CHARMEC project SP13 Alarm limits for wheel damage / Larmgränser för hjulskador

Relevanta dokument
Module 6: Integrals and applications

A study of the performance

Heavy Transport on Existing Lines: the Assessment of Bearing Capacity of Track-bed based on Track Stiffness Measurements and Theoretical Studies

2. Förklara vad en egenfrekvens är. English: Explain what en eigenfrequency is.

Parking garage, Gamletull. MDM-piles, pre-installation testing RÄTT FRÅN GRUNDEN!

INDUKTIV SLINGDETEKTOR INDUCTIVE LOOP DETECTOR

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

STORSEMINARIET 3. Amplitud. frekvens. frekvens uppgift 9.4 (cylindriskt rör)

Rev No. Magnetic gripper 3

Ett spårvänligt tåg (A track friendly train) Evert Andersson, Kungliga Tekniska Högskolan (KTH) Rickard Persson, KTH och Bombardier Transportation

Metodprov för kontroll av svetsmutterförband Kontrollbestämmelse Method test for inspection of joints of weld nut Inspection specification

Modeling of pore pressure in a railway embankment

Rastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM

Tentamen. TSFS 02 Fordonsdynamik med reglering 14 januari, 2017, kl. 8 12

Profilinformation Flygteknink 2019, Ingo Staack

Gradientbaserad Optimering,

Mätosäkerhet och kundlaster

GPS GPS. Classical navigation. A. Einstein. Global Positioning System Started in 1978 Operational in ETI Föreläsning 1

12.6 Heat equation, Wave equation

HYDRAULIK Rörströmning IV

Measuring child participation in immunization registries: two national surveys, 2001

Mer om Rainflowcykler

Molift Raiser 75135G Etac Box 203, Anderstorp Sweden Tel Fax

District Application for Partnership

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version

Sammanfattning hydraulik

Linköpings Universitet Hållfasthetslära, IKP

Tentamen. TSFS 02 Fordonsdynamik med reglering 20 oktober, 2008, kl

Module 4 Applications of differentiation

Health café. Self help groups. Learning café. Focus on support to people with chronic diseases and their families

Measuring void content with GPR Current test with PaveScan and a comparison with traditional GPR systems. Martin Wiström, Ramboll RST

Mekanik FK2002m. Kraft och rörelse II

Ice Load Monitoring (ILM) Høvik 13 mars 2009 Morten Mejlænder-Larsen

KTH MMK JH TENTAMEN I HYDRAULIK OCH PNEUMATIK allmän kurs kl

A QUEST FOR MISSING PULSARS

Alla Tiders Kalmar län, Create the good society in Kalmar county Contributions from the Heritage Sector and the Time Travel method

CHARMEC. Railway accidents. should they be avoided? Anders Ekberg CHARMEC / Applied Mechanics

E4 Sundsvall Sundsvallsbron

Undergraduate research:

Ringmaster RM3 - RM 5 RM3 RM 4 RM 5

Stiftelsen Allmänna Barnhuset KARLSTADS UNIVERSITET

Accomodations at Anfasteröd Gårdsvik, Ljungskile

Discovering!!!!! Swedish ÅÄÖ. EPISODE 6 Norrlänningar and numbers Misi.se

Sectra Critical Security Services. Fel bild

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

Mekanik FK2002m. Kraft och rörelse I

Spjäll m.m. Louvre slats etc. Byggnadssystem i aluminium Building Systems in Aluminium

HYDRAULIK Rörströmning IV

Styrteknik: Binära tal, talsystem och koder D3:1

D-RAIL AB. All Rights Reserved.

Mätning av vågutbredning i järnvägsräls

Support for Artist Residencies

balans Serie 7 - The best working position is to be balanced - in the centre of your own gravity! balans 7,45

EXPERT SURVEY OF THE NEWS MEDIA

PFC and EMI filtering

EXAMINATION L Ö S N I N G A R ---- S O L U T I O N S

säkerhetsutrustning / SAFETY EQUIPMENT

Flexitrain verkar på marknaden för transporttjänster inom segmentet lastbilar på järnväg. Strategin är att vara prisledande jämfört med

Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:

Robust och energieffektiv styrning av tågtrafik

The Arctic boundary layer

Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm

Resultatkonferens Välkommen!

