CARS: Context Aware Rate Selection for Vehicular Networks

Relevanta dokument
Adding active and blended learning to an introductory mechanics course

Alias 1.0 Rollbaserad inloggning

A study of the performance

Datasäkerhet och integritet

Om oss DET PERFEKTA KOMPLEMENTET THE PERFECT COMPLETION 04 EN BINZ ÄR PRECIS SÅ BRA SOM DU FÖRVÄNTAR DIG A BINZ IS JUST AS GOOD AS YOU THINK 05

Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:

Pedagogisk planering. Ron Chlebek. Centralt Innehåll. Svenska/Engelska. Lego Mindstorms. Syfte: Matematik

District Application for Partnership

Styrteknik: Binära tal, talsystem och koder D3:1

Grafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions:

Examensarbete Introduk)on - Slutsatser Anne Håkansson annehak@kth.se Studierektor Examensarbeten ICT-skolan, KTH

A QUEST FOR MISSING PULSARS

Grafisk teknik. Sasan Gooran (HT 2006)

Examensarbete i matematik på grundnivå med inriktning mot optimeringslära och systemteori

Kvalitetsarbete I Landstinget i Kalmar län. 24 oktober 2007 Eva Arvidsson

Dokumentnamn Order and safety regulations for Hässleholms Kretsloppscenter. Godkänd/ansvarig Gunilla Holmberg. Kretsloppscenter

GPS GPS. Classical navigation. A. Einstein. Global Positioning System Started in 1978 Operational in ETI Föreläsning 1

CHANGE WITH THE BRAIN IN MIND. Frukostseminarium 11 oktober 2018

12.6 Heat equation, Wave equation

Utmaningar och möjligheter vid planering, genomförande och utvärdering av förändringsarbete i organisationer

Chapter 2: Random Variables

Resultat av den utökade första planeringsövningen inför RRC september 2005

Affärsmodellernas förändring inom handeln

HEVNEC Heavy Vehicle Network Communication. Lars Strandén, SP,

Anna Brunström. Hur kan man minska fördröjningarna över Internet? Karlstad University Computer Science

Beijer Electronics AB 2000, MA00336A,

Rastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM

Image quality Technical/physical aspects

Wi-Fi travel router for ipad and mobile devices

Neighborhood discovery overhead in dual rate ad hoc networks

Peter Fröst, adj professor

Support Manual HoistLocatel Electronic Locks

Module 6: Integrals and applications

SOLAR LIGHT SOLUTION. Giving you the advantages of sunshine. Ningbo Green Light Energy Technology Co., Ltd.

För att justera TX finns det ett tool med namnet MMDVMCal. t.ex. /home/pi/applications/mmdvmcal/mmdvmcal /dev/ttyacm0

EVALUATION OF ADVANCED BIOSTATISTICS COURSE, part I

Robust och energieffektiv styrning av tågtrafik

Collaborative Product Development:

säkerhetsutrustning / SAFETY EQUIPMENT

State Examinations Commission

KOL med primärvårdsperspektiv ERS Björn Ställberg Gagnef vårdcentral

Authentication Context QC Statement. Stefan Santesson, 3xA Security AB

Annonsformat desktop. Startsida / områdesstartsidor. Artikel/nyhets-sidor. 1. Toppbanner, format 1050x180 pxl. Format 1060x180 px + 250x240 pxl.

MPEG-4 innehåller bl.a:

OFTP2: Secure transfer over the Internet

3rd September 2014 Sonali Raut, CA, CISA DGM-Internal Audit, Voltas Ltd.

PFC and EMI filtering

CELL PLANNING. 1 Definitions

Support for Artist Residencies

IPv6 i Mobilnät. Mattias Karlsson. mattias.karlsson@telenor.com

RUP är en omfattande process, ett processramverk. RUP bör införas stegvis. RUP måste anpassas. till organisationen till projektet

Plats för projektsymbol. Nätverket för svensk Internet- Infrastruktur

Grundkurs i 5G 5G och sedan då?

