Förekomstformer för zink i flygaska

Relevanta dokument
JERNKONTORET workshop 20 april, Metodik för klassning enligt Avfallsförordningen

KEMA02 Oorganisk kemi grundkurs F3

JÄMVIKT i LÖSNING A: Kap 12 Föreläsning 3(3)

JÄMVIKT i LÖSNING A: Kap 12 Föreläsning 2(2)

Göran Stenman. Syror och Baser. Göran Stenman, Ursviksskolan 6-9, Ursviken

Cu- och Zn-former i bottenaskor från avfallsförbränning

Avfallsklassificering, förorenade massor och CLP

Löslighetsjämvikter svårlösliga salter

Underlag för val av referenssubstans för zink inför klassning enligt Avfallsförordningen RAPPORT F2007:03 ISSN

Askor och ekotoxicitet. Kristian Hemström Magnus Breitzholtz Sara Stiernström Ola Wik

Kemikalieinspektionens författningssamling

Joner Syror och baser 2 Salter. Kemi direkt sid

Återvinning av avfall i anläggningsarbete. Vad innebär handboken, nya domar mm?

Klassning enligt Avfallsförordningen av järnsand från Boliden Mineral AB

Grundvattenkvaliteten i Örebro län

Cesium-137 i aska från förbräning av biobränslen. Tillämpning av Strålsäkerhetsmyndighetens regler

Användning av geokemiska modeller för bedömning av tillgänglighet och lakbarhet

SÄKERHETSDATABLAD Utfärdat:

På samma sätt ges ph för en lösning av en svag bas och dess salt av:

SYROR OCH BASER Atkins & Jones kap

Kisaska - geokemiska egenskaper

Resultat från lakning av avfallsmassor från lekplats vid Sunda samt bedömning om lämpligheten för återanvändning i anläggningsändamål

Vägledning för klassificering av förbränningsrester enligt Avfallsförordningen

Löslighetsjämvikter - beräkningsexempel

1. NAMNET PÅ ÄMNET/PREPARATET OCH BOLAGET/FÖRETAGET 2. SAMMANSÄTTNING/UPPGIFTER OM BESTÅNDSDELAR

Avfall, deponier och laktester Eva Lidman

Periodiska systemet. Namn:

Klassificering av askor med avseende på innehåll av bly

TESTA DINA KUNSKAPER I KEMI

Oxidationstal. Niklas Dahrén

HANTERING AV ASKA FRÅN TRÄDBRÄNSLE SOM INNEHÅLLER CESIUM 137

Kemi. Fysik, läran om krafterna, energi, väderfenomen, hur alstras elektrisk ström mm.

RAPPORT U2011:22. Lämplig metodik för grundläggande karakterisering av aska för acceptans på deponi ISSN

Titrering av en stark syra med en stark bas

Klassificering av farligt avfall PM med beräkningsexempel

Säkerhetsdatablad. 4-takts Motor Olja

SÄKERHETSDATABLAD 1. NAMNET PÅ ÄMNET/ PREPARATET OCH BOLAGET/ FÖRETAGET 2. SAMMANSÄTTNING/ UPPGIFTER OM BESTÅNDSDELAR

Vad är ett laktest? Laktester för undersökning av föroreningars spridningsegenskaper. Anja Enell, SGI

1. a) Förklara, genom användning av något lämpligt kemiskt argument, varför H 2 SeO 4 är en starkare syra än H 2 SeO 3.

Inverkan av balkonginglasning

Bindemedel för stabilisering av muddermassor. Sven-Erik Johansson Cementa AB

Jonföreningar och jonbindningar del 2. Niklas Dahrén

Lösningar kan vara sura, neutrala eller basiska Gemensamt för sura och basiska ämnen är att de är frätande.

Prov i kemi kurs A. Atomens byggnad och periodiska systemet 2(7) Namn:... Hjälpmedel: räknedosa + tabellsamling

Summeringsregeln. Tillämpning av bilaga till förordning (1999:382) om åtgärder för att förebygga och begränsa följderna av allvarliga kemikalieolyckor

SÄKERHETSDATABLAD Utfärdat:

4. Kemisk jämvikt när motsatta reaktioner balanserar varandra

Hypoteser och mekanismer för bildning av beläggningar innehållande zink och bly i samband med förbränning av returflis

Vilken av följande partiklar är det starkaste reduktionsmedlet? b) Båda syralösningarna har samma ph vid ekvivalenspunkten.