Grass to biogas turns arable land to carbon sink LOVISA BJÖRNSSON

Scalable Dynamic Analysis of Binary Code

OCCUPATIONAL RF EXPOSURE FROM BASE STATION ANTENNAS ON ROOF-TOPS AND BUILDINGS

Resultat av den utökade första planeringsövningen inför RRC september 2005

LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik

Tillämpad mekanik. Beräkningsingenjören problemlösaren Den generella specialisten

Dokumentnamn Order and safety regulations for Hässleholms Kretsloppscenter. Godkänd/ansvarig Gunilla Holmberg. Kretsloppscenter

Swedish Championship 2010 and COPS CUP XVIII. Kallebäck Göteborg LEVEL III

Kundfokus Kunden och kundens behov är centrala i alla våra projekt

Vågkraft. Verification of Numerical Field Model for Permanent Magnet Two Pole Motor. Centrum för förnybar elenergiomvandling

Kursplan. NA3009 Ekonomi och ledarskap. 7,5 högskolepoäng, Avancerad nivå 1. Economics of Leadership

Lösenordsportalen Hosted by UNIT4 For instructions in English, see further down in this document

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

Isolda Purchase - EDI

HIGH CAPACITY TRANSPORT GROSS WEIGHT DEVELOPMENT. Status, January 24, 2019

ERS (Electrical Road System) Slide-in project within FFI program

IRAB Mottagare sida 2-5 Tele Radio AB Mottagare sida 6

F ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) =

SNÄCKVÄXLAR WORM GEARBOXES

Företagsnamn: Grundfos Skapad av: Magnus Johansson Tel: +46(0) Datum:

2.45GHz CF Card Reader User Manual. Version /09/15

Beständighet hos asfaltvägar. Safwat Said Teknologidagene 2011, okt. Trondheim

Norrbottens Innovationsstrategi 1.0 ( )

Hållbara transporter. Anders Bylund. Unrestricted Siemens AG 2016

Digital Personvåg MANUAL H

Aborter i Sverige 2008 januari juni

Grafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions:

Softline.

Information technology Open Document Format for Office Applications (OpenDocument) v1.0 (ISO/IEC 26300:2006, IDT) SWEDISH STANDARDS INSTITUTE

Riskreduktion vid inspektion av rör

SWESIAQ Swedish Chapter of International Society of Indoor Air Quality and Climate

Hittsjön. Vindkraftspark. Samrådsunderlag

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version

Grafisk teknik. Sasan Gooran (HT 2006)

Custom-made software solutions for increased transport quality and creation of cargo specific lashing protocols.

3rd September 2014 Sonali Raut, CA, CISA DGM-Internal Audit, Voltas Ltd.

Montageanvisning Airway system 1000/1500 Assembly instruction Airway system 1000/1500

Transkript:

CHARMEC project SP13 Alarm limits for wheel damage / Larmgränser för hjulskador Jens Nielsen, Anders Ekberg & Elena Kabo Chalmers University of Technology, Department of Applied Mechanics/CHARMEC SE-412 96 Göteborg, Sweden Presentation of SP13 at CHARMEC seminar 7917 1

Current wheel damage criterion 29 kn ~ flat length 4 6 mm Action: stop at nearest station to repair/replace damaged wheel temperature < -1 C : train speed < 1 km/h temperature > -1 C : avoid 15 km/h < train speed < 45 km/h 3 kn ~ flat length > 6 mm Action: stop at nearest station to repair/replace damaged wheel train speed < 1 km/h From: www.sweller.dynalias.org/estar/ Presentation of SP13 at CHARMEC seminar 7917 2

heel impact load detector on Malmbanan Monthly statistics (June 2 May 3) of number of trains with at least one wheel exceeding a certain load magnitude ILD in Harrträsk on the southern route of Malmbanan (axle load 3 tonnes) Presentation of SP13 at CHARMEC seminar 7917 3

Field test on Svealandsbanan Spring on Svealandsbanan Presentation of SP13 at CHARMEC seminar 7917 4

Field test on Svealandsbanan Spring on Svealandsbanan Measurement of frequency response functions in track heel impact load detector based on strain gauges Measurement of strains in rails and sleepers Presentation of SP13 at CHARMEC seminar 7917 5

Field test on Svealandsbanan Spring on Svealandsbanan Measurement of frequency response functions in track heel impact load detector based on strain gauges Measurement of strains in rails and sleepers Train speeds 3 1 km/h Loaded and unloaded wagons Presentation of SP13 at CHARMEC seminar 7917 6

Field test on Svealandsbanan Spring on Svealandsbanan Measurement of frequency response functions in track heel impact load detector based on strain gauges Measurement of strains in rails and sleepers Train speeds 3 1 km/h Loaded and unloaded wagons heel defects - natural and manufactured flats 4 and 1 mm - 4 and 1 waves around circumference - long local defects Presentation of SP13 at CHARMEC seminar 7917 7

