Nya karaktäriseringsmetoder för fasta bränslen - Malbarhet, tändvillighet och sintring Panndagarna 2011 9-10 februari S:t Gertrud Konferens Malmö Johan Wadenbäck Chemistry & Materials
Outline 1. Background 2. Scope of the EXAS project 3. Grindability 4. Ignitability 5. Sintering 2 Panndagarna 2011, 9-10 February, Malmö Malbarhet, sintring och tändvillighet Johan Wadenbäck, Chemistry & Materials
1. Background The demand of an extensive CO2 reduction indicates, that many qualities of biomass will be utilized in power plant boilers in the future The biomass will be used alone or together with coals as co-firing The grindability properties for biomass (or biomass/coal blends) are not characterized by the current standard classic methods The combustion processes for biomass or biomass/coal blends are not characterized by the current standard classic methods Fly-ash deposits at low temperatures (Sintering) can cause trouble with biomass firing 3 Panndagarna 2011, 9-10 February, Malmö Malbarhet, sintring och tändvillighet Johan Wadenbäck, Chemistry & Materials
2. Scope of the EXAS project (1) Purchase of three lab-scale apparatus developed by Prof. śelkowski, Berg, Wadenbäck et al. for the determination of grindability-, sintring- and ignitiability properties of solid fuels Installation in the fuel laboratory at the Amager Power Plant in Copenhagen Initial evaluation of the hardware with a three solid fuels; coal, straw- and wood pellets The results are compared with full-scale experiences in Vattenfall Further evaluation of solid fuels and solid fuel blends used within Vattenfall such as torrified- or steam exploded biomass etc. continues 4 Panndagarna 2011, 9-10 February, Malmö Malbarhet, sintring och tändvillighet Johan Wadenbäck, Chemistry & Materials
2. Scope of the EXAS project (2) continues The novel methods are intended to be incorporated into the routine analysis toolbox of solid fuels Different parts of Vattenfall will gain experience from the project through reference group attendance as well as seminars/workshops/reports In addition: The possibility to test additional solid fuels and solid fuel blends relevant for different parts of Vattenfall The novel methods are applied prior to introduction of new and unfamiliar solid fuels at power plants throughout Vattenfall Ackreditaded analyses and standardization? 5 Panndagarna 2011, 9-10 February, Malmö Malbarhet, sintring och tändvillighet Johan Wadenbäck, Chemistry & Materials
3. Grindability Hardgrove index (HGI) Simple test with simple device 8 steel balls overroll 60 times a 50 g sample of the fraction 0.600-1.18 mm The mass M [g] of the produced material finer than 75 µm determines the HGI HGI = A + B M 13 + 6.93M 6 Panndagarna 2011, 9-10 February, Malmö Malbarhet, sintring och tändvillighet Johan Wadenbäck, Chemistry & Materials
3. Grindability CMT-mill principle Measuring Ground material Feed (Mahlgut) Suspended particles (staub) 0,25 E airsieve m(staub) / m(mahlgut) 0,2 0,15 0,1 0,05 Mahlgut Staub Raw sample Recycled material 0 0 2 4 6 Durchlaufzahl Modeling of the recycling in a large mill 7 Panndagarna 2011, 9-10 February, Malmö Malbarhet, sintring och tändvillighet Johan Wadenbäck, Chemistry & Materials