SÄKERHETSDATABLAD SDB från Pride Chess Internt nr: 9421,9422,9423 Ersätter datum: Green Care Vittvätt

Modern analytik för skoländamål


Metallåtervinning från avfallsaska

Tentamen i Kemi för miljö- och hälsoskyddsområdet: Allmän kemi och jämviktslära

SKOLFÖRSÖK Experiment i mesoskala tillsammans med Kyrkbacksskolan i Kopparberg

Inventering undersökning klassning av nedlagda deponier

Atomen och periodiska systemet

Syror, baser och ph-värde. Niklas Dahrén

Jämviktsuppgifter. 2. Kolmonoxid och vattenånga bildar koldioxid och väte enligt följande reaktionsformel:

Ke2 forts jämvikt. Jämviktssystem i olika miljöer Kap 4

Ballingmetoden. Jonas Roman. En genomgång av Ballingmetoden i teori och praktik. Utgåva 2.0

Kapitel 16. Lägre magtarmkanalen. Löslighet och komplex

SÄKERHETSDATABLAD. 1. NAMNET på ÄMNET / BEREDNINGEN och BOLAGET / FÖRETAGET

CLP-förordning, vad innebär det? Grundläggande karakterisering av jordmassor

Ett sätt att arbeta för en Giftfri miljö - vägledning för intern kemikaliekontroll

Materien. Vad är materia? Atomer. Grundämnen. Molekyler

SÄKERHETSDATABLAD NITOR ALLFÄRG RÖD

SÄKERHETSDATABLAD Utfärdat:

Kapitel 16. Löslighet och komplex

SÄKERHETSDATABLAD Utfärdat:

Övningar Homogena Jämvikter

PM 3/03. Båtbottenfärger till fritidsbåtar. Ett inspektionsprojekt

Svar: Halten koksalt är 16,7% uttryckt i massprocent

SÄKERHETSDATABLAD SDB från Pride Chess Omarbetad: Internt nr: Ersätter datum:

Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:

Laboratorieundersökning och bedömning Enskild brunn

SÄKERHETSDATABLAD 1. NAMNET PÅ ÄMNET/PREPARATET OCH BOLAGET/FÖRETAGET. Nordiskt Papper AB. Fagerstagatan 12, Spånga (Lunda)

KEMI 2H 2 + O 2. Fakta och övningar om atomens byggnad, periodiska systemet och formelskrivning

Stalosan F Utfärdandedatum Omarbetad: Ver 2 Ver 2. Säkerhetsdatablad

Minican resultatöversikt juni 2011

Säkerhetsdatablad Enligt 1907/2006/EG

Kemiska produkter i butiker

SKOLFÖRSÖK Experiment i mesoskala tillsammans med Kyrkbacksskolan i Kopparberg

Grumme Såpa Citron SÄKERHETSDATABLAD. Godkänt för användning Godkänt för Laboratorieanvändning Godkänd av Cederroth International AB

Rättningstiden är i normalfall tre veckor, annars är det detta datum som gäller: Efter överenskommelse med studenterna är rättningstiden fem veckor.

PRISLISTA VA Kvalitetskontroll

BILAGA 9. SPRIDNINGSBERÄKNINGAR

SÄKERHETSDATABLAD. Hagmans Kemi AB. Namn Tel. (arb.) Land Gunilla Markkola +46 (0) Sverige

Georange Environmental Test Site Vad händer inom gruvmiljöforskningen? Projektet Georange

Säkerhetsdatablad Sid 1(6) PICA Tec 100

Enligt Kemikalieinspektionens förgattningssamling KIFS 1998:8 (uppdaterad version 2001:4) och KIFS 1994:12 (uppdaterad version 2001:3).

SÄKERHETSDATABLAD 1. NAMNET PÅ ÄMNET/BEREDNINGEN OCH BOLAGET/FÖRETAGET

Kemisk stabilisering av spårämnen i förorenad jord: fungerar det? Jurate Kumpiene

Mark Elert och Celia Jones

Repetitionsuppgifter. gymnasiekemi

Syntes av programmet Miljöriktig användning av askor

Gastrointestinal biolöslighet av arsenik, antimon och ett urval av metaller i askor

KLASSNING AV FÖRBRÄNNINGSRESTER SOM FARLIGT ELLER ICKE FARLIGT AVFALL

ESKILSTUNA ENERGI & MILJÖ VATTEN & AVLOPP LABORATORIUM

Svensk författningssamling

Transkript:

Datum Vår ref 2004-05-15 Rolf Sjöblom Er ref Claes Ribbing Svenska Energiaskor AB Claes Ribbing Torsgatan 12 111 23 Stockholm Förekomstformer för zink i flygaska Bakgrund och uppdrag Vid klassning av aska enligt avfallsförordningen har förekomstformerna för olika ämnen en stor betydelse. I den vägledning som tagits fram inom ramen för Värmeforsks askprogram har zink tillordnats referenssubstansen zinkoxid, vilken inte ger något bidrag i samband med klassningen. Fråga har emellertid uppkommit om inte zink i stället borde tillordnas referenssubstansen zinkklorid. Enligt Kemikalieinspektionens föreskrifter och allmänna råd (KIFS 2001:3) om klassificering och märkning av kemiska produkter är denna substans klassad som giftig och miljöfarlig med följande riskfraser R23 Giftigt vid inandning R34 Frätande R50 Mycket giftigt för vattenlevande organismer R53 Kan orsaka skadliga långtidseffekter i vattenmiljön Svenska Energiaskor AB har därför uppdragit åt Tekedo AB att utreda förekomstformerna för zink i aktuell miljö samt besvara frågan om zink kan förekomma som zinkklorid. Det bör noteras att uppdraget således har en tydligt begränsad omfattning. Förekomstformerna utreds i princip bara så långt som erfordras för att kunna ge takvärden för zink i lösning samt visa att zink inte kan förekomma som zinkklorid i fast fas. Utförandet består huvudsakligen i jämviktsberäkningar, men jämförelser görs också med det omfattande kommersiella dataunderlag för askor som Tekedo AB har tillgång till genom att ha utfört ett stort antal klassificeringar enligt Avfallsförordningen. TEknik KEmi - DOkumentation Tekedo AB. Spinnarvägen 10, 611 37 Nyköping. Telefon 0155-21 04 15. Mobil 070-570 54 44. E-post rolf.sjoblom@tekedo.se. Internet www.tekedo.se. Org.nr 556611-0630. Säte i Nyköping. Innehar F-skattesedel. Momsregistreringsnummer SE5566110630-01.

2 Förutsättningar för beräkningarna Efter en inledande litteraturstudie över speciering av zink har konstaterats att följande gränssättningar är lämpliga. Av många kända askprover har inga påträffats med ph hos lakvatten > 12,7 (vilket svarar mot lösligheten för portlandit, Ca(OH) 2 ) eller < 8. Det undersökta intervallet har därför satts till 7 < ph < 13. Eftersom kloridjoner kan bilda komplex i lösning utförs analysen för följande fall: Fall Renvattenfallet L/S 10 Referensfallet 2,5 g Cl - / liter L/S 0,1 Värsta fallet 15 g Cl - / liter Förklaring Kloridfritt vatten Vatten med en konstant halt av kloridjon (Cl - ) som svarar mot gränsen för acceptans på deponi för farligt avfall enligt lakning med 10 liter vatten per kilo aska enligt SNV:s förslag till föreskrift om acceptanskriterier Vatten med en konstant halt av kloridjon (Cl - ) som svarar mot gränsen för acceptans på deponi för farligt avfall enligt lakning med 0,1 liter vatten per kilo aska enligt SNV:s förslag till föreskrift om acceptanskriterier Det bör noteras att lakvätskans volym i det sistnämnda fallet ligger långt under fältkapaciteten. Värdet är således orealistiskt pessimistiskt för en lakvätska men möjligt för ett porvatten. Det bör också noteras att halten kloridjon (Cl - ) av beräkningstekniska skäl hålls konstan 1 t. Värdena är 0,25 vikts/volyms-% för referensfallet och 1,5 vikts/volyms-% för värsta fallet. Eftersom kloridjon under vissa förutsättningar kan bilda komplex med zink kan därmed totalhalten klor med valensen (oxidationstalet) minus ett överstiga halten kloridjon. Beräkningarna utförs i första hand med antagandet att zink föreligger i fast fas i form av zinkoxid samt att kalcium vid höga ph värden föreligger i fast fas i form av kalciumhydroxid. Därefter analyseras inverkan av övriga ämnen i olika stadier av åldring inklusive effekten av karbonatisering. I beräkningarna nedan antas att det hela tiden finns fast kristallin zinkoxid (zinkit) i termodynamisk jämvikt med lösningen. För korttidseffekter kan jämvikten i praktiken inställa sig mot zinkhydroxid, men skillnaden är inte särskilt stor. 1 Halterna i SNV:s förslag till ny föreskrift gäller dock totalhalterna.