Field test on Svealandsbanan Measured bending moments in the rail Axle loads 24 3 tonnes, train speed 1 km/h heel flat hits above channel 19 (at approximately t = 3 s) CS643 1 km/h - över sliper CS643 1 km/h - mellan sliper Kanal 18 [knm] - 2 3 4 5 6 Kanal 19 [knm] - 2 3 4 5 6 Kanal [knm] - 2 3 4 5 6 Kanal 23 [knm] - 2 3 4 5 6 Kanal 22 [knm] - 2 3 4 5 6 Kanal 25 [knm] - 2 3 4 5 6 Presentation of SP13 at CHARMEC seminar 7917 8

Kanal 2 [kn] Field test on Svealandsbanan Kanal 19 [knm] Kanal 23 [knm] Measured contact force and bending moments in the rail Axle loads 24 3 tonnes, train speed 1 km/h heel flat hits above channel 19 (at approximately t = 3 s) Distance between channels 19 and 23 1.3 m CS643-1 km/h 25 15 1 5 2.75 2.8 2.85 2.9 2.95 3 3.5 3.1 3 1-1 2.75 2.8 2.85 2.9 2.95 3 3.5 3.1 1-1 - 2.75 2.8 2.85 2.9 2.95 3 3.5 3.1 Maximum rail bending moment : Tension in rail foot Presentation of SP13 at CHARMEC seminar 7917 9

Kanal 2 [kn] Field test on Svealandsbanan Kanal 19 [knm] Kanal 23 [knm] Measured contact force and bending moments in the rail Axle loads 24 3 tonnes, train speed 1 km/h heel flat hits above channel 19 (at approximately t = 3 s) Distance between channels 19 and 23 1.3 m CS643-1 km/h 25 15 1 5 2.75 2.8 2.85 2.9 2.95 3 3.5 3.1 3 1-1 2.75 2.8 2.85 2.9 2.95 3 3.5 3.1 1-1 - 2.75 2.8 2.85 2.9 2.95 3 3.5 3.1 Minimum rail bending moment : Tension in rail head Presentation of SP13 at CHARMEC seminar 7917 1

Validation of train track interaction model L a L b L a M w k w c w m w F z L s v l d k b c b Vehicle model with four wheelsets heel flat with length 1 mm and depth.9 mm (axle load 24 tonnes) Compare measured data with simulated results k p c p 25 Maximum contact force Svealandsbanan - HAB638 4 Maximum rail bending moment Svealandsbanan - HAB638 Minimum rail bending moment Svealandsbanan - HAB638 35 18 Kontaktkraft mellan hjul och räl [kn] 15 1 5 1 3 4 5 6 7 8 9 1 Hastighet [km/h] Största böjmoment i räl [knm] 3 25 15 1 Mätdata 5 DIFF: 4 hjulpar DIFF: 4 punktlaster 1 3 4 5 6 7 8 9 1 Hastighet [km/h] Minsta böjmoment i räl [knm] 16 14 12 1 8 6 4 Mätdata 2 DIFF: 4 hjulpar DIFF: 4 punktlaster 1 3 4 5 6 7 8 9 1 Hastighet [km/h] Presentation of SP13 at CHARMEC seminar 7917 11

orst load case - strategy Rail bending moment is influenced by the impact load magnitude but also by train speed, frequency content of load, track properties, axle load, axle distance Given the magnitude of the impact load, search for worst load cases with respect to the impact load time history Focus on Malmbanan: 3 tonnes and 6 km/h F max F z,1 F max F z,2 F min T 1 T 2 T 3 T 1 T T 2 T 3 L a L b L a F z,i (t ) k b c b L s k p c p Presentation of SP13 at CHARMEC seminar 7917 12

orst load case: influence of time history 1(2) Minimum bending moment (-.1 knm) for F min = kn (low level), T 1 = 2 ms (low), T 2 = 1 ms (low) och T 3 = 4 ms (high) The influence of T 2 is high Minimum moment for fast impulse and slow unloading F max F z,1 F max F z,2 22 F min T 1 T 2 T 3 L a L b F z,i ( L a t) L s k b c b T 1 T T 2 T 3 Minsta böjmoment i räl [knm] 21 19 18 17 4 3.5 3 T 1 [ms] 2.5 2 3 2.5 2 1.5 T 2 [ms] 1.5 k p c p Input: F max = 29 kn, 3 tonnes, 6 km/h, axle distance 1.78 m Presentation of SP13 at CHARMEC seminar 7917 13

orst load case: influence of time history 2(2) Maximum bending moment (53. knm) for T = 6 ms (high level), T 1 = 2 ms (low), T 2 = 2 ms (medium) och T 3 = 4 ms (high) Maximum moment for slow impulse and slow unloading F max F z,1 F max F z,2 54 F min T 1 T 2 T 3 L a L b F z,i ( L a t) L s k b c b T 1 T T 2 T 3 k p c p Största böjmoment i räl [knm] 52 5 48 46 5 4 T 3 [ms] 3 2 1 1.5 2 T 2 [ms] 2.5 3 Input: F max = 29 kn, 3 tonnes, 6 km/h, axle distance 1.78 m Presentation of SP13 at CHARMEC seminar 7917 14

