo r andelar och korstabeller

Analytisk statistik. Mattias Nilsson Benfatto, PhD.

TENTAMEN. PC1307/1546 Statistik (5 hp) Måndag den 19 oktober, 2009

Enbrel ger en bestående förbättring av livskvaliteten för patienter med psoriasis

a) Facit till räkneseminarium 3

Hypotestestning och repetition

EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):

Institutionen för teknikvetenskap och matematik, S0001M LABORATION 2

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD

LÖSNINGAR TILL. Matematisk statistik, Tentamen: kl FMS 086, Matematisk statistik för K och B, 7.5 hp

Tentamen består av 9 frågor, totalt 34 poäng. Det krävs minst 17 poäng för att få godkänt och minst 26 poäng för att få väl godkänt.

EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIKTE- ORIN (INFERENSTEORIN):

Analys av signalsubstanser i hjärnan

TENTAMEN I MATEMATISK STATISTIK Statistik för lärare 7,5 hp

Tentamen består av 12 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 32 poäng för att få väl godkänt.

Statistik 1 för biologer, logopeder och psykologer

Kursutvärdering av Naturläkemedel och kosttillskott, 6 hp, vt 2008

Material och metod. På samtliga orter delades enkäten ut i samband med föreläsning för respektive kurs.

Tentamen i Vetenskaplig grundkurs (MC001G/MC014G/MC1016), STATISTIK

Laboration 2 Inferens S0005M VT18

Första sidan är ett försättsblad (laddas ned från kurshemsidan) Alla frågor som nns i uppgiftstexten är besvarade

Analytisk statistik. Tony Pansell, optiker Universitetslektor

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl

träna på att använda olika grafiska metoder för att undersöka vilka fördelningar ett datamaterial kan komma från

repetera begreppen sannolikhetsfunktion, frekvensfunktion och fördelningsfunktion

Människa- datorinteraktion, MDI, ht 2011, anvisningar för projekt- /grupparbete

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl

Instruktioner. Utformning av projektredovisning MATEMATISK STATISTIK AK FÖR EKOSYSTEMTEKNIK, FMSF75 PROJEKTUPPGIFT HT-18

Resultat från 2017 års PPM* Aktuella läkemedelslistor

TENTAMEN I MATEMATISK STATISTIK

STATENS BEREDNING FÖR MEDICINSK UTVÄRDERING

Kursutvärdering av Naturläkemedel och kosttillskott, 4 poäng, vt 2007

F3 Introduktion Stickprov

2. Lära sig beskriva en variabel numeriskt med "proc univariate" 4. Lära sig rita diagram med avseende på en annan variabel

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg/Jep Agrell. Laboration 2. Statistiska test

Laboration 4 R-versionen

Transkript:

LUNDS UNIVRSITET MATEMATIKCENTRUM MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11 PROJEKTUPPGIFT HT-2010 Instruktioner I kursens projektuppgift arbetar du tillsammans med en kurskamrat, handledning ges enligt kursschemat. Det är möjligt att ni behöver mer tid utöver det schemalagda för att slutföra uppgifterna. Samtliga datafiler ska ni kunna nå via kursens hemsida. Ni blir tilldelade ett av de 15 olika datamaterialen. Målsättningen med denna uppgift är bl.a. att ni: ska träna på att hämta ett problem ur verkligheten och med hjälp av ett insamlat material konstruera en rimlig statistisk modell samt göra en kritisk granskning av modellen och dess förmåga att beskriva verkligheten; ska tillämpa dina kunskaper och med hjälp av SPSS analysera ett biostatistiskt datamaterial; ska träna på att skriftligt redovisa antaganden, modeller och slutsatser från en statistisk analys. Redovisningen görs i form av en skriftlig rapport som ska lämnas in fredagen den 26 november kl. 15.00. Vilka krav det finns på utformningen kan ni läsa om i avsnittet utformning av projektredovisning. Korrigering av rapporten sker på schemalagd handledningstid måndagen den 29 november. Utformning av projektredovisning Målgruppen för rapporten är en person med bakgrundskunskaper som en student i samma årskurs, som läst den aktuella kursen men inte är insatt i detaljerna i den aktuella uppgiften. Språket i skriften skall vara anpassat för målgruppen och texten skall vara tillräckligt fyllig för att en person i målgruppen utan större ansträngning skall kunna följa med i resonemang och motiveringar. Skriften skall vara korrekturläst så att språk- och skrivfel är rättade. Rapporten bör vara strukturerad enligt följande: 1. Titelsida med med författarnas namn 2. Kort bakgrund och syfte med undersökningen 3. Redovisning av de uppgifter som finns i projekthandledningen. Ange (om så är lämpligt): vilka antaganden ni gör om data, vilka hypoteser ni ställer upp, resultatet av analysen och vilka tolkningar och slutsatser ni gör. Lämpliga figurer och tabeller ska vara med i rapporten. 4. Sammanfattning av era resultat.