3 Systemet zinkoxid vatten klorid - kalciumhydroxid Beräkningarna grundar sig på termodynamiska data (jämviktskonstanter) från [1] vilka kombinerats till följande uttryck (ekvation (11) kommer dock från [2]): log [Zn 2+ ] = -2pH + 11,16 (1) log [ZnOH + ] = -ph + 3,47 (2) log [Zn(OH) 2 ] = -5,64 (3) log [Zn(OH) - 3 ] = ph 16,52 (4) log [Zn(OH) -2 4 ] = 2pH 27,13 (5) log [ZnCl + ] = log[cl - ] - 2pH + 11,59 (6) log [ZnCl 2 ] = 2log[Cl - ] - 2pH + 11,16 (7) log [ZnCl - 3 ] = 3log[Cl - ] - 2pH + 11,66 (8) log [ZnCl -2 4 ] = 4log[Cl - ] - 2pH + 11,36 (9) log [Ca 2+ ] = -2pH + 22,80 (10) log [CaOH + ] = -ph + 11,57 (11) Lösliga specier i systemet zinkoxid (zinkit) vatten (renvattenfallet) visas i Figur 1. I de underliggande beräkningarna används ekvationerna (1)-(5). Lösliga specier i systemet zinkoxid (zinkit) vatten och klorid visas i Figur 2 för referensfallet och Figur 3 för värsta fallet. I Figurerna 2 och 3 används ekvationerna (1)-(9). Beräkningarna som ligger till grund för Figurerna 1-3 utgår från att det finns andra motjoner till Cl - än Zn 2+. Ofta innehåller aska alkalimetallerna kalium och natrium i sådana halter att de sammantaget svarar mot fler ekvivalenter än ingående klor. Därför är det rimligt att tänka sig att tillräckligt med motjoner finns av detta skäl. Mot detta kan invändas dels att all alkali kanske inte är tillgänglig som motjon till klorid, dels att de kanske inte alltid räcker till. Därför har beräkningar utförts som visar vad som händer med vatten i kontakt med kalciumhydroxid i närvaro av klorid som har kalcium som motjon. För detta utnyttjas ekvationerna (10) och (11) ovan. Beräkningarna utgår från att det finns fast portlandit (Ca(OH) 2 ) samt kloridhalt i lösningen enligt referensfallet och värsta fallet för olika andelar av motjonerna som behöver tas från portlanditen. Resultatet visas i Figur 4. Som framgår av Figur 4 erhålls en viss ph-sänkning (ner till strax över ph 12), men inga problem med att erhålla erforderliga motjoner med kalcium (i vart fall inte så länge det finns portlandit, se vidare nedan). Det är viktigt att notera att zink över huvud taget inte kan fungera som motjon till klorid vid höga ph värden eftersom zink i lösning föreligger som anjoner över ph strax under 11, se Figurerna 2 och 3.

4 Inverkan av övriga ämnen exklusive karbonatisering Genomgång av litteratur visar att det är svårt att tänka sig några övriga ämnen som genom komplexbildning skulle kunna ge upphov till förhöjda koncentrationer av zink eller kalcium i lösning. Detta hypotetiska alternativ beaktas därför ej i det följande. Däremot kan olika halter i lösning sänkas i förhållande till vad som redovisas i Figurerna 1-4 till följd av att andra (och mera svårlösliga) fasta faser bildas. Huvudelementen i aska är ungefär desamma som i jord men med den skillnaden att alkalimetaller, alkaliska jordartsmetaller, klor och svavel är överrepresenterade. Detta gäller i synnerhet kalcium. Detta ämne ingår därför i de flesta kristallina faser som har identifierats i aska[3]. Framförallt bildar kalcium silikater, aluminater och sulfater samt olika blandformer av dessa, inklusive faser med variabel sammansättning. Även om kemin är komplex så är slutsatsen enkel: genom att andelen kalcium är hög så är också tillgängligheten god. Detta illustreras i Figur 5, där kalciumjonaktiviteten som funktion av ph visas för ett antal mineral. Uppgifterna i Figur 5 skall jämföras med zinkjonaktiviteten som funktion av ph för ett antal mineral, vilket visas i Figur 6. Jämförelsen visar att kalcium bör vara mycket mera tillgängligt som motjon för klorid än zink. Inverkan av karbonatisering En invändning mot ovanstående skulle kunna vara att kalcium binds vid karbonatisering, och att man skulle kunna tänka sig att zink i ett sådant fall går i lösning och bildar motjoner till klor. Under inverkan av luftens koldioxid vittrar olika kalciummineral och bildar kalcit (CaCO 3 ). Under samma betingelser omvandlas olika zinkmineral till hydrozinkit (Zn 5 (OH) 6 (CO 3 ) 2 ). För jämvikterna gäller följande[1,4]: log [Zn 2+ ] = - 2pH + 3,37 (12) log [Ca 2+ ] = - 2pH + 13,27 (13) I konstanterna i ekvationerna ingår koldioxidaktiviteten. Här har använts den koldioxidhalt som finns i luft och som enligt [5] uppgår till 0,030 volymsprocent (= molprocent). En enkel kalkyl visar att under de givna förutsättningarna, d v s jämvikt med de fasta faserna, är kalciumjonkoncentrationen många tiopotenser högre än zinkjonkoncentrationen. Detta gäller oberoende av ph.