orst load case: influence of load position For an initial rail foot crack, the worst load position is directly above the crack The worst position for an initial rail head crack is above a sleeper, and when the load position is 1.5 sleeper distances away (half axle distance) F max F z,1 F max F z,2-8 6km/h, Fmax 29kN, Fmin kn, T1 2ms, T2 1ms, T3 4ms F min T 1 T 2 T 3 L a L b F z,i ( L a t) L s k b c b T 1 T T 2 T 3 k p c p Min böjmoment i räl vid sprickposition [knm] -1-12 -14-16 -18-8/8-22 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 Antal sliperavstånd mellan position för hjulplatta och sprickposition [-] Input: F max = 29 kn, 3 tonnes, 6 km/h, axle distance 1.78 m /8 2/8 4/8 6/8 Presentation of SP13 at CHARMEC seminar 7917 15

Böjmoment i räl över sliper [knm] Böjmoment i räl över sliper [knm] 24 22 18 Influence of support stiffness Rail bending moments increase with decreasing rail pad stiffness The influence of ballast stiffness is not so high unless sleepers are hanging from the rail (not supported by ballast) Input: UIC6 rails and worst load case with respect to time history and striking position kp 8 MN/m kb 1 MN/m kb 5 MN/m kb 15 MN/m kb MN/m 16 25 26 27 28 29 3 31 3 33 34 35 Max kontaktkraft [kn] kb 1 MN/m 25 15 kp 8 MN/m kp 16 MN/m kp 24 MN/m kp 3 MN/m 1 25 26 27 28 29 3 31 3 33 34 35 Max kontaktkraft [kn] Böjmoment i räl över sliper [knm] Böjmoment i räl mellan sliprar [knm] 26 24 22 kb 1 MN/m, kp 8 MN/m Ingen hängande sliper En hängande sliper 18 25 26 27 28 29 3 31 3 33 34 35 Max kontaktkraft [kn] kb 1 MN/m, kp 8 MN/m 1 1 8 6 Ingen hängande sliper Två hängande sliprar 4 25 26 27 28 29 3 31 3 33 34 35 Max kontaktkraft [kn] Presentation of SP13 at CHARMEC seminar 7917 16

Stress intensity factors Bending of the rail gives a stress history in the top of the rail head and the bottom of the rail foot In the presence of a crack, this stress can be translated to a stress intensity factor In addition a temperature below the stress free temperature will cause additional tensile loading K I = f(a) σ πa a f σ where is the crack size is a geometry/loading factor is the stress magnitude Crack growth occurs if K I = K Ith and fracture if K I = K Ic

Geometry / loading Two types of cracks head crack edge foot crack factor Two load types bending (impact load) tensile (temperature) (a-d) symmetry (e) clamped (a) (d,e) contact load crack Two rail types UIC6 BV5 a (c) (b) residualstresses bendingmoment temperatureload

Fracture criterion Super-position of bending and tension (in the same mode) gives a fracture criterion as K Ib + K It K Ic Re-arrange: K Ib K Ic K It Note K I σ K I [MPa m] fotspricka a =.1 m 55 5 45 4 35 3 25 K I (F z ) K Ic ( grader) K Ic ( grader) K Ic ( 4 grader) 15 25 3 35 Max kontaktkraft [kn] UIC 6

Results Stress intensities for head cracks from FEsimulations BV5 probably less reliable than UIC6 Stress intensities for foot cracks from standard cases Bending less reliable than tension K I [MPa m] UIC6 BV5 Head 25 mm 12 1 Head 4 mm 21 16 Foot 5 mm 22 Foot mm 45 48 Stress intensities for a vertical impact load of 3 kn

Results Method to evaluate influence of vertical impact load and temperature loading for given crack size Inspection tolerances? Crack growth rates? Fairly low influence of vertical load as compared to temperature load in the studied interval Regional restrictions? Seasonal restrictions?

Goal Determine a i, f 1 a c a c /f 2 Determine operational loads and material parameters for crack growth Determine critical loads and C, m da/dn f 2 a c, Set inspection intervals crack size a i /f 1 a i t i time t i +2 t Idealised sketch on how to define inspection intervals

Future studies Different kinds of traffic Crack growth rates Further studies of track geometry influence and hanging sleepers Improved analysis of stress intensities (rail profiles, lateral bending, different locations, residual stresses, etc)