3. Grindability - The EXAS CMT-mill 8 Panndagarna 2011, 9-10 February, Malmö Malbarhet, sintring och tändvillighet Johan Wadenbäck, Chemistry & Materials
3. Grindability Solid fuels tested so far 100 Characteristic particle size vs. energy in the CMT-mill E [kwh/ton solid fuel] 10 Black pellets Coal Wood pellets Straw pellets 1 0 200 400 600 800 1000 1200 Characteristic particle size, ds [µm] 9 Panndagarna 2011, 9-10 February, Malmö Malbarhet, sintring och tändvillighet Johan Wadenbäck, Chemistry & Materials
3. Grindability Correlation with full scale (1) Loesche mill 3 installed in Unit 1 on Amager CHP Samples can be taken before and after the mill The grinding energy and capacity can be recorded 10 Panndagarna 2011, 9-10 February, Malmö Malbarhet, sintring och tändvillighet Johan Wadenbäck, Chemistry & Materials 10
3. Grindability Correlation with full scale (2) Good correlation! 11 Panndagarna 2011, 9-10 February, Malmö Malbarhet, sintring och tändvillighet Johan Wadenbäck, Chemistry & Materials 11
4. Ignitability Combustion principles Loo and Koppejan 2008 12 Panndagarna 2011, 9-10 February, Malmö Malbarhet, sintring och tändvillighet Johan Wadenbäck, Chemistry & Materials
4. Ignitability Ignitability Index At the moment: No standardized methods The EXAS method: Ignitability index Zündwilligkeitszahl (Zelkowski): Recirculation (t Rez ) Ignition (t Zünd ) The Ignitability index can be interpreted in praxis as the ability of a fuel to develop and maintain a stabile strong flame. The Ignition Temperature of a cloud of suspended fuel particles (t Z150 in C) (which models the initial stages in the combustion process), the temperature of the gases, of a defined particle size probe, which is injected in a defined gas environment and ignites after 150 msec. The Ignition potential N z500 (in MJ/kg solid fuel) is the chemical energy per kg, which is released (volatile matter) from a dry solid fuel up to 500 C. Ignitability Index ZWZ = N t Z 500 Z150 kg MJ Kohle C 13 Panndagarna 2011, 9-10 February, Malmö Malbarhet, sintring och tändvillighet Johan Wadenbäck, Chemistry & Materials
4. Ignitability Ignitability oven 14 Panndagarna 2011, 9-10 February, Malmö Malbarhet, sintring och tändvillighet Johan Wadenbäck, Chemistry & Materials
4. Ignitability TU Clausthal / E2 Zündwilligkeitskennzahl ZWZ kj/(kg* C) 25 20 15 10 5 0 Steinkohlen Braunkohlen ENERGIEKohlen BIOMASSEN Rusva-Spitzbergen Holz Kisselewsky Poduff Stroh ADARO 0 10 20 30 40 50 60 70 80 90 flüchtige Bestandteile F(i.waf) % 15 Panndagarna 2011, 9-10 February, Malmö Malbarhet, sintring och tändvillighet Johan Wadenbäck, Chemistry & Materials
4. Ignitability EXAS ignitability oven Ignitability oven Jenkner device 16 Panndagarna 2011, 9-10 February, Malmö Malbarhet, sintring och tändvillighet Johan Wadenbäck, Chemistry & Materials
