HMK. Geodesi: Terrester mätning. handbok i mät- och kartfrågor
|
|
- Anna-Karin Sundström
- för 9 år sedan
- Visningar:
Transkript
1 HMK handbok i mät- och kartfrågor Geodesi: Terrester mätning Arbetsdokument juli 2015
2 Förord juli 2015 HMK-Geodesi arbetsdokument 2015 består av fyra dokument som tillsammans utgör HMK-Geodesi. Dokumentet HMK-Geodesi: Terrester mätning består i huvudsak av omarbetat material från den äldre HMK-Geodesi, Detaljmätning. Arbetet med dokumenten har huvudsakligen utförts av Lars Engberg, Lantmäteriet. Arbetsgruppen har dessutom bestått av Patric Jansson, Milan Horemuz, KTH, Anders Alfredsson, Johan Sunna, Lars Jämtnäs, Kent Ohlsson, Lantmäteriet. Extern granskning har genomförts under våren och synpunkterna har inarbetats i dokumentet. Under 2015 har dokumenten status som arbetsdokument, en officiell version kommer att publiceras under december Gävle /Anders Alfredsson, Projektledare Geodesi Arbetsdokument 2 (77)
3 Innehåll 1 Introduktion Terrester mätning Detaljmätning Stommätning Avgränsning mot andra HMK-dokument Absolut osäkerhet och relativ osäkerhet Om metodnivåer vid terrester mätning Om metodval 7 2 Stationsetablering Stationsetablering på känd punkt Inmätning av ny stationspunkt stomnätsförtätning Fri station Fri station med GNSS-bestämda utgångspunkter Förtätning med detaljtåg, pikéer och parpunkter Piképunkt 20 3 Genomförande av detaljmätning Mätmetoder i plan Polär metod Mätmetoder i höjd Avvägning Trigonometrisk höjdmätning Kombinerad mätning i plan och höjd 28 4 Tillämpad detaljmätning Planering och förberedelser Tillämpad inmätning Förberedenade åtgärder Olika inmätningssituationer Tillämpad utsättning Förberedande åtgärder Utsättningssituationer 37 5 Kontroll av DETALJMÄTNING Kontrollprocedur Allmänna kontrollprinciper Acceptans vid kontroll Mätnoggrannhet vid kontroll Bestämning av mätnoggrannhet vid kontroll Kontrollförfaranden vid mätningar Egenkontroll Kontroller vid inmätning Kontroller vid utsättning Måttkontrollprogram Dokumentation vid kontroll Kontroll och ekonomi Kontrollnivåer 49 Arbetsdokument 3 (77)
4 5.6 Beställarens kontroll 50 6 Dokumentation vid detaljmätning Mätdata Mätprotokoll och mätskiss Beräkningshandlingar Kontrolldokument Kvalitetsmärkning Objektbeskrivning 56 7 Markering Brukspunkter Tillfälliga punkter Byggplatspunkter Utstaknings- och detaljpunkter 59 8 Mätosäkerhet vid TERRESTER mätning Mätosäkerheter, generellt Osäkerheter i referensnät Osäkerheter vid mätning 62 A Fri station 64 A.1 Bestämning av ny stompunkt 64 A.2 Checklista för Fri station 64 B Kontroll och justering av geodetiska mätinstrument 66 B.1 Allmänt 66 B.1.1 Olika typer av instrumentfel 66 B.1.2 Anordningar för instrumentkontroll och justering 66 B.2 Instrumentfel åtgärdslista 67 B.2.1 Teodoliter och totalstationer 67 B.2.2 EDM-instrument och totalstationer 68 B.2.3 Avvägningsinstrument 68 B.2.4 Avvägningsstänger 69 B.2.5 Övrig utrustning 69 C Matematisk formelsamling 70 C.1 Geometriska korrektioner 70 C.1.1 Lutnings- och höjdreduktion av längder 70 C.1.2 Projektionskorrektion av längder 71 C.1.3 Projektionskorrektion för riktningar 72 C.2 Koordinatberäkning 73 C.2.1 Polär inmätning 73 C.3 Beräkning av riktning och avstånd 74 C.3.1 Orienterad riktning mellan två punkter 74 C.3.2 Avstånd mellan två punkter 75 C.4 Trigonometrisk höjdmätning 75 C.4.1 Beräkning av höjdskillnad 75 C.4.2 Höjdbestämning 76 C.4.3 Standardosäkerhet 76 Arbetsdokument 4 (77)
5 1 Introduktion 1.1 Terrester mätning Fram till för några årtionden sedan var i stort sett alla geodetiska mätningar terrestra (markbundna). Idag är mätningar baserade på GNSS-teknik dominerande inom mätningsverksamheten. Även om man idag klarar stora delar av mätningsuppdragen med GNSS-teknik kvarstår behovet av terrester mätteknik bl.a. när fri sikt uppåt saknas eller man av annan anledning inte helt kan förlita sig till satellitbaserad teknik. Med terrester mätning avses i detta sammanhang vinkel- och längdmätning med totalstation även om kombinationen teodolit och längdmätningsinstrument alternativt mätband också kan användas. Med vinkel- och längdmätning kan läget för objekt bestämmas i såväl plan som höjd. Höjdbestämning kan också ske med avvägning, vilken fortfarande är den teknik som ger lägsta osäkerhet vid höjdbestämning. Terrester mätning användes tidigare vid såväl detaljmätning som stommätning. Idag används den i stort sett enbart vid detaljmätning, förutom avvägning som används vid anläggning av höjdstomnät. 1.2 Detaljmätning Till detaljmätning räknas såväl inmätning som utsättning. Vid inmätning bestäms detaljernas lägen i förhållande till kända punkter och detaljernas koordinater/höjder beräknas. Vid utsättning överförs givna punktlägen, numeriskt beräknade eller grafiskt bestämda, till terrängen. Stationsetablering avser bestämning av instrumentets/totalstationens läge och orientering. Ett eventuellt fel i etableringen äventyrar hela detaljmätningsuppdraget, varför den måste utföras med omsorg. Ibland är stomnätsförtätningen t.ex. vid Fri station en integrerad del av stationsetableringen. Själva inmätningen sker nästan uteslutande genom polär mätning och trigonometrisk höjdbestämning. 1.3 Stommätning Referenssystemet representerades traditionellt av punkter ingående i passiva referensnät; ett stomnät bestående av, s.k. stompunkter. Vid detaljmätning utnyttjas vanligen stompunkter i bruksnät, s.k. brukspunkter. Idag realiseras referenssystemet vanligen i ett aktivt referensnät, som SWEPOS-nätet. Arbetsdokument 5 (77)
6 Etablering av stomnät med terrester mätteknik är idag mindre förekommande och har till stor del ersatts av GNSS-teknik. För anläggning av noggranna höjdnät är dock avvägning fortfarande utan konkurrens från satellitteknik. I vissa fall är inte noggrannheten eller punkttätheten i bruksnätet tillräcklig för den tänkta användningen. Då etableras särskilda stomnät för tillämpningen i fråga, t.ex. primärnät på byggplatser. Dessa nät utformas i regel på ett sådant sätt att de blir lämpliga för fri station vid utsättning och inmätning. Som exempel på specialnät kan nämnas primärnät för byggarbetsplatser (jfr. SS ISO 4463). Råd och anvisningar för etablering av specialnät redovisas i HMK-Geodesi: Stommätning 1. I vissa sammanhang finns behov av att upprätta speciella bruksnät med hög lokal noggrannhet. Stommätning baserad på såväl terrester som GNSS-teknik behandlas tillsammans i HMK-Geodesi: Stommätning Avgränsning mot andra HMKdokument 1.5 Absolut osäkerhet och relativ osäkerhet All geografisk mätosäkerhet relaterar på något sätt till storleken på det område inom vilket osäkerheten ska redovisas. Följande indelning i lokal och absolut mätosäkerhet är på inget sätt självklar eller oantastlig men ändå ändamålsenlig. På detaljnivå har vi en lokal mätosäkerhet, som avser relativ osäkerhet mellan närliggande stompunkter, mellan objekt i en geodatabas eller mellan byggnadsdetaljer i en anläggning. Aktuella avstånd är 100 m. Den absoluta mätosäkerheten inom Sverige, Europa eller globalt är av mindre intresse i de här aktuella sammanhangen. Med de nya, globalt anpassade referenssystemen raderas denna skillnad delvis, men uppdelningen har fortfarande giltighet såväl vad gäller äldre terrestra stomnät som i samband med bygg- och anläggningsverksamhet. Terrester mätning som metod ger en låg relativ osäkerhet, dvs. lägesosäkerheten mellan närliggande objekt är liten. Vid 1 Dokumentet kommer att utges senare under året. Arbetsdokument 6 (77)
7 detaljmätning påverkas den absoluta osäkerheten genom olika val av stationsetableringsmetod. 1.6 Om metodnivåer vid terrester mätning Metodnivåer är tänkta som en länk mellan påverkbara faktorer i mätprocessen och den förväntade mätosäkerheten för en viss mätteknik. Därmed blir det också möjligt att jämföra och välja mättekniker utifrån kvalitetsbehov, vilket är syftet med HMK- Geodesi: Teknisk specifikation och metodval. Metodnivåerna är inte särskilt relevanta varken för polär mätning eller trigonometrisk höjdmätning med totalstation eftersom resultatet till stor del är beroende av både mätningen och utgångspunkternas kvalitet. Exempelvis kan valet av bakåtobjekt påverka resultatet mer än osäkerheten i mätningen Om metodval Har man valt att använda terrester mätning antingen för att etablera ett stomnät eller för detaljmätning är i normalfallet övriga val i stort sett givna av andra skäl än förväntad mätosäkerhet. Beträffande stommätning så hanteras den i särskild ordning och möjligheten att välja alternativ mätteknik är begränsad. Beträffande detaljmätning, som till övervägande del utförs som polär mätning, begränsas valet till metod för stationsetablering. Valet står mellan låg eller hög absolut lägesosäkerhet. Genom att, som utgångspunkter, välja känd punkt, antingen direkt eller indirekt erhålls en högre absolut osäkerhet. Lägre absolut osäkerhet erhålls genom att göra stationsetablering med hjälp av utgångspunkter inmätta med GNSS-teknik. I vissa sammanhang, t.ex. byggplatser, finns behov av att upprätta specialnät, för att säkerställa låg lokal osäkerhet. Då etableras särskilda stomnät för tillämpningen i fråga, t.ex. primärnät. Dessa ansluts till överordnat nät på ett sådant sätt att de inte deformeras. Arbetsdokument 7 (77)