PROJEKTUPPGIFT: En klinisk prövning Bakgrund "Pulmicort c Turbuhaler versus Cepofan c MDI in the Treatment of Asthma" Overall study design The study will be performed as a double-blind, randomized, multi-centre study of a parallel group design. Starting with a 2 weeks ± 5 days run-in period, one treatment period of 8 weeks ± 5 days duration will follow....... Efficacy will be evaluated from four lung function examinations and from daily diary measurements of PEF, asthma symptoms and b 2 -agonist usage. Safety will be assessed from the occurence of adverse events. Så beskrivs i korthet den kliniska prövning utförd av Astra Draco (numera Astra Zeneca) i Lund som vi ska analysera i denna uppgift. På Astra Draco har man koncentrerat sin forskning kring andningsorganens sjukdomar. När man ska pröva ett läkemedel på människor krävs att man i förväg i en studieplan (clinical study protocol) noga beskriver studiens uppläggning. I studieplanen beskrivs också hur den statistiska analysen ska göras. Denna studieplan ska godkännas av myndigheterna innan studien får påbörjas. Ur studieplanen hämtar vi också följande skiss över studiens uppläggning. Tidsschema: Pulmicort V3 Pulmicort V4 - V1 Standard V2 - Cepofan V3 Cepofan V4 2 veckor 4 veckor 4 veckor Run-in period Behandlingsperiod V1,..., V4 anger de fyra besök (Visits) som alla försökspersoner gör. För att patienterna ska vara jämförbara när behandlingsperioden börjar får alla samma läkemedel (Standard) under den första 2-veckorsperioden och därefter fördelas de slumpmässigt (randomiseras) så att hälften får Pulmicort och hälften får Cepofan. Studien är dubbel-blind vilket innebär att varken patient eller läkare vet vem som får vilken medicin. Medicinerna är endast märkta med en sifferkod och koden bryts inte förrän efter det att alla data matats in i databasen och kontrollerats noga. Delar av databasen finns överförd till de tre SPSS-filer som beskrivs nedan. I samtliga fall skall bokstäverna xx i filnamnet ersättas av ett tal 01,..., 15. Detta tal delas ut till respektive arbetsgrupp av gruppledaren. Data-materialet har ställts till förfogande av den avdelning på Astra Draco som har hand om datahanteringen och den statistiska analysen av kliniska prövningar. Studien är autentisk men vissa data har av sekretessskäl genomgått en slumpmässig förändring. 2

Datafilerna Här följer nu en kort presentation av innehållet i datafilerna. PATIENxx.SAV innehåller bakgrundsdata om patienterna. centre Centre number nummer på den klinik vid vilken patienten fick sin behandling sex Sex kön (1=man 2=kvinna) age Age (yr) ålder i år weight Weight (kg) vikt i kg height Height (cm) kroppslängd (cm) race Ethnic origin etniskt ursprung (1=Caucasian 2=Negroid 3=Oriental 4=Other), läkemedelsmyndigheterna i olika länder vill ibland ha separata analyser för olika folkslag smoke Smoking habits rökvanor (1=icke rökare 2=har rökt tidigare 3=rökare) VISITxx.SAV innehåller data från de fyra klinik-besöken (V1 V4). FEV 1, FVC och FEF 25 75 är några olika mått på patienternas lungfunktion, ju högre värde desto bättre lungkapacitet. Värdena beror bl.a. på individens kön, längd och ålder varför man också har beräknat varje individs förväntade FEV 1 -värde (fev_pred). fev_pred Predicted FEV1 (l) förväntat värde på FEV1, en regressionsskattning baserad på kön, ålder och längd v1_fev1 Visit 1:FEV1 (l) FEV1-värde vid besök 1 v1_fvc Visit 1:FVC (l) FVC-värde vid besök 1 v1_fef Visit 1:FEF25-75 (l/s) FEF25-75-värde vid besök 1 v2_fev1 Visit 2:FEV1 (l) FEV1-värde vid besök 2 v2_fvc Visit 2:FVC (l) FVC-värde vid besök 2 v2_fef Visit 2:FEF25-75 (l/s) FEF25-75-värde vid besök 2 v3_fev1 Visit 3:FEV1 (l) FEV1-värde vid besök 3 v3_fvc Visit 3:FVC (l) FVC-värde vid besök 3 v3_fef Visit 3:FEF25-75 (l/s) FEF25-75-värde vid besök 3 v4_fev1 Visit 4:FEV1 (l) FEV1-värde vid besök 4 v4_fvc Visit 4:FVC (l) FVC-värde vid besök 4 v4_fef Visit 4:FEF25-75 (l/s) FEF25-75-värde vid besök 4 DIARYxx.SAV Varje patient får också med sig hem en enklare apparat för att dagligen kunna mäta ett annat lungfunktionsmått, PEF, peak expiratory flow (l/min). Två gånger varje dag, morgon och kväll, görs dessa mätningar och resultaten noteras tillsammans med några andra variabler i en dagbok. För att förenkla arbetet har vi i den här datafilen beräknat medelvärdet för de olika variablerna under runin-perioden resp. den egentliga behandlingsperioden. Antalet puffar är det antal inhalationer av en snabbverkande bronkvidgande medicin (t.ex. Bricanyl) som patienten tar vid akuta besvär. Ju färre sådana som behövs desto bättre fungerar den andra medicinen. Den asthma symptom score som används dagligen är kodad enligt 0 = None, 1 = Mild, 2 = Moderate och 3 = Severe. I patientens dagbok finns en utförligare beskrivning vad som avses med de olika begreppen. 3