6. Ignitability Some results Zündz eit [msec] Zü n d z eit [m sec] BP1 100% BP1 Fuel 2 0,55 0,55 RuPod60%+BP40% 60/40 RuPod60%+BP40% Fuel 1/Fuel 2 0,5 0,5 RuPod80%+BP20% 80/20 Fuel 1/Fuel 2 RuPod80%+BP20% 0,45 RuPod 100% Fuel 100% 1 0,45 RuPod 100% 0,4 0,4 0,35 0,35 0,3 0,3 0,25 0,25 0,2 0,2 0,15 0,15 0,1 0,1 0,05 0,05 0 0 550 600 650 700 750 800 850 900 950 1000 550 600 650 700 750 800 850 900 950 1000 Temperatur im Ofen C Temperatur im Ofen C 17 Panndagarna 2011, 9-10 February, Malmö Malbarhet, sintring och tändvillighet Johan Wadenbäck, Chemistry & Materials
6. Ignitability Some more results tz(150) [ C] tz(150) [ C] Zündtemperatur tz(150) Zündtemperatur tz(150) 840 840 820 820 800 800 780 780 760 d(probe) 760 d(probe) 740 < 200 63 µm 740 < 63 µm 720 d(probe) 720 < 200 d(probe) µm 700 < 200 µm 700 d(probe) 680 < 200 d(probe) µm d(probe) 680 < 200 µm < 200 d(probe) µm 660 < 200 µm 660 RuPod 1 100 80%RuPod+ 60%RuPod+ 100%Black RuPod 1 100 80%RuPod+ 60%RuPod+ 100%Black % 20%Black 40%Black % 20%Black 40%Black Fuel 1: 100% 80% 60% 0% Fuel 2: 0% 20% 40% 100% 16 16 14 14 12 12 10 10 8 8 6 6 4 4 Nz(500) MJ/kg Nz(500) MJ/kg ZWZ kj/(kg*[ C]) ZWZ kj/(kg*[ C]) RuPod 1 RuPod 1 100 % 100 % Fuel 1:100% 80% 60% 0% 80% RuPod+ 80% RuPod+ 20% Black 20% Black 60% RuPod+ 60% RuPod+ 40% Black 40% Black 100% Black 100% Black Fuel 2: 0% 20% 40% 100% 18 Panndagarna 2011, 9-10 February, Malmö Malbarhet, sintring och tändvillighet Johan Wadenbäck, Chemistry & Materials
5. Sintering Classic analysis of ash melting Often used methods: Leitz-Method: Determination of the ashmelting behavior (Influence of the temperature: e.g. DIN 51730, CEN/TS 15370); Change in physical form of a relatively fast (10 K/min) heated ash probe. The EXAS Method: Determination of ash melting properities: Influence of the temperature and time on the physical- and mechanical properties of an ash probe. 19 Panndagarna 2011, 9-10 February, Malmö Malbarhet, sintring och tändvillighet Johan Wadenbäck, Chemistry & Materials
5. Sintering EXAS sintering oven Manufacturing of ash pellets 20 >17 hours in oven Strength of pellets Panndagarna 2011, 9-10 February, Malmö Malbarhet, sintring och tändvillighet Johan Wadenbäck, Chemistry & Materials
Presentation of solid fuel results An example Fuel 1 Fuel 2 R up o d 1 RuPod 1 D ic hte Dichte H G I HGI A Asche(wf) s c he (w f ) B lac k P e lle ts 1,5 0 Black 1,50 1,2 5 1,25 F l.b e s t,(w f ) 1,0 0 Fl.Best,(wf) 1,00 0,7 5 0,75 0,5 0 0,50 0,2 5 0,25 0,0 0 C (i.w af) 0,00 C(i.waf) H u(w f) H (w af) Hu(wf) H(waf) S (w af ) S(waf) tz(150) tz(150) Rel m(br) Rel m(br) 1,40 1,40 1,20 1,20 1,00 1,00 0,80 0,80 0,60 0,60 0,40 0,40 100% RuPud Fuel 1 100% RuPud 80% 80/20 RuPod+20%BP1l Fuel 1/Fuel 2 80% RuPod+20%BP1l 60%RuPod+40%BP1 60/40 Fuel 1/Fuel 2 60%RuPod+40%BP1 Hu(mittl)(i,wf) Hu(m ittl)(i,wf) F(wf) F(wf) A(i,wf) A(i,wf) 21 Panndagarna 2011, 9-10 February, Malmö Malbarhet, sintring och tändvillighet Johan Wadenbäck, Chemistry & Materials
Acknowledgements Prof. śelkowski, TU Clausthal Mogens Berg, Vattenfall Nader Padban, Vattenfall The laboratory staff at AMV Troels Christansen, DTU Mr, Schäfertöns, SBS, Braunschweig Etc. And the work goes on 22 Panndagarna 2011, 9-10 February, Malmö Malbarhet, sintring och tändvillighet Johan Wadenbäck, Chemistry & Materials
Thank you for your attention! 02/22/10 EXAS - EXpanded Analysis of Solid Fuels 23