8 2 Stationsetablering Detaljmätning sker direkt eller indirekt utgående från kända punkter i bruksnätet eller punkter bestämda med GNSS. De stationsetableringsmetoder som finns idag och som beskrivs nedan kan delas in efter förfarandet vid punktbestämningen. De tre viktigaste metoderna är: stationsetablering på känd punkt fri station o från fasta punkter o från GNSS-bestämda punkter piképunkt. Kombinationer kan förekomma, t.ex. känd i plan, fri i höjd. I begreppet stationsetablering ingår bestämning av instrumentets läge och orientering. Ett eventuellt fel i stationsetableringen påverkar många punkter vid efterföljande detaljmätning och den måste därför utföras med omsorg. I fallet stationsetablering på känd punkt beskrivs förfarandet då stationsetablering sker på en tidigare bestämd punkt. Detaljmätningen sker i detta fall direkt utgående från kända punkter i bruksnätet. Fri station och piképunkt innebär att stationspunkten nybestäms i samband med detaljmätningen, som då sker indirekt utgående från bruksnätet. På grund av att piképunkter inte är överbestämda finns det inte heller några inbyggda kontrollmöjligheter. Metoden bör därför användas med sparsamhet, även om det ofta finns möjlighet till någon form av indirekt kontroll. Motsvarande får anses gälla även vid icke överbestämd fri station. Däremot kan överbestämd fri station, vid god konfiguration och beräkning enligt utjämningsförfarande (mk-metoden), anses ha väl så god noggrannhet som bruksnätet i övrigt. Rätt utförd ger en fri station vanligen det bästa resultatet, från såväl noggrannhetssom kontrollsynpunkt. 2.1 Stationsetablering på känd punkt En typ av stationsetablering, som innebär att instrumentet centreras och horisonteras över en känd punkt i bruksnätet. För vidare detaljmätning i plan krävs även att instrumentet orienteras. Detta åstadkoms genom mätning av referensriktning mot minst en annan punkt i samma bruksnät. Vid detaljmätning i höjd krävs dessutom bestämning av instrumenthöjd. Arbetsdokument 8 (77)
9 Krav Stationsetablering på känd punkt dvs. på en tidigare bestämd stationspunkt ska kontrolleras på något eller några av följande sätt: a) längdmätning mot bakåtobjektet och jämförelse med motsvarande avstånd beräknat ur de kända koordinaterna b) riktningsmätning mot fler än ett bakåtobjekt och kontroll av att orienteringen blir densamma c) polär inmätning av en känd punkt, som inte har använts vid stationsetableringen, samt jämförelse med dess koordinat- och höjdvärden. Detaljmätningen på en station ska alltid avslutas med en upprepad inriktning mot ett bakåtobjekt, för kontroll av att inget har hänt med instrumentets orientering under pågående mätning. Vid byte av station ska minst en stompunkt eller ett geografiskt objekt mätas in på nytt. Stationsetablering på känd punkt avser mätning från en tidigare bestämd stompunkt, eller uppställning på en punkt från en inledande stomnätsförtätning. Kontrollerna avser främst att säkerställa att rätt utgångspunkter har använts, att markeringarna är intakta samt att angivna koordinater och höjder är korrekta; en kontroll av stomnätet helt enkelt. Centreringsförfarandet underlättas avsevärt vid tillgång till optiskt lod eller lodstång. Viktigt är då att optiskt lod och vattenpass är väl kontrollerade/justerade. Mätning av instrumenthöjd är en vanlig felkälla. Mätningen underlättas dock vid användande av lodstång eller mätband som kan fästas i stativets fästskruv, då man från denna har ett känt mått till instrumentets mätcentrum. Instrumentets orientering är ett moment som är särskilt viktigt, eftersom inverkan av ett fel i orienteringen ger ett fel i nypunkterna som är direkt proportionellt mot siktlängden och har en riktning tvärs siktlinjen. Detta innebär att felen i nypunkterna varierar i både storlek och riktning beroende av siktlinjen. Med anledning härav bör orienteringen utföras med överbestämning/kontroll. Arbetsdokument 9 (77)
10 Krav Vid val av bakåtobjekt ska så långa siktlängder som möjligt eftersträvas, helst längre än förväntade detaljmätningslängder. Detta krävs för att minimera centreringsosäkerhetens (samt koordinatosäkerhetens) inverkan på orienteringen. För högre noggrannhet i orienteringen kan man vid flera bakåtobjekt beräkna ett (vägt) medeltal av de olika orienteringsbestämningarna. Vikten för en orienteringsbestämning brukar då sättas proportionell mot kvadraten på siktlängden. Krav Identifieringen av bakåtobjekt ska kontrolleras genom att riktningsmätning görs mot två bakåtobjekt, eller att riktnings- och längdmätning görs mot ett bakåtobjekt. Då kan motsvarande vinkel respektive avstånd beräknas ur kända koordinater och jämföras med mätt vinkel/längd. Krav Mätningarna på en station ska alltid avslutas med en upprepad inriktning mot ett bakåtobjekt. Därigenom fås en grov kontroll på att ingenting hänt med instrumentets orientering under mätningens gång. 2.2 Inmätning av ny stationspunkt stomnätsförtätning Rekommendation a) För detaljpolygontåg gäller, som vanligt vid polygonisering, att tågen bör vara sträckta, anslutna i båda ändarna samt att sidlängderna bör vara ungefär lika och inte alltför korta. b) Pikéer och parpunkter som utgångspunkter för detaljmätning bör tillämpas endast i undantagsfall. Avståndet till pikén, eller mellan parpunkterna, bör vara längre än det längsta detaljmätningsavståndet. c) Ett bättre alternativ till parpunkter är ofta att mäta in tre eller flera punkter med GNSS-teknik och tillämpa överbestämd fri station för stationsetableringen. Kända punkter i omgivningen bör också mätas in som kontroll. Arbetsdokument 10 (77)
11 Krav a) Som toleranser för detaljtåg ska felgränser för bruksnät i plan respektive höjd tillämpas. b) Höjdtåg ska anslutas och/eller dubbelmätas (tur och retur). c) Pikéer och parpunkter ska kontrolleras, t.ex. genom inmätning av kända punkter i samband med detaljmätningen. d) De kvalitets- och kontrollaspekter som redovisas i checklistan för fri station i Bilaga A.2 ska beaktas Fri station Fri station (synonymer: fri uppställning eller fri stationsetablering) innebär att instrumentets läge i plan och/eller höjd, samt orientering, bestäms genom mätning från en fritt vald uppställningspunkt med en valfri kombination av längd- och riktningsmätningar. Utvecklingen mot fri station innebar möjligheter att göra bruksnäten glesare och på så sätt minska underhållskostnaderna för stomnätet. Vid fri station uppnår man en lägre lokal osäkerhet i stationsetableringen än vid uppställning på känd punkt, eftersom den fria stationens läge interpoleras från flera omkringliggande brukspunkter med samma kvalitet som en enstaka känd punkt. På detta sätt får man vanligen mindre motsättningar mellan mätningar från två fria stationer än mellan mätningar från två kända punkter. Bra Dålig Dålig Figur a. Bra och dåliga konfigurationer vid inmätning i plan av en fri station. En bra konfiguration ökar möjligheten att hitta grova fel, se figur 2.2.1a. För att upptäcka och lokalisera dessa krävs dock överbestämningar och fria stationer är normalt överbestämda. Fler överbestämningar ger dessutom lägre osäkerhet i stationsetableringen även utan förekomst av grova fel. Arbetsdokument 11 (77)
12 De beräkningsmetoder som vanligen tillämpas för bestämning av fri station i plan är koordinattransformation och sträng utjämning. Höjdanslutning sker naturligt med trigonometrisk höjdbestämning. Överbestämd fri station med god konfiguration är vanligen att föredra framför uppställning på en känd punkt. Den kan anses vara likställd med de stompunkter som använts vid bestämningen. För att få en god konfiguration vid inmätning i planet bör bakåtobjekten om möjligt vara jämnt fördelade kring stationspunkten och på behörigt avstånd. Inmätningen bör ske mot minst tre bakåtobjekt, vilket ger ett k-tal 0,5. Det finns i huvudsak tre olika funktioner för en fri station: Utgångspunkt för inmätning, som bestäms vid mättillfället. Tillfällig förtätningspunkt, som mäts in i förväg och markeras provisoriskt under mätprojektet. Permanent stompunkt, som mäts in och markeras varaktigt (ofta som ersättning för en äldre, raserad stompunkt). I situationer där inga stomnätspunkter finns tillgängliga på marken och där hög relativ noggrannhet eftersträvas kan man använda sig av utgångspunkter som bestäms med GNSS-teknik, se avsnitt Planbestämning Bestämning i planet åstadkommes genom riktnings- och/eller längdmätningar mot kända punkter. För bestämning av läge och orientering (tre obekanta) krävs minst tre mätningar, varav minst en riktningsmätning för orienteringen. Gemensamt för dessa metoder är att de ej är överbestämda, dvs. kontroll på punktbestämningen saknas. De är inte ens entydiga, då vissa villkor måste förutsättas vara uppfyllda vid beräkningen. En bra konfiguration minimerar påverkan på stationsetableringen vid förekomst av fel i mätningarna (gäller såväl tillfälliga som grova fel), men för att upptäcka och lokalisera grova fel krävs överbestämningar. Vid en överbestämning finns möjlighet att upptäcka förekomsten av grova fel, men det är omöjligt att peka ut var felet är begånget. För lokalisering av grova fel krävs minst två överbestämningar, men ju fler överbestämningar man har, desto säkrare blir felsökningen. Fler överbestämningar ger dessutom lägre osäkerhet i stationsetableringen även utan förekomst av grova fel. Arbetsdokument 12 (77)