Boiler with heatpump / Värmepumpsberedare

Övning 5 ETS052 Datorkommuniktion Routing och Networking

Virtuella kretskopplade nät Virtual circuit networks. Virtuella kretskopplade nät. Virtuella kretskopplade nät. Virtuella kretskopplade nät

2.1 Installation of driver using Internet Installation of driver from disk... 3

Kundfokus Kunden och kundens behov är centrala i alla våra projekt

Manhour analys EASA STI #17214

The present situation on the application of ICT in precision agriculture in Sweden

Hållbar utveckling i kurser lå 16-17

Measuring child participation in immunization registries: two national surveys, 2001

Urban Runoff in Denser Environments. Tom Richman, ASLA, AICP

Gradientbaserad Optimering,

Assigning Ethical Weights to Clinical Signs Observed During Toxicity Testing

PowerCell Sweden AB. Ren och effektiv energi överallt där den behövs

STORSEMINARIET 3. Amplitud. frekvens. frekvens uppgift 9.4 (cylindriskt rör)

Statistical Quality Control Statistisk kvalitetsstyrning. 7,5 högskolepoäng. Ladok code: 41T05A, Name: Personal number:

NORDIC GRID DISTURBANCE STATISTICS 2012

SICS Introducing Internet of Things in Product Business. Christer Norström, CEO SICS. In collaboration with Lars Cederblad at Level21 AB

Ett jämställt transportsystem - vad är det och hur långt har vi kommit?

Skill-mix innovation in the Netherlands. dr. Marieke Kroezen Erasmus University Medical Centre, the Netherlands

LARS. Ett e-bokningssystem för skoldatorer.

Försöket med trängselskatt i siffror

Michael Q. Jones & Matt B. Pedersen University of Nevada Las Vegas

Kristina Säfsten. Kristina Säfsten JTH

Preschool Kindergarten

Health café. Self help groups. Learning café. Focus on support to people with chronic diseases and their families

Botnia-Atlantica Information Meeting

Stad + Data = Makt. Kart/GIS-dag SamGIS Skåne 6 december 2017

Protected areas in Sweden - a Barents perspective

Swedish framework for qualification

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version

The Arctic boundary layer

Isolda Purchase - EDI

Service och bemötande. Torbjörn Johansson, GAF Pär Magnusson, Öjestrand GC


Taking Flight! Migrating to SAS 9.2!

RADIATION TEST REPORT. GAMMA: 30.45k, 59.05k, 118.8k/TM1019 Condition D

Refraktion efter kataraktkirurgi. Anders Behndig ProfessorInst. för Klinisk Vetenskap/OftalmiatrikUmeå Universitet

Produktens väg från idé till grav

Hur fattar samhället beslut när forskarna är oeniga?

Swedish adaptation of ISO TC 211 Quality principles. Erik Stenborg

SWESIAQ Swedish Chapter of International Society of Indoor Air Quality and Climate

Peak Car. Anne Bastian, Maria Börjesson och Jonas Eliasson. Associate Professor Transport Systems Analysis, KTH. Director Centre for Transport Studies

FIX LED-LYSRÖRSARMATUR MED AKRYLKÅPA IP44

Sammanfattning. Revisionsfråga Har kommunstyrelsen och tekniska nämnden en tillfredställande intern kontroll av att upphandlade ramavtal följs.

Mobile IT systems and home care applications

Mapping sequence reads & Calling variants

Profilinformation Flygteknink 2019, Ingo Staack

Transkript:

CARS: Context Aware Rate Selection for Vehicular Networks Pravin Shankar spravin@cs.rutgers.edu Tamer Nadeem tamer.nadeem@siemens.com Justinian Rosca justinian.rosca@siemens.com Liviu Iftode iftode@cs.rutgers.edu

Vehicular networks today Ubiquity of WiFi Cheaper, higher peak throughput compared to cellular New applications Traffic Management Urban Sensing (eg. Cartel) In-car Entertainment Social Networking (eg. RoadSpeak, MicroBlog) Requirement: High throughput 2

What is rate selection? 802.11 PHY: multiple transmission rates 8 bitrates in 802.11a/g (6 54 Mbps) 8 bitrates in 802.11p (3 27 Mbps) Different modulation and coding schemes Bitrate Link Quality Low High Low Underutilization High High Error Rate 3

Rate selection problem in vehicular networks Low quality link 6 Mbps High quality link 54 Mbps Low quality link 6 Mbps Rate Selection: Select the best transmission rate based on link quality in real-time to obtain maximum throughput 4

Outline Introduction Existing solutions CARS: Context Aware Rate Selection Evaluation Conclusion 5