ri_pefmo RI:PEF morning (l/min) genomsnittligt morgon-pef under run-in ri_puffn RI:Number of puffs night genomsnittligt antal puffar nattetid under run-in ri_sympn RI:Asthma symptoms night genomsnittlig symptom-score nattetid under run-in ri_pefev RI:PEF evening (l/min) genomsnittligt kvälls-pef under run-in ri_puffd RI:Number of puffs day genomsnittligt antal puffar dagtid under run-in ri_sympd RI:Asthma symptoms day genomsnittlig symptom-score dagtid under run-in tr_pefmo RI:PEF morning (l/min) genomsnittligt morgon-pef under behandling tr_puffn RI:Number of puffs night genomsnittligt antal puffar nattetid under behandling tr_sympn RI:Asthma symptoms night genomsnittlig symptom-score nattetid under behandling tr_pefev RI:PEF evening (l/min) genomsnittligt kvälls-pef under behandling tr_puffd RI:Number of puffs day genomsnittligt antal puffar dagtid under behandling tr_sympd RI:Asthma symptoms day genomsnittlig symptom-score dagtid under behandling Analys 1. Det första som bör göras är att kontrollera att de båda behandlingsgrupperna inte skiljer sig åt vad gäller väsentliga bakgrundsvariabler. Beräkna därför tabeller eller beskrivande mått för de olika bakgrundsvariablerna uppdelat på behandling. Några statistiska test behöver ej göras här, men rapportera om det finns några stora skillnader mellan grupperna vad gäller bakgrundsvariablerna. 2. Vi ska först koncentrera oss på lungmåttet FEF 25 75 (a) Gör separata histogram över FEF 25 75 vid tillfälle V1 för de båda behandlingsgrupperna. Är normalfördelning en rimlig modell? (b) Testa, med ett lämplig test, om det finns någon signifikant skillnad mellan grupperna vid besök 1 (V1), respektive besök 2 (V2). Detta behöver endast göras för ett lungfunktionsmått (FEF 25 75 ). Kan man påvisa skillnader kan det bero på att patienterna i en av grupperna är underbehandlad vid studiens start. Ange modell för data, hypoteser, teststorhet och slutsatser. 3. (a) Testa om vi fått en signifikant förändring av lungkapaciteten om vi jämför resultatet före behandling (V2) med: i. resultatet efter 4 veckors behandling (V3) ii. resultatet efter 8 veckors behandling (V4) Gör jämförelsen inom respektive behandlingsgrupp. (b) Testa sedan om effekten är lika stor i de båda grupperna. Gör jämförelserna endast för FEF 25 75. OBS! För att göra detta måste ni först bilda två nya variabler som mäter förändringen från besök 2 till besök 3 respektive 4. 4. Visa i ett diagram hur FEF 25 75 utvecklas över tiden genom att visa 95 % konfidensintervall för FEF 25 75 för varje visit. Givetvis skall separata intervall visas för varje behandling. Ledning: Graphs > Error Bar > Clustered-Summaries of separate variables. Kommentera. 5. Eftersom lungfunktionen beror på en mängd olika saker, t.ex. ålder, beräknar man den förväntade FEV 1 -värdet. Gör motsvarande för FEF 25 75 -värdena, d.v.s. kontrollera först att ett linjärt samband mellan FEF 25 75 och ålder verkar rimligt. Om ett linjärt samband verkar lämpligt, skatta sambandet. Hur mycket förändras FEF 25 75 i genomsnitt under ett år? Behöver vi ta hänsyn till vikt och/eller höjd också? 6. Behandlingarna kan påverka symptomen på olika sätt i de två behandlingsgrupperna. Testa om det finns någon signifikant skillnad mellan grupperna under behandlingsperioden avseende: 4

(a) PEF - morgon (b) Puffar - natt (c) Asthma-symptom - natt För varje test, undersök om ett test baserat på normalfördelningsantagande verkar lämpligt eller om testet bör vara icke-parametriskt. Utför det lämpliga testet. 7. Sammanfatta era resultat. Slutligen... Ha följande visdomsord i åtanke när du arbetar med uppgifterna. Som alltid när man är utkastad i verkligheten: Det finns inte något facit till problemet eller uppgiften, bara bra eller mindre bra lösningar. Som alltid i en kurs: Det är inlärningen under tiden, själva processen, som avgör hur framgångsrikt projektet är. Lycka Till! 5