13 Krav För nöjaktig kontroll av stationsetablering vid fri station ska man ha en överbestämning per obekant. Vid stationsetablering i plan har man tre obekanta, en N- och en E- koordinat, samt en orienteringskvantitet, vilket innebär att man bör ha tre överbestämningar. Detta erhålls exempelvis genom längd- och riktningsmätning mot tre kända punkter (sex mätningar). Fri station med nöjaktig kontroll kan ur noggrannhetssynpunkt jämställas med de punkter mot vilka inmätningen gjorts. En sådan stationspunkt är således likställd med de brukspunkter som använts vid bestämningen. Fri station utan överbestämningar kan, som tidigare nämnts, anses ha samma status som piképunkt och bör således förekomma endast i undantagsfall. I sådana fall bör någon form av indirekt kontroll utföras, t.ex. inmätning av s.k. kontrollpunkter från flera stationer (se avsnitt 2.3.1). Fri station bygger på traditionella metoder. Nya beräkningshjälpmedel har emellertid gjort det möjligt att utnyttja fri station på ett rationellt sätt, då såväl beräkning som kontroll kan ske direkt i fält. Metoden möjliggör även att stationspunkten kan väljas på lämpligaste plats både med avseende på stationsetableringens konfiguration och planerade detaljmätningar. En fördel ur noggrannhetssynpunkt är att man eliminerar felkällor som annars uppkommer vid centrering. De beräkningsmetoder, som tidigare nämnts, för bestämning av stationspunkt med överbestämningar är koordinattransformation och sträng utjämning. Koordinattransformation innebär bestämning av både riktning och längd mot samtliga objekt. Detta är nödvändigt för att kunna beräkna koordinater på objekten i ett lokalt system som sedan kan transformeras till bakåtobjektens system. En nackdel med denna metod är att man alltid måste bestämma både riktning och längd friheten går förlorad. Vidare finns ej möjlighet att vikta enskilda mätningar. Fördelar är att statistisk felsökning kan utföras vid minst tre överbestämningar, vilket möjliggör detektering och lokalisering av grova fel. Rekommendation Vid beräkning av fri station genom koordinattransformation bör unitär transformation (3-parameterstransformation) användas. Arbetsdokument 13 (77)
14 Vid Helmerttransformation (4 parametrar), där även skalfaktorn bestäms, kan grova fel bli mycket svåra att upptäcka. Sträng utjämning innebär elementutjämning enligt minstakvadratmetoden. Kombinationer av riktningar och längder vid inmätningen är helt valfri. Även denna metod möjliggör statistisk felkontroll för detektering/lokalisering av grova fel. En ytterligare fördel är att enskilda mätningar kan viktsättas. Höjdbestämning Höjdbestämningen av stationspunkten (instrumentet) erhålls genom trigonometrisk mätning av höjdskillnader till brukspunkter kända i höjd. Om avståndet mellan den fria stationen och utgångsobjektet är känt krävs endast mätning av zenitdistans för bestämning av höjdskillnaden. Observera att det då ej är avståndet i projektionsplanet som ska användas. Detta medför att projektionskorrektion och höjdreduktion bör elimineras från avstånd beräknade ur plana koordinater. Inverkan på höjdskillnaden från dessa fel i avståndet kan emellertid anses försumbar, så länge man använder sig av koordinater i ett lokalt system. Befinner man sig långt från medelmeridianen måste dock dessa korrektioner elimineras. Se diagram beträffande korrektionernas storlek. Har man inte tillgång till avståndet måste även lutande längd mätas till objektet. Diagram Sammanlagd inverkan av höjdreduktion och projektionskorrektion vid längdmätning (enhet ppm = mm/ km). Vid långa siktlängder (>300 m) är refraktionen den begränsande faktorn för noggrannheten i höjdbestämningen. Refraktionen Arbetsdokument 14 (77)
15 varierar beroende på temperatur-, sol- och vindförhållanden samt siktlinjens höjd över markytan. Största bidraget till höjdskillnadens osäkerhet utgörs av osäkerheten i zenitdistansen, vilken därför måste bestämmas genom helsatsmätning. Krav Vid användning av trigonometrisk höjdmätning för höjdbestämning av fri station ska siktlängden understiga 300 m och zenitdistansen bestämmas genom mätning i båda cirkellägena. Vid fler utgångsobjekt erhålls överbestämningar (en per objekt). Instrumentets höjd kan då beräknas genom medeltalsbildning, viktad eller ej. En funktion finns framtagen för vikten för trigonometriskt mätta höjdskillnader, se bilaga C.4. Vid korta siktlängder (< 100 m) är det mätning av signalhöjder som är den begränsande faktorn för höjdbestämningens osäkerhet. En bättre höjdbestämning kan i sådana fall uppnås genom direkt mätning mot en avvägningsstång placerad på en höjdbestämd punkt, genom att använda instrumentet som ett avvägningsinstrument och då läsa av stången i båda cirkellägena för att kompensera ett eventuellt kollimationsfel i instrumentet. Vid detaljmätning i höjd finns egentligen aldrig något skäl att ställa upp centriskt över en känd punkt, utan höjdbestämningen av instrumentet underlättas snarare av en excentrisk uppställning (fri station). På detta sätt undviks den felkälla som härrör från mätningen av instrumenthöjd. Analysmetoder De storheter som traditionellt har analyserats vid noggrannhetskontroll och felsökning är förbättringar (residualer), viktsenhetens standardosäkerhet samt standardosäkerhet i plan. Det har dock visat sig att denna analys ofta varit otillräcklig för detektering och, framför allt, lokalisering av grova fel i samband med bestämning av en fri station. Det är mätningarnas förmåga att kontrollera varandra som styr förbättringarnas fördelning. I vilken grad en mätning kontrolleras av andra mätningar brukar kallas redundans, ett tal mellan 0 och 1, som talar om hur stor del av ett fel i mätningen som korrigeras genom förbättring. Resten av felet påverkar punktbestämningen och orienteringen. Summan av alla mätningars redundanser är lika med totala antalet överbestämningar. Den genomsnittliga redundansen i Arbetsdokument 15 (77)
16 stationsetableringen kan därför enkelt beräknas genom att dividera antalet överbestämningar (ö) med det totala antalet mätningar (n). Detta s.k. kontrollerbarhetstal (k-tal) kan alltså skrivas ö k = n och bör vid planmätning vara ca 0.5, vilket är fallet om man har en överbestämning per obekant. En bättre kontroll fås om man relaterar förbättringarnas storlek till redundansen och motsvarande a priori standardosäkerhet i stället för att studera förbättringens absoluta storlek. Om man dividerar varje mätnings förbättring (v) med a priori standardosäkerhet (u) och roten ur kontrollerbarhetstalet (k-tal) fås en testkvot (t) som kan skrivas v t = u k Mätningen med den största kvoten bör kontrolleras om denna kvot är större än två (t > 2), vilket är i analogi med 2- sigmaprincipen. Ett bättre test erhålls naturligtvis om man har tillgång till varje enskild mätnings redundans i stället för den genomsnittliga redundansen. De testkvoter som då erhålls benämns standardiserade förbättringar och hanteras på samma sätt som storheten t ovan. En förutsättning för att felsökningen ska fungera är också att man har minst två överbestämningar. En första indikation på om grova fel finns i materialet fås av viktsenhetens standardosäkerhet. Om denna skiljer sig avsevärt från ett (1) är det antingen ett tecken på felaktig viktsättning (dålig uppskattning av a priori standardosäkerhet), eller en indikation på grova fel. Det senare kan misstänkas om viktsenhetens standardosäkerhet är onormalt stor. Ovanstående analysmetoder kan användas vid både plan- och höjdbestämning, men beroende på att dessa system är fysiskt helt skilda från varandra bör tester och analyser ske separat i plan och höjd. Enligt ovan krävs minst två överbestämningar för att ha en möjlighet att kontrollera mätningarna. Eftersom man vid stationsetablering i höjd endast har en obekant bör således kontrollerbarhetstalet här vara minst 2/3 (0,67). Denna test av förbättringar förordas men vanligen räcker det med den analys av standardosäkerheten i plan och höjd efter utjämning som beskrivs i det följande. Arbetsdokument 16 (77)