5 Även i detta fall kommer andra joner än zinkjoner att vara motjoner till klor. Det bör kanske tilläggas att zinkklorid är lättlöslig och faller inte ut som salt under några av de betingelser som anges ovan. Jämförelser med lakdata För att testa ovanstående beräkningsresultat mot verkligheten har jämförelser gjorts med ett stort antal lakdata som Tekedo AB har tillgång till genom ett antal klassningar som utförts enligt Avfallsförordningen. Genomgången visar att lakdata understiger eller överensstämmer med samtliga halter som ges av antagandet om att lösligheten styrs av zinkit (ZnO). För de högsta ph-värdena ligger dock uppmätta värden ca en tiopotens lägre än beräknade. Detta beror sannolikt på att det faller ut något som skulle kunna karakteriseras som zinkat, t ex en hydroxid av formen MeZn(OH) 4, där Me skulle kunna tänkas vara kalcium. Detta har dock inte undersökts eftersom zink vid höga ph-värden förekommer som anjon och därför inte kan vara motjon till klorid. Kompletterande informationssökning En mindre kompletterande informationssökning har utförts för att om möjligt hitta någon kloridhaltig fas med lägre löslighet för zink än zinkit (ZnO). En kandidat har påträffats i en av databaserna till jämviktsberäkningsprogrammet PHREEQC. Föreningen i fråga har formeln Zn 2 (OH) 3 Cl och kan (till skillnad från ZnCl 2 ) inte omedelbart bedömas ha tillräckligt hög löslighet för att inte bildas i aktuell miljö. Koncentrationen zinkjon vid jämvikt med fast fas Zn 2 (OH) 3 Cl ges av följande formel log [Zn 2+ ] = 7,65 1,5pH 0,5log[Cl - ] (14) Beräkningar har utförts med ekvation (14) för referensfallet och för värsta fallet. De redovisas samt jämförs med zinkjonkonventration över zinkit (ZnO) i Figur 6. Som framgår av figuren är ZnO stabilast överallt. Därför bildas inte Zn 2 (OH) 3 Cl. Marginalen är dock liten vid de lägsta ph-värdena. Därför bör beaktas att dessa nås i praktiken bara i samband med karbonatisering, och då är det ju som visats ovan andra faser som har ännu lägre löslighet. Även om Zn 2 (OH) 3 Cl skulle ha varit stabilast så hade det ändå inte varit rimligt att räkna den som jämförbar med zinkklorid eftersom löslighetsegenskaperna i så fall hade varit gynnsammare än dem för zinkoxid.