Existing rate selection algorithms ARF (1996), RBAR (2001), OAR(2004), AMRR (2004), ONOE (2005), SampleRate (2005), RRAA (2006) (and many more ) Basic scheme in all existing algorithms Estimation: Use physical layer or link layer metrics to estimate the link quality (Re)Action: Switch to lower/higher rate Question: How well do these algorithms work in vehicular environments? 6

Existing schemes + vehicular networks: Experiment Outdoor experiments comparing SampleRate [2005] AMRR [2004] ONOE [2005] 5 runs per rate algorithm 5 runs per fixed rate Slow Mobility: 25 mph Metrics Average goodput Supremum goodput (maximum among all runs for all rates) 7

Existing schemes + vehicular networks: Results Underutilization of link capacity 8

Existing schemes + vehicular networks: Analysis Rapid change in link quality due to distance, speed, density of cars Problems: 1. Estimation delay 2. Sampling requirement 3. Collisions vs. channel errors 9

Problem 1: Estimation delay 54 Mbps 6 Mbps 24 Mbps Link conditions change faster than the estimation window - the rate adaptation lags behind 10

Problem 2: Sampling Requirement When an idle client starts transmitting, there are no recent samples in the estimation window Packet scheduling causes bursty traffic Results in anomalous behavior 11

Problem 3: Collisions vs. errors Hidden-station induced losses should not trigger rate adaptation [CARA06, RRAA06] Lower rate prolongs packet transmission time, aggravating channel collisions Use of RTS/CTS causes additional overhead 12

Outline Introduction Existing solutions CARS: Context Aware Rate Selection Evaluation Conclusion 13

CARS at a glance Rapid change in link quality due to distance, speed (context) Vehicular nodes already have this context information Use this cross-layer information at the link layer to estimate link quality and perform proactive rate selection 14

CARS: reactive + proactive Link Quality: Error Function E C = f(distance, speed, bitrate, len) Proactive Predicted error as a function of context information E H = f(bitrate, len) Reactive Short-term loss statistics from estimation window 15

Proactive rate selection using E c E C = f(distance, speed, bitrate, len) Model link error rate as a function of context information and transmission rate Empirically derived using data from outdoor experiments Simple model is sufficient because of discrete rates in 802.11 Context recalculation frequency = 100 ms 16

CARS Algorithm 17

CARS Implementation The CARS algorithm was implemented on the open-source MadWifi wireless driver ~ 520 lines of C code Context information obtained from TrafficView [2004] Generic /proc interface: Any other app can be extended to provide a similar interface Extensively tested by means of vehicular field trials and simulations 18

Outline Introduction Existing solutions CARS: Context Aware Rate Selection Evaluation Conclusion 19

CARS Evaluation Effect of Mobility: How does CARS adapt to fast changing link conditions? (Field trial) Effect of Collisions: How robust is CARS to packet losses due to collisions? (Field trial) Effect of Density of Vehicles: How does the throughput improvement scale over large number of vehicles? (Simulation study) 20

Effect of mobility: Setup Scenarios Stationary: Base case Cars are stationary next to each other. SlowMoving: A simple moving scenario Cars are driving around the Rutgers campus: ~25mph speeds FastMoving: A more stressful moving scenario Cars are driving on New Jersey Turnpike: ~70mph speeds in high car/truck traffic conditions Intermittent: A scenario with intermittent connectivity Cars move in and out of each other's range periodically - Hot-spot scenario Workload: UDP traffic from TX to RX using iperf Duration of experiment - 5 minutes 21

Effect of mobility: Results 50 40 SampleRate CARS Goodput (Mbps) 30 20 10 0 Stationary SlowMoving FastMoving Intermittent Scenario 22

Effect of mobility: Analysis Scenario: Intermittent Reactive vs. Proactive 23

Effect of vehicle density - Setup Hotspot scenario: Road of length 5000 m with multiple lanes Base station in the middle of the road Workload: Video stream: 1500 packets of size 1000 bytes each UDP: transmission rate 100 packets per second RTS/CTS disabled Max_retransmits: 4 ns-2 with microscopic traffic generator Compared CARS with AARF and SampleRate 24

Effect of vehicle density - Results 25

Effect of vehicle density - Analysis 26

Outline Introduction Existing solutions CARS: Context Aware Rate Selection Evaluation Conclusion 27

Conclusion Existing rate adaptation algorithms under-utilize vehicular network capacity CARS: uses context information to perform fast rate selection Significant goodput improvement over existing algorithms 28