17 Noggrannhetskraven för en fri station i plan och höjd måste ställas i relation till det aktuella bruksnätets kvalitet. Den fria stationens standardosäkerhet i plan och standardosäkerhet i utjämnad höjd bör inte överskrida standardosäkerheten i brukspunkterna. Nedanstående gränsvärden grundas på en mätmetodik enligt ovan, samt att avståndet till brukspunkterna inte överskrider något hundratal meter ( m). Krav Vid inmätning av fri station mot ett konventionellt bruksnät skall ommätning ske om följande toleranser överskrids: beräknad standardosäkerhet i plan: max 14 mm standardosäkerhet i utjämnad höjd: max 10 mm. Krav Vid inmätning av fri station mot ett lokalt geodetiskt nät med hög intern noggrannhet, t.ex. ett primärnät på byggplats, ska ommätning ske om följande toleranser överskrids: beräknad standardosäkerhet i plan: max 7 mm standardosäkerhet i utjämnad höjd: max 5 mm. Beräkning av standardosäkerhet i plan förutsätter sträng utjämning. För planbestämning av fri station med hjälp av koordinattransformation kan jämförbara toleranser för viktsenhetens standardosäkerhet vid inpassningen ställas upp. Krav Vid beräkning av fri station i plan med koordinattransformation ska ommätning ske om viktsenhetens standardosäkerhet överskrider följande toleranser: konventionellt bruksnät: max 10 n mm primärnät: max 5 n mm där n är antalet utgångspunkter (objekt). Toleranserna i höjd påverkas ej eftersom höjdbestämningen sker separat, på samma sätt som vid sträng utjämning. Dessa krav får naturligtvis även ställas i relation till de noggrannhetskrav man har på detaljpunkterna. Vid väldefinierade objekt, som exempelvis gränspunkter, bör krav enligt ovan gälla, medan inmätning av t.ex. en strandlinje ej ställer så höga krav på stationsetableringen. Arbetsdokument 17 (77)
18 2.2.2 Fri station med GNSS-bestämda utgångspunkter Saknas tillgång till kända utgångspunkter kan bakåtobjekten bestämmas med GNSS-teknik. Den fortsatta behandlingen är densamma som vid traditionell fri station se avsnitt Det tillvägagångssättet utnyttjar dock inte satellitteknikens fördelar fullt ut, varför en annan kombination har lanserats på senare tid: Realtidsuppdaterad fri station (RUFRIS). Realtidsuppdaterad fri station (RUFRIS) Krav Tillämpning av RUFRIS, Realtidsuppdaterad fri station, ska ske enligt Trafikverkets metodbeskrivning. Tekniken förutsätter en kombinerad mätstång, med GNSS-antenn och prisma, som används för att kunna utföra samtidiga GNSSoch totalstationsmätningar. Vid fristationsetableringen sker inmätning av bakåtobjekten med GNSS (nätverks-rtk), och parallellt mäts riktning, zenitdistans och längd mot samma objekt med totalstationen. För att detta ska vara möjligt krävs att avståndet mellan GNSS-antennens referenspunkt (eller elektriska fascentrum) och prismat är känt och definierat i instrumentets konfiguration/mätprofil. Förfarandet upprepas tills önskat antal bakåtobjekt är inmätta och den fria stationens koordinater och orientering är bestämd. Genom att flytta mätstången, punkt för punkt, runt totalstationen får man så småningom dels ett ganska stort antal bakåtobjekt, dels en välbestämd fri station genom konventionell inmätning mot dessa objekt. Detaljmätningen kan sedan ske alternerande med den ena eller den andra tekniken, beroende på vilka sikthinder som finns och vilken typ av mätning som går snabbast. Metoden har studerats utförligt inom Trafikverkets projekt Stomnät i luften genom såväl teoretiska som praktiska studier. Figur redovisar det viktigaste från denna studie i form av en optimal mätkonfiguration. Det gröna är detaljmätningsområdet. Punkterna i tre av hörnen är till för att reducera riktningsosäkerheten, genom att detaljmätningsavstånden (från totalstationen räknat) blir kortare än avståndet till dessa punkter. Någon av de tre punkterna kan med fördel placeras ännu längre bort bortom detaljmätningsområdet. Arbetsdokument 18 (77)
19 Som synes behöver inte GNSS-punkterna omsluta stationspunkten, varvet runt, som vid fri station. Det räcker att de täcker en halvcirkel runt stationen, så att dess position interpoleras och inte extrapoleras. Det beror på att det aktiva nätet Figur Punktkonfiguration vid RUFRIS: Realtidsuppdaterad fri station. inte har samma deformationer som ett passivt. 2.3 Förtätning med detaljtåg, pikéer och parpunkter Den vanligaste metoden för stomnätsförtätning har varit att lägga ut detaljtåg, som kan vara polygontåg och/eller höjdtåg. En piké är en förtätningspunkt som mäts in polärt från en stompunkt, se figur Den kan sägas vara ett detaljtåg i miniatyr, som inte är anslutet och endast består av en sida. Det var tidigare ett ganska vanligt förfarande vid stomnätsförtätning för detaljmätning. Vid utnyttjandet använts normalt den stompunkt från vilken pikén har mätts in som bakåtobjekt. Att utnyttja s.k. parpunkter, bestämda med GNSS-teknik, som stationspunkt respektive bakåtobjekt vid detaljmätning förekommer ibland. Parpunkterna ligger i allmänhet i närheten av varandra, med sikt emellan. Pikéer och parpunkter är dock inte helt problemfria förfaranden; de har inga inbyggda kontroller och om avståndet mellan den punkt som väljs som station och dess bakåtobjekt är för kort så ger metoderna en stor riktningsosäkerhet vid den fortsatta mätningen. Exempel: Man kan visa att standardosäkerheten för en orienterad riktning mellan två punkter på avståndet L meter blir u( P) u( j) = r L där u(p) är ändpunkternas standardosäkerhet i plan (punktmedelfel). Om vi antar att punkterna är bestämda med nätverks-rtk med u(p) = 15 mm så får vi: Arbetsdokument 19 (77)
20 0, u( j ) = L» L mgon Dvs. 100 mgon på avståndet L = 10 meter och 10 mgon på 100 meter, vilket är bra mycket sämre än den mätosäkerhet man normalt får vid riktningsmätning med totalstation Piképunkt Med piképunkt avses enstaka brukspunkt bestämd genom polär metod. Piképunkt får dock snarare anses som en form av hjälppunkt, som läggs ut och används som stationspunkt då ingen lämplig befintlig brukspunkt finns att tillgå och då överbestämd fri station är omöjlig att etablera. Begreppet piképunkt kan därmed anses gälla även för övriga punktbestämningsmetoder, som ej uppfyller de krav på överbestämningar som angetts för fri station. En piképunkt kan sägas vara en excentrisk punkt. Därför bör man sträva efter att minimera de excentriska måtten för att på detta sätt bibehålla så mycket som möjligt av bruksnätets noggrannhet. Grovt uttryckt är piképunktens noggrannhet sämre än bruksnätets. Dock måste naturligtvis dess kvalitet vara tillräcklig för att erhålla en godtagbar noggrannhet i den efterföljande detaljmätningen. Rekommendation Piképunkter, och andra icke överbestämda stationspunkter, bör kontrolleras genom en oberoende kontrollmätning i plan och/eller höjd, beroende på den tänkta användningen. En indirekt kontroll av en piképunkt fås om man från denna mäter in en brukspunkt förutom den från vilken pikén är utlagd. En annan möjlighet är att från pikén mäta in minst en väldefinierad detalj som kontrollpunkt. Piképunkten kontrolleras sedan genom inmätning av kontrollpunkten/-punkterna även från en brukspunkt. Rekommendation Piképunkt bör normalt ej följa på piképunkt utan att dessa sammanbinds i detaljtåg och ansluts till en annan brukspunkt än utgångspunkten. Om terrängen eller bebyggelsen omöjliggör sådan anslutning kan dock korta tåg med högst två piképunkter mätas flygande, dvs. utan anslutning i sista punkten. Tvångscentrering bör då användas och piképunkterna bör kontrolleras genom inmätning av dubbla kontrollpunkter. Arbetsdokument 20 (77)
21 Principen för ett flygande tåg med två piképunkter och kontrollpunkter åskådliggörs i figur Krav Avvikelsen mellan olika bestämningar av en kontrollpunkt, eller vid kontrollinmätning av brukspunkt från en piképunkt, bör ej överstiga 20 mm (radiellt) i plan och 10 mm i höjd. Detta gäller generellt. Kontrollen vid bestämning av piképunkter måste dock ställas i relation till den efterföljande mätningens ändamål. Figur Exempel på flygande tåg med dubbla kontrollpunkter (KP). Arbetsdokument 21 (77)
22 3 Genomförande av detaljmätning 3.1 Mätmetoder i plan Det finns sju elementära planmätningsmetoder (punktbestämningsmetoder). De kan beskrivas som olika kombinationer av tre typer av observationer, nämligen: Orienterad riktning, som bestäms genom riktningsmätning i känd punkt med referens i annan känd punkt. Den sökta punkten ligger på en rät linje. - Avstånd, där den sökta punkten ligger på en cirkel med centrum i den kända punkten och med en mätt längd som radie. Vinkel, som bestäms genom vinkelmätning i den sökta punkten mot två kända punkter. Den sökta punkten ligger på en cirkelbåge genom APB. Arbetsdokument 22 (77)
23 De olika planmätningsmetoderna är: polär mätning, ortogonal mätning, avskärning, inbindning, inskärning skärbindning och sidoinskärning. Av dessa metoder är det praktiskt taget enbart polär mätning som förekommer idag Polär metod Den polära metoden är den idag mest använda, för såväl inmätning som utsättning. Speciellt vid utnyttjande av totalstation är metoden enkel, snabb och tillförlitlig. Rent geometriskt kan den polära metoden ses som skärningen mellan en rät linje och en cirkel med given radie. Se figur Eftersom skärningen mellan linjen och cirkeln alltid sker under rät vinkel, finns det inga ogynnsamma geometriska fall vid användning av den polära metoden. P A j d Figur Polär metod. Den sökta punkten bestäms av skärningen mellan en rät linje och en cirkel med given radie. I praktiken sker lägesbestämningen av den sökta punkten genom mätning av längd och riktning från en tidigare lägesbestämd punkt. För beräkning av horisontell längd krävs dessutom att en zenitdistans mäts. Vid polär mätning behövs också riktningsmätning mot ett referensobjekt. Denna riktning används för att beräkna instrumentets orientering, se avsnitt 2.1. Polär utsättning kräver att de punkter som ska sättas ut är koordinatbestämda så att utsättningsdata kan beräknas. Utsättningsdata består av en orienterad riktning från aktuell stationspunkt mot ett referensobjekt, samt orienterade riktningar och avstånd mellan stationspunkten och samtliga punkter som ska sättas ut. Punkterna sätts ut genom att deras polära data mäts ut på marken. Noggrannheten i längdmätningen kan formuleras på följande sätt: Arbetsdokument 23 (77)