6 Slutsatser Slutsatserna av ovanstående genomgång är som följer: Inget har framkommit som ger anledning att ifrågasätta eller ompröva valet av ZnO som referenssubstans för grundämnet zink. Vare sig för färsk aska eller för aska i något stadium av åldring eller vittring har någon möjlighet till bildning av zinkklorid kunnat identifieras. För icke karbonatiserad aska kan antagandet att zink förekommer huvudsakligen som zinkit användas. Antagandet är väsentligen realistiskt men ibland pessimistiskt/försiktigt i förhållande till frågeställningen. Antagandet innebär att zink förekommer huvudsakligen i fast fas och ingår i porvattnet bara till en mycket liten andel. Vid karbonatisering kan zink bindas som hydrozinkit. Det kan dock inte uteslutas att zink bildar något annat mineral som är ännu svårlösligare. Vid karbonatisering bildar kalcium kalcit. Vid jämvikt ger kalcit många tiopotenser högre halter kalciumjoner i porvattnet jämfört med halten zinkjoner i jämvikt med hydrozinkit. Det finns en god överensstämmelse med experimentella lakdata. För riktigt långa tider kan dessutom slutsatsen dras att sulfatreduktion kommer att äga rum med hjälp av mikroorganismer. Därvid kan zink komma att bilda zinksulfid som är mycket svårlösligt. Referenser 1 Lindsay W L. Chemical equilibria in solids. The Blackburn Press. ISBN 1-930665-11-3. 2 Handbook of Chemistry and Physics, 48th edition. The Chemical Rubber Company, Cleveland, Ohio. 3 Steenari B-M. Chemical properties of FBC ashes. Doctoral Dissertation. Department of Environmental Inorganic Chemistry, Göteborg 1998. ISBN 91-7197-618-3. 4 Bodek I et al. Environmental inorganic chemistry. Pergamon press, 1988. ISBN 0-08-036833-6. 4 Hägg G Allmän och oorganisk kemi. Almqvist & Wiksell, Uppsala, 1966.

7 Speciering av zink i kloridfritt vatten 2 0-2 -4 Log koncentration moler/liter -6-8 -10-12 -14-16 -18 7 8 9 10 11 12 13 ph Zn++ ZnOH+ Zn(OH)2 Zn(OH)3- Zn(OH)4-- Figur 1. Lösliga specier i systemet zinkoxid (zinkit) vatten.

8 Speciering av zink i lakvatten, L/S 10, referensfallet 2 0-2 -4 Log koncentration moler/liter -6-8 -10-12 -14-16 -18 7 8 9 10 11 12 13 ph Zn++ ZnOH+ Zn(OH)2 Zn(OH)3- Zn(OH)4-- ZnCl+ L/S 10 ZnCl2 L/S 10 ZnCl3- L/S 10 ZnCl4-- L/S 10 Total kloridhalt Figur 2. Lösliga specier i systemet zinkoxid (zinkit) vatten och klorid för referensfallet, se text.

9 Speciering av zink i lakvatten, L/S 0,1, värsta fallet 2 0-2 -4 Log koncentration moler/liter -6-8 -10-12 -14-16 -18 7 8 9 10 11 12 13 ph Zn++ ZnOH+ Zn(OH)2 Zn(OH)3- Zn(OH)4-- ZnCl+ L/S 0,1 ZnCl2 L/S 0,1 ZnCl3- L/S 0,1 ZnCl4-- L/S 0,1 Total kloridhalt Figur 3. Lösliga specier i systemet zinkoxid (zinkit) vatten och klorid för värsta fallet, se text.

10 ph som funktion av andel av kloridhalten som balanseras av Ca++ och CaOH+ 13 12,8 12,6 ph 12,4 12,2 12 0 10 20 30 40 50 60 70 80 90 100 Andel av kloridhalten (i %) som balanseras av Ca++ och CaOH+ L/S 10 L/S 0,1 Figur 4. ph som funktion av andelen motjoner till klorid som utgörs av CaOH + och Ca 2+ (i ekvivalenter).

Figur 5. Logaritmen för Kalciumjonkoncentrationen som funktion av ph för olika mineral. Figur tagen från [1]. 11

Figur 5. Logaritmen för Zinkjonkoncentrationen som funktion av ph för olika mineral. I vattenlösning bildas även hydrozinkit (Zn 5 (OH) 6 (CO 3 ) 2 ) som dock inte är med i figuren. Dess linje ligger strax över den för jord-zn och har samma lutning (den korsar y-axeln vid -1,78). Figur tagen från [1]. 12

13 Lösligheter för ZnO och Zn2(OH)3Cl 2 0-2 -4 Log koncentration Zn++ moler/liter -6-8 -10-12 -14-16 -18 7 8 9 10 11 12 13 ph ZnO Zn2(OH)3Cl L/S 10 Zn2(OH)3Cl L/S 0,1 Figur 6. Zinkjonkoncentration över Zn 2 (OH) 3 Cl (referensfallet och värsta fallet) och över ZnO.