24 ( ) 2 2 u( l) = A+ B l + C mm där A (mm) och B mm/km ger standardosäkerheten för längdmätningen och C (mm) är standardosäkerheten i centreringen, längden l anges i kilometer. Noggrannheten i riktningsmätningen ges av följande uttryck: 2 D C u( j) = + r n Ł l ł 2 mgon där C mm är standardosäkerheten i centreringen, D mgon är standardosäkerheten i riktningsmätningen, n är antalet helsatser och ρ är /π ( 63662) mgon, längden l anges i millimeter. I tabell redovisas standardosäkerheten i plan för några totalstationer med olika mätosäkerheter. Tabell Standardosäkerhet i plan vid polär mätning för olika klasser 2 av totalstationer. Avstånd Standardosäkerhet i plan (mm) (m) T1 T2 T3 T Anmärkning : Centreringsfel för instrument och signaler, samt fel i utgångspunkter, tillkommer. 3.2 Mätmetoder i höjd Höjdmätning sker genom avvägning eller trigonometrisk höjdmätning. Avvägning utförs med hjälp av avvägningsinstrument, som har en horisontell siktaxel. Från noggrannhetssynpunkt kan man särskilja tre olika metoder precisionsavvägning (i riksnäten), finavvägning (i anslutnings- och bruksnät) och standardavvägning. Precisionsavvägning är alltså en reserverad term för en speciell tillämpning, även om avvägning med hög precision/noggrannhet kan förekomma även i andra sammanhang, t.ex. vid industrimätning, sättningskontroll och precisionsutsättning. Finavvägning används vid etablering av stomnät och beskrivs därför i dokumentet HMK:Ge-Stommätning 3. 2 Klassindelningen enligt SIS-TS Dokumentet kommer att utges senare under året. Arbetsdokument 24 (77)
25 Avvägning av ytor vid detaljmätning benämns ytavvägning, till skillnad mot den linjeavvägning som utförs i t.ex. stomnät Avvägning Standardavvägning Vid standardavvägning används såväl instrument med optisk avläsning som instrument med digital avläsning. I båda fallen används ofta delade stänger. Eventuella tåg utförs i allmänhet med s.k. enkelavvägning, dvs avvägning enbart i en riktning. Genomförande av mätning B F 6H = bakåtavläsning = framåtavläsning = höjdskillnad = B - F avvägningsriktning F B 6H Figur Principen för avvägning. Principen för avvägning framgår av figur Rekommendation Avvägning bör, om möjligt, utföras med mittuppställning av instrumentet. Lika långa siktlängder bakåt och framåt eliminerar kollimationsfelets och jordkrökningens inverkan samt reducerar inverkan av refraktion, varför inga korrektioner behöver göras. Vid olika långa siktlängder är det speciellt viktigt att instrumentet är justerat med avseende på kollimationsfel. Rekommendation Siktlängderna vid avvägning bör avstämmas mot den noggrannhet som eftersträvas. Maximal siktlängd vid standardavvägning är ca 60 m, delvis beroende på kikarens förstoring. Arbetsdokument 25 (77)
26 Instrument med digital avläsning Med digital avläsning ersätts observatörens öga av en detektor som läser streckkoden på stången och beräknar såväl stångavläsning som avståndet mellan instrument och stång. Stångens streckkod är unik för varje instrumenttillverkare varför stång och instrument måste ses som en enhet. Instrumentets öppningsvinkel är i storleksordningen 1-2, varför vid korta avstånd endast en liten del av stången avläses och vid längre avstånd nästan hela stången. Inverkan på mätresultatet av vibrationer i instrumentet eller värmedaller är mindre än för instrument med optisk avläsning eftersom mätvärdet bestäms genom integration över ett stångavsnitt. Den del av stången som avläses måste vara väl belyst, inslag av skuggor kan försvåra eller i värsta fall ge upphov till felaktiga avläsningar. Även instrument med digital avläsning har kollimationsfel, vilket medför behov av regelbunden kontroll, se anvisningar för respektive instrument. Noggrannhet vid avvägning Tabellen visar noggrannheten vid standardavvägning och avser väldefinierade punkter, fel i utgångspunkter tillkommer. Vid detaljmätning är det dock oftast möjligheten att definiera mätobjekten som sätter gränser för noggrannheten. Vid avvägning av t.ex. råmark finns ingen anledning att göra millimeteravläsningar. Tabell Standardosäkerhet i höjdskillnader vid standardavvägning. Siktlängd (m) Standardosäkerhet i höjdskillnad (mm) Arbetsdokument 26 (77)
27 3.2.2 Trigonometrisk höjdmätning Med totalstationer har trigonometrisk höjdmätning blivit enkel att utföra och därmed kommit att användas alltmer. Trigonometrisk höjdmätning, se figur 3.2.2, kan i många fall ersätta avvägning, d s h 6H i h z z d l i h s h 6H = zenitdistans = horisontell längd = lutande längd = instrumenthöjd = signalhöjd = höjdskillnad Figur Principen för trigonometrisk höjdmätning. främst där terrängen är starkt kuperad. Lutande längd och zenitdistans samt instrument- och signalhöjder mäts vanligtvis. Vid fri station mäts inte instrumenthöjd, varigenom en felkälla undviks. Formler för beräkning av höjdskillnad redovisas i bilaga C4, se även avsnitt Jordkrökning och refraktion Eftersom mätta höjdskillnader utgår från ett tangentplan till jorden, måste även jordytans krökning tas med vid beräkningen. Refraktionen beror på att siktlinjen passerar luftlager med olika täthet och därigenom bryts. Refraktionskoefficienten (k) är ett mått på refraktionens storlek och antas normalt variera mellan 0,08 och 0,20. Vanligen används värdet 0,14 (standardkorrektion). Krav Vid beräkning av trigonometrisk höjdmätning ska hänsyn tas till inverkan från jordkrökning och refraktion. Felet i höjdskillnaden på grund av dessa båda faktorer är proportionellt mot kvadraten på det horisontella avståndet och de två faktorerna motverkar normalt varandra. Formel för beräkning finns i bilaga C4. Storleken av en standardkorrektion framgår av tabell 3.2.2a. Arbetsdokument 27 (77)
28 Tabell 3.2.2a. Standardkorrektion för jordkrökning och refraktion vid olika siktlängder i samband med trigonometrisk höjdmätning (k = 0.14). Horisontellt avstånd (m) Korrektion (mm) 50 0, , , ,1 Totalstationer har ofta inbyggd korrektion för jordkrökning och refraktion vid beräkning av höjdskillnader. Observera att de inbyggda korrektionerna inte alltid är anpassade för svenska förhållanden. Förväntad mätosäkerhet vid detaljmätning I tabell 3.2.2b redovisas noggrannheten vid trigonometrisk höjdmätning vid måttliga höjdskillnader. Standardosäkerhet i zenitdistans 2 mgon. Standardosäkerhet i avstånd 5 mm. Tabell 3.2.2b. Standardosäkerhet vid trigonometrisk höjdmätning. Siktlängd (m) Standardosäkerhet i höjdskillnad (mm) Anmärkning: Fel i bestämning av instrumenthöjd och signalhöjd samt fel i utgångspunkter tillkommer. 3.3 Kombinerad mätning i plan och höjd Bestämning av ett objekts läge i plan och höjd sker idag ganska enkelt med hjälp av totalstation. De flesta inmätningar och en betydande del utsättning för mark och anläggningar sker med kombinerad plan- och höjdmätning. Den metod som är den mest använda för samtidig mätning i plan och höjd är polärmätning i kombination med trigonometrisk höjdmätning. Den benämns fortfarande ofta takymetrering. Även andra planmätningsmetoder kan kombineras med trigonometrisk höjdmätning. Om längden inte har mätts, beräknas avståndet mellan utgångspunkt och objekt. Genom mätning av zenitdistans bestäms höjdskillnaden. Arbetsdokument 28 (77)
29 4 Tillämpad detaljmätning 4.1 Planering och förberedelser Ett fungerande fältarbete kräver en väl utförd planering. Små inmätningsuppdrag kan ofta planeras och utföras samtidigt, men vid mer omfattande arbeten krävs planering i förväg. Val av teknik och metoder bör göras i ett tidigt skede. Ta reda på vilka kvalitetskrav som ställs på detaljmätningen och välj teknik/metodik därefter. Befintlig mätutrustning är delvis styrande, men nyanskaffning/uppgradering kan bli lönsam genom mer rationell mätning och mätdatahantering. Skall mätningen utgå från lokalt stomnät bör en bedömning av kvalitet och täthet på befintligt stomnät göras. Börja med att studera den redovisning av stomnätsarbetet, som förhoppningsvis finns. Skaffa också fram erforderliga punktbeskrivningar. Ofta krävs dessutom en fältinventering för att kontrollera om stompunkterna finns kvar och att markeringarna inte är skadade. 4.2 Tillämpad inmätning Imätning med totalstation används framför allt när kravet på närsambanden är högt. Även höjden bestäms ofta med totalstation, avvägning används vid höga noggrannhetskrav Förberedenade åtgärder Innan fältarbetet inleds måste beställare och utförare klara ut ambitionsnivån. Vilka objekt ska mätas in? Hur ska de klassificeras och kodas? Vilka övriga uppgifter (attribut) ska samlas in? Upprätta gärna en checklista som stöd för fältarbetet. Ambitionsnivån för hur objekten definieras rent geometriskt bör också klaras ut. I dokumentet HMK-Ge:Infra finns stöd för detta. Omfattningen av den egenkontroll som ska ske bör fastläggas i förväg. Se vidare avsnitt 4.2. Val av dokumentationsmetod ingår också i förberedelserna. Ska traditionella mätprotokoll eller fältminne/fältdator användas? Vilket filformat ska användas? Det är tillgång till utrustning och möjligheter/begränsningar i det system där mätdata ska bearbetas som är styrande. Se även avsnitt 5. Om markering ska göras, bör erforderliga markägarkontakter tas i förväg. Beträffande val av markeringstyper etc. finns stöd i HMK Ge:Markering 4. 4 Tillsvidare avses det gamla dokumentet från Arbetsdokument 29 (77)
30 Nedan visas hur olika metoder kan användas i ett antal inmätnings- sammanhang. Vid den praktiska tillämpningen är det mycket vanligt att de olika mätmetoderna kombineras, ofta i flera steg. Genom instrumentens utformning och inbyggda program upplevs dock mätningen som en enda metod Olika inmätningssituationer Underlag för kartframställning/kartkomplettering Geodetisk detaljmätning används nästan undantagslöst vid nyframställning av kartor över mindre områden, samt för komplettering vid fotogrammetrisk framställning. Kompletteringen kan då t.ex. avse täta skogspartier, där fotogrammetrisk detaljmätning ej varit möjlig. En annan form av komplettering är ajourhållning, dvs. uppdatering av befintlig karta på grund av förändringar i samband med byggande etc. Av stor vikt är planering av de hjälppunkter som kan behövas för inmätningen om befintligt bruksnät och fri station inte räcker till. Hjälppunkterna (punkter i detaljtåg, piképunkter) bör ge en så Figur 4.2.2a. Detaljtåg för kartkomplettering. god täckning att flertalet objekt kan mätas in polärt. Det är dock inte rationellt att skapa hjälppunkter så att varje enstaka detalj kan nås med polär mätning. Arbetsdokument 30 (77)
31 Figur 4.2.2a visar hur detaljtåg placerats och anslutits till befintligt bruksnät i samband med ett mindre kartkompletteringsuppdrag. Detaljtåget mäts med fördel i samband med detaljmätningen. På varje stationspunkt mäts först riktningar och längder för detaljtåget. Mätmetodiken för stommätning (satsmätning etc.) bör följas, se HMK-Ge:Stommätning 5. Därefter görs detaljmätningen, dvs. inmätning av kartobjekten. Dokumentationen bör dock separeras i olika protokoll eller olika mätdatafiler, eftersom beräkningarna vanligtvis hanteras var för sig. Vid detaljmätningen bör man ha tillgång till en teleskopisk prismastav, så att lägre sikthinder (häckar, bilar etc.) inte försvårar mätningen. Högre signalhöjder ger dock större centreringsfel, som måste ställas i relation till noggrannhetskraven. En väl ungerande radiokommunikation mellan observatör och prismabärare är också värdefull. Fel i typkodning och signalhöjder kan då undvikas. I samband med byte av stationspunkt görs lämpligen kompletterande bandmätning för bestämning av enstaka, skymda, detaljer och för kontroller. Skymda punkter kan t.ex. bestämmas med ortogonal mätning eller inbindning utifrån andra, väldefinierade detaljer, som mätts in polärt. T.ex. kan ett skymt hushörn bindas in från angränsande hushörn. Kontrollerna avser oftast avstånd mellan detaljer, t.ex. fasadmått. Med bra beräkningsprogram kan mätningen underlättas avsevärt. T.ex. kan en bra hantering av objektexcentriciteter minska antalet nödvändiga stationspunkter, genom att man kommer runt mindre sikthinder. Man bör dock observera att noggrannheten i punktbestämningen oftast påverkas negativt då excentriciteter förekommer. Projekteringsunderlag och relationsinmätning Metodiken skiljer sig inte nämnvärt från den som beskrivs under kartkomplettering. Projekteringsunderlaget har en större detaljrikedom än t.ex. primärkartan. Dessutom kan noggrannhetskravet i höjd vara stort, eftersom underlaget skall ligga till grund för detaljhöjdsättning av mark och anläggningar. Utdrag från ett projekteringsunderlag visas i figur 4.2.2b. En relationshandling upprättas efter det att ett hus eller anläggningsprojekt färdigställts. Relationshandlingen består vanligen av en detaljrik karta, i kombination med detaljritningar, profiler och sektioner. 5 Dokumentet kommer att utges senare under året. Arbetsdokument 31 (77)
HMK. Geodesi: Terrester detaljmätning. handbok i mät- och kartfrågor
HMK handbok i mät- och kartfrågor Geodesi: Terrester detaljmätning 2015 Förord HMK-Geodesi 2015 består av fyra dokument som tillsammans utgör HMK-Geodesi, samt ett femte dokument som tillkommer vid 2016
Metodbeskrivning RUFRIS
Metodbeskrivning RUFRIS Dokumenttitel: Underlag till metodbeskrivning RUFRIS Skapat av: Johan Vium Andersson Dokumentdatum: 2012-03-16 Dokumenttyp: Rapport Publikationsnummer 2012:210 Version: 1,0 Publiceringsdatum:
Underlag till metodbeskrivning RUFRIS
Uppdragsnr: 10141701 1 (7) PM Underlag till metodbeskrivning RUFRIS Upprättad av: Johan Vium Andersson, WSP Samhällsbyggnad 2011-11-09 WSP Samhällsbyggnad 121 88 Stockholm-Globen Besök: Arenavägen 7 Tel:
Realtidsuppdaterad fristation
Realtidsuppdaterad fristation Tillförlitlighetsanalys Juni 2011 Milan Horemuz Kungliga Tekniska högskolan, Institution för Samhällsplanering och miljö Avdelningen för Geodesi Teknikringen 72, SE 100 44
Att mäta med kvalitet. Nya avtal för digital registerkarta Lycksele, Kent Ohlsson
Att mäta med kvalitet Nya avtal för digital registerkarta Lycksele, 2018-04-18 Kent Ohlsson I det här passet går vi igenom följande: Begreppen kvalitet och god mätsed HMK Handbok i mät- och kartfrågor
HMK. Geodesi: Teknisk specifikation och metodval. handbok i mät- och kartfrågor
HMK handbok i mät- och kartfrågor Geodesi: Teknisk specifikation och metodval Arbetsdokument juli 2015 Förord juli 2015 HMK-Geodesi arbetsdokument 2015 består av fyra dokument som tillsammans utgör HMK-Geodesi.
Realtidsuppdaterad fristation
Precisionsanalys Januari 2009 Milan Horemuz Kungliga Tekniska högskolan, Institution för transporter och samhällsekonomi Avdelningen för Geodesi Teknikringen 72, SE 100 44 Stockholm e-post: horemuz@kth.se
RAPPORT. Höjdmätning med RUFRIS
RAPPORT Höjdmätning med RUFRIS Trafikverket Postadress: Rödavägen 1, 781 89 Borlänge E-post: trafikverket@trafikverket.se Telefon: 0771-921 921 TMALL 0004 Rapport generell v 2.0 Dokumenttitel: Höjdmätning
Vad är god kvalitet vid mätning med GNSS/RTK?
Vad är god kvalitet vid mätning med GNSS/RTK? MBK-dag, 4 november 2015 Lars Jämtnäs Enheten för geodetisk infrastruktur lars.jamtnas@lm.se Att bedöma kvalitet vid realtidsmätning Finns det något att jämföra
Appendix 1 - Checklista för etablering av punkter i RH 2000 genom stomnätsmätning med statisk GNSSteknik
Appendix 1 - Checklista för etablering av punkter i RH 2000 genom stomnätsmätning med statisk GNSSteknik I checklistan redovisas hur GNSS-tekniken bör användas vid klassisk statisk stomnätsmätning. Syftet
Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl december, 2012.
FÖRSÄTTSBLAD Institutionen för Naturgeografi och Ekosystemvetenskaper Institutionen för Teknik och Samhälle Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 21 december, 2012. Denna tentamen
Appendix 3 Checklista för höjdmätning mot SWEPOS Nätverks- RTK-tjänst
Appendix 3 Checklista för höjdmätning mot SWEPOS Nätverks- RTK-tjänst I denna checklista redovisas en del allmänna råd angående hur nätverks-rtk-tekniken bör användas för att uppnå ett tillfredställande
EXAMENSARBETE. Val av mätinstrument. Eli Ellvall Högskoleexamen Bygg och anläggning
EXAMENSARBETE Val av mätinstrument Eli Ellvall 2015 Högskoleexamen Bygg och anläggning Luleå tekniska universitet Institutionen för samhällsbyggnad och naturresurser ( Val av mätinstrument Eli Ellvall
4/29/2011. Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl maj, 2011.
FÖRSÄTTSBLAD 4/29/2011 Institutionen för Geo- och Ekosystemvetenskaper Institutionen för Teknik och Samhälle Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 2 maj, 2011. Besvara frågor till
Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl december, 2013.
FÖRSÄTTSBLAD I nstitutionen för Naturgeografi och Ekosystemvetenskaper I nstitutionen för Teknik och Samhälle Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 20 december, 2013. Denna tentamen
HMK-Geodesi Workshop
Dagens program HMK-Geodesi Workshop 17 juni 2013 i samarbete med Trafikverket och kommuner HMK - en handbok i mät- och kartfrågor Agenda 09:30 10:30 Introduktion och presentationer Inledande presentation
HMK - handbok i mät- och kartfrågor HMK. Anders Grönlund Lantmäteriet. Introduktion HMK
HMK - handbok i mät- och kartfrågor HMK Anders Grönlund Lantmäteriet Introduktion HMK C Bakgrund HMK HMK Handbok till Mätningskungörelsen gavs ut 1993-1995 Teknikbeskrivningar samt stöd för kvalitetskontroll
HMK. Teknisk rapport 2018:1 Mät- och lägesosäkerhet vid geodatainsamling en lathund. Clas-Göran Persson. handbok i mät- och kartfrågor
HMK handbok i mät- och kartfrågor handbok i mät- och kartfrågor Mät- och lägesosäkerhet vid geodatainsamling en lathund Clas-Göran Persson Författarens kontaktuppgifter Clas-Göran Persson Skansstigen 3
Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2017.
FÖRSÄTTSBLAD I nstitutionen för Naturgeografi och Ekosystemvetenskaper I nstitutionen för Teknik och Samhälle Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 10 januari, 2017. Denna tentamen
1 Tekniska förutsättningar; geodetiska referenssystem
BILAGA 1 Bilaga till Rapporten Koordinatbestämda gränser, 2017-03-27, Dnr 508-2017/939 1 Tekniska förutsättningar; geodetiska referenssystem Grunden för den geodetiska infrastrukturen utgörs av referenssystemen,
Morgondagens geodetiska infrastruktur i Sverige
Morgondagens geodetiska infrastruktur i Sverige Lars E. Engberg Lantmäteriet lars.engberg@lm.se Geodesi 2010 Vision är att tillgodose samhällets behov av en enhetlig, hållbar geodetisk infrastruktur samt
Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015.
FÖRSÄTTSBLAD I nstitutionen för Naturgeografi och Ekosystemvetenskaper I nstitutionen för Teknik och Samhälle Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 12 januari, 2015. Denna tentamen
Vad är rätt och vad är fel?
Vad är rätt och vad är fel? Inledning - Mikael Lilje, Lantmäteriet I vår verksamhet ingår troligen att vi utnyttjar inmätt geografisk information. För att kunna hantera informationen på ett så korrekt
Teknisk specifikation SIS/TS 21143:2004. Byggmätning Geodetisk mätning, beräkning och redovisning vid långsträckta objekt
Teknisk specifikation Utgåva 1 November 2004 Byggmätning Geodetisk mätning, beräkning och redovisning vid långsträckta objekt Engineering survey for construction works Surveying and mapping for long range
HMK-nytt Löpande justeringar av senast gällande version av HMK-dokument
HMK-nytt I HMK-nytt dokumenteras fortlöpande justeringar av senast gällande dokument, tills ny årsversion ges ut. Med justeringar avses rättning av skrivfel samt mindre justeringar av informationskaraktär
Geodesienheten informerar
Geodesienheten informerar ERS seminarium Stockholm 2014-01-30 Innehåll Gamla mätningar ger nya höjder för beräkning av höjdskift Hur kan vi hantera ofullständiga gamla nät? Införandestatistik Geodesienhetens
Samhällsmätning i förändring
Samhällsmätning i förändring Förord I kommunerna finns en omfattande mätningsteknisk verksamhet. Denna tillgodoser samhällets behov av detaljerade kartor och annan geografisk information geodata. Informationen
Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2017.
FÖRSÄTTSBLAD I nstitutionen för Naturgeografi och Ekosystemvetenskaper I nstitutionen för Teknik och Samhälle Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 10 januari, 2017. Denna tentamen
Realtidsuppdaterad fristation
Realtidsuppdaterad fristation Testmätningar BanaVäg i Väst April 2011 Milan Horemuz Kungliga Tekniska högskolan, Institution för Samhällsplanering och miljö Avdelningen för Geodesi och geoinformatik Teknikringen
Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:
Mätningsteknik Provmoment:Tentamen Ladokkod:41I15B Tentamen ges för: 7,5 högskolepoäng TentamensKod: Tentamensdatum: Tid: Hjälpmedel: 2018-06-01 14.00 18.00 Formelsamlingar Räknare Totalt antal poäng på
HMK. handbok i mät- och kartfrågor. Referenssystem och geodetisk mätning
HMK handbok i mät- och kartfrågor Referenssystem och geodetisk mätning 2013 Förord 2013 Dokumentet HMK Referenssystem och geodetisk mätning 2013 har jämfört med arbetsdokumentet 2012, framför allt genomgått
Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:
Mätningsteknik Provmoment:Tentamen Ladokkod:41I15B Tentamen ges för: 7,5 högskolepoäng TentamensKod: Tentamensdatum: 2017-06-01 Tid: 14.00 18.00 Hjälpmedel: Formelsamlingar Räknare Totalt antal poäng på
Användarmanual för RUFRIS i GeoPad
Användarmanual RUFRIS Användarmanual för RUFRIS i GeoPad RUFRIS i GeoPad All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including
HMK. HMK-Geodesi Workshop. 17 juni 2013 GRUPPDISKUSSION GRUPP 1. HMK Geodesi, Workshop KTH 2013-06-17. - en handbok i mät- och kartfrågor
HMK - en handbok i mät- och kartfrågor HMK-Geodesi Workshop 17 juni 2013 GRUPPDISKUSSION GRUPP 1 HMK Geodesi, Workshop KTH 2013-06-17 Diskussion 1 - Struktur och kärndokument Struktur: Synpunkter på strukturen
Inmätning för projektering 2016:1. Anvisningar från Stadsbyggnadsförvaltningen
Inmätning för projektering 2016:1 Anvisningar från LULEÅ KOMMUN PM Dnr 1 (3) 2016-09-20 Utgåva 2016:1 Anvisningar för utförande och leverans av inmätning för projektering Allmänt Alla handlingar som tas
Integration av geodetiska observationer i beräkningstjänsten
Uppdragsnr: 10141701 1 (12) PM Integration av geodetiska observationer i beräkningstjänsten Upprättad av: Johan Vium Andersson, WSP Samhällsbyggnad Lars Jämtnäs, Lantmäteriet 2011-11-17 WSP Samhällsbyggnad
HANDBOK. till mätningskungörelsen. Geodesi, Detaljmätning. En handbok utgiven av Lantmäteriverket Gävle 1996 1
HANDBOK till mätningskungörelsen Geodesi, Detaljmätning En handbok utgiven av Lantmäteriverket Gävle 1996 1 Grafisk utformning, Muriel Bjureberg, LMV Bilder Björn Jonsson och Muriel Bjureberg, LMV Layout
Innehåll. Bestämning av ojämnheter VV Publ. nr 2001:29 och tvärfall med rätskiva VVMB 107
Bestämning av ojämnheter VV Publ. nr 2001:29 1 Innehåll 1 Orientering... 3 2 Sammanfattning... 3 3 Utrustning... 3 4 Utförande... 4 4.1 Fördelning av stickprovets kontrollpunkter... 4 4.2 Utsättning av
Krav för geodetisk mätning vid projektering och byggnation, Swedavia
INSTRUKTION 2016-07-06 01.00 D 2016-1(12) Krav för geodetisk mätning vid projektering och byggnation, Swedavia 1 INLEDNING 1.1 Syfte och omfattning Detta dokument sammanställer krav för geodetisk mätning
HANDBOK. till mätningskungörelsen. Geodesi, Detaljmätning. En handbok utgiven av Lantmäteriverket Gävle
HANDBOK till mätningskungörelsen Geodesi, Detaljmätning En handbok utgiven av Lantmäteriverket Gävle 1996 1 Grafisk utformning, Muriel Bjureberg, LMV Bilder Björn Jonsson och Muriel Bjureberg, LMV Layout
HMK. handbok i mät- och kartfrågor. Stommätning
HMK handbok i mät- och kartfrågor Stommätning 2017 Förord 2017 2017 års revision av de HMK-dokument som beskriver geodetisk infrastruktur och geodetisk mätning har utförts av en arbetsgrupp bestående av
Datakvalitet i samhällsbyggandet
KTH ROYAL INSTITUTE OF TECHNOLOGY Datakvalitet i samhällsbyggandet Seminarium om Digitalisering av samhällsbyggandet Lund, 26 april, 2017 Anna Jensen, KTH Innehåll Datakvalitet och digitalisering Geodesi
Byte av höjdsystem i en kommun
L A N T M Ä T E R I E T Lantmäteriet Informationsförsörjning BYTE AV REFERENSSYSTEM 1 (7) Geodesienheten RH 2000 Per-Anders Olsson Linda Alm 2012-04-02 2014-05-14 Byte av höjdsystem i en kommun Inledning
Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2018.
FÖRSÄTTSBLAD I nstitutionen för Naturgeografi och Ekosystemvetenskaper I nstitutionen för Teknik och Samhälle Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 9 januari, 2018. Denna tentamen
Här redovisas samtliga förord för respektive omnämnt dokument inom Aktuella HMK-dokument.
HMK-Förord Här redovisas samtliga förord för respektive omnämnt dokument inom Aktuella HMK-dokument. Innehållsförteckning 1 HMK-Introduktion... 2 1.1 Förord 2013... 2 1.2 Förord 2012... 2 2 HMK-Bilddata...
HMK SyostGIS
HMK 2014 SyostGIS 2014-11-11 C Bakgrund HMK HMK Handbok till Mätningskungörelsen gavs ut 1993-1995 Teknikbeskrivningar samt stöd för kvalitetskontroll och upphandling av mättjänster 9 delar HMK-Geodesi,
Rättningsmall fråga 1-4 för tentamen EXTA50 Samhällsmätning, 9 hp, kl december, 2013.
FÖRSÄTTSBLAD I nstitutionen för Naturgeografi och Ekosystemvetenskaper I nstitutionen för Teknik och Samhälle Rättningsmall fråga 1-4 för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 20 december, 2013.
HANDBOK. till mätningskungörelsen. Geodesi, Stommätning. En handbok utgiven av Lantmäteriverket Gävle 1996 i
HANDBOK till mätningskungörelsen Geodesi, Stommätning En handbok utgiven av Lantmäteriverket Gävle 1996 i Grafisk utformning, Muriel Bjureberg, LMV Layout omslag, Mona Olsson och Muriel Bjureberg, LMV
HMK. HMK-Geodesi Workshop. 17 juni 2013 GRUPPDISKUSSION GRUPP 3. HMK Geodesi, Workshop KTH 2013-06-17. - en handbok i mät- och kartfrågor
HMK - en handbok i mät- och kartfrågor HMK-Geodesi Workshop 17 juni 2013 GRUPPDISKUSSION GRUPP 3 HMK Geodesi, Workshop KTH 2013-06-17 Diskussion 1 - Struktur och kärndokument Struktur: Synpunkter på strukturen
GEODETISK MÄTNINGSTEKNIK INMÄTNING UTSÄTTNING GPS VÄLKOMNA
GEODETISK MÄTNINGSTEKNIK INMÄTNING UTSÄTTNING GPS VÄLKOMNA Mätningskungörelsen 1 Denna kungörelse tillämpas på mätning, kartläggning samt upprättande av beskrivning, förteckning till karta och fastighetsförteckning
Förtätning av nätverks-rtk i nordvästra Skåne
STADSBYGGNADSFÖRVALTNINGEN STADSMILJÖ KART OCH MÄT Förtätning av nätverks-rtk i nordvästra Skåne 2017-11-10 Sida 1 Swepos nätverks-rtk referensstationer Nationellt nät av fasta referensstationer för GNSS
Detaljmätning ska utgå från bruksnät och anslutningsnät som uppfyller krav enligt SIS TS 21143:2009 punkt 6..
BANSTANDARD I GÖTEBORG, KONSTRUKTION Kapitel Utgåva Sida K 1.1 SPÅR, Spårgeometri 1 (5) Avsnitt Datum Senaste ändring K 1.1.18 Inmätning / utsättning 2014-10-15 Upprättad av Fastställd av Håkan Karlén
Teknisk handbok. Relationshandlingar. Allmänna krav på relationshanlingar
Teknisk handbok Relationshandlingar Allmänna krav på relationshanlingar Innehåll 1 Allmänna krav på relationshandlingar 2 1.1 Sammanfattning 2 1.2 Allmänt 2 1.3 Inmätning 2 1.4 Leverans av CAD-filer 2
Nationella höjdsystem historik
L A N T M Ä T E R I E T 1 (5) 2005-12-16 Nationella höjdsystem historik Introduktion De svenska höjdsystemens historia består till stor del av de tre nationella precisionsavvägningarna, genomförda under
UNIKONSOL- patenterad lösning för instrumentetablering.
UNIKONSOL- patenterad lösning för instrumentetablering. En presentation och beskrivning av UNIKONSOL-systemet. Unikonsol-systemet är en markeringstyp speciellt framtagen för att användas där markering
Diskussionsfrågor till grupparbete 2013-12-12
Diskussionsfrågor till grupparbete 2013-12-12 Gruppindelning: Grupp Linda Linda Alm LM, Hans Lovén SKL, Anders Lager Upplands Väsby, Mats Sevefeldt Jönköping, Per-Inge Jansson Helsingborg. Grupp Stefan.
Hur används GNSS-tekniken idag och i framtiden. GIS-Samverkan Dalarna Falun 14 mars 2018 Kent Ohlsson
Hur används GNSS-tekniken idag och i framtiden GIS-Samverkan Dalarna Falun 14 mars 2018 Kent Ohlsson Vad är GNSS? GNSS Global Navigation Satellite Systems Samlingsnamn för satellitsystem för navigering
Samhällsmätning 2020 SLUTSATSER FRÅN NIO REGIONALA KONFERENSER. Post: 118 82 Stockholm Besök: Hornsgatan 20 Telefon: 08-452 70 00 www.skl.
Samhällsmätning 2020 SLUTSATSER FRÅN NIO REGIONALA KONFERENSER SAMHÄLLSMÄTNING Kommunernas försörjning med kartor och geografisk information baseras på en omfattande mätningsteknisk verksamhet. Den utgör
Kvalificeringstävling den 29 september 2009
SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 29 september 2009 Förslag till lösningar Problem Visa att talet 2009 kan skrivas som summan av 7 positiva heltal som endast
Leica FlexField plus & Leica FlexOffice Ett perfekt par
Leica FlexField & Leica FlexOffice Ett perfekt par FlexField mjukvara Generellt Filhantering Dataimport Dataexport Statusikoner Instrumentet Skyddat med PIN Utsättning m. ljud Val i karta Program TPS etablering
Laboration 1 Mekanik baskurs
Laboration 1 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Gravitationen är en självklarhet i vår vardag, de är den som håller oss kvar på jorden. Gravitationen
[GEODETISK MANUAL] Denna manual ska användas för att eftersträva god mätsed och egen kvalitetskontroll
2016 [GEODETISK MANUAL] Denna manual ska användas för att eftersträva god mätsed och egen kvalitetskontroll Innehåll Bakgrund... 3 Utförande utsättning och inmätning... 3 Utsättningskvalitet... 4 Felkällor:...
Värmlands kommuner byter referenssystem till SWEREF 99. Förenklad användning av lägesbunden information
Värmlands kommuner byter referenssystem till SWEREF 99 Förenklad användning av lägesbunden information Ett enhetligt referenssystem förenklar användningen av lägesbunden information. Det säkrar även utbytbarheten
RUFRIS vs Trepunktsmetoden
RUFRIS vs Trepunktsmetoden - en jämförelse vid etablering av nya utgångspunkter Sara Dannberg Maria Norrman Institutionen för ingenjörsvetenskap Lantmäteriingenjörsprogrammet EXC575 2014-06-04 Sammanfattning
GPS del 2. Sadegh Jamali. kredit: Mohammad Bagherbandi, Stig-Göran Mårtensson, och Faramarz Nilfouroushan (HIG); Lars Ollvik och Sven Agardh (LTH)
GPS del 2 Sadegh Jamali kredit: Mohammad Bagherbandi, Stig-Göran Mårtensson, och Faramarz Nilfouroushan (HIG); Lars Ollvik och Sven Agardh (LTH) 1 Satellit positionering typer Absolut positionering (en
Samhällsmätning EXTA50, 9 hp
Samhällsmätning EXTA50, 9 hp Lars Harrie och Perola Olsson Naturgeografi och ekosystemvetenskap Lunds universitet Lars Ollvik och Sven Agardh Teknik och Samhälle, LTH Varför är geografisk information intressant
EXAMENSARBETE. Totalstation jämförd med mmgps. David Olsson. Högskoleexamen Bygg och anläggning
EXAMENSARBETE Totalstation jämförd med mmgps David Olsson Högskoleexamen Bygg och anläggning Luleå tekniska universitet Institutionen för samhällsbyggnad och naturresurser Totalstation jämförd med mmgps
RIX 95-projektet. Projektets bakgrund
1 RIX 95-projektet RIX 95 är ett nationellt projekt som syftar till att skapa goda samband mellan lokala (kommunala) och nationella/globala referenssystem, för att underlätta utbyte av geografisk information
Kundts rör - ljudhastigheten i luft
Kundts rör - ljudhastigheten i luft Laboration 4, FyL VT00 Sten Hellman FyL 3 00-03-1 Laborationen utförd 00-03-0 i par med Sune Svensson Assisten: Jörgen Sjölin 1. Inledning Syftet med försöket är att
GPS del 2. Sadegh Jamali
GPS del 2 Sadegh Jamali Baserat på material från: Mohammad Bagherbandi, Stig-Göran Mårtensson, Faramarz Nilfouroushan (HIG); Lars Ollvik och Sven Agardh (LTH) 1 GPS-mätmetoder Absolut positionering (en
NpMa3c vt Kravgränser
Kravgränser Provet består av ett muntligt delprov (Del A) och tre skriftliga delprov (Del B, Del C och Del D). Tillsammans kan de ge 66 poäng varav 25 E-, 24 C- och 17 A-poäng. Observera att kravgränserna
Svar till beräkningsuppgifter för instuderingsfrågor i övning 2
Svar till beräkningsuppgifter för instuderingsfrågor i övning 2 F1: Introduktion till samhällsmätning a) Ge ett par exempel på geografisk information. b) Vad behandlas inom vetenskaperna geodesi respektive
Förenklad användning av lägesbunden information
Oskarshamn och Sveriige byter referenssystem Förenklad användning av lägesbunden information Ett enhetligt referenssystem förenklar användningen av lägesbunden information. Det säkrar även utbytbarheten
Den nya Nordiska landhöjningsmodellen
Den nya Nordiska landhöjningsmodellen NKG2016LU Jonas Ågren Geodesienheten Lantmäteriet Jonas Ågren, MätKart17, Örebro, februari 2017 Introduktion I allt arbete med geodetiska referenssystem i Sverige
HMK. Upphandlingsstöd i HMK Handbok för mät- och kartfrågor. Thomas Lithén Lantmäteriet. ULI upphandlingsteknik, , Stockholm
HMK - en handbok i mät- och kartfrågor Upphandlingsstöd i HMK Handbok för mät- och kartfrågor Thomas Lithén Lantmäteriet Lotta Hammarlund, 120920 ULI upphandlingsteknik, 2013-09-11--12, Stockholm Bakgrund
Nysatsningen på KTH och aktuell forskning i Tillämpad geodesi
Nysatsningen på KTH och aktuell forskning i Tillämpad geodesi Patric Jansson Avdelningschef och forskare Avdelningen för geodesi och geoinformatik KTH Geoinfo Uppsala, 3 oktober 2012 1 Två initiativ till
Leica ScanStation 2 En ny nivå för laserscanners ökad scanhastighet och mångsidighet
Leica ScanStation 2 En ny nivå för laserscanners ökad scanhastighet och mångsidighet Med en förbättrad scanhastighet på upp till 10 gånger snabbare och friheten som totalstationsegenskaperna ger, lyfter
HMK. Beräkning och analys av stomnät. Teknisk rapport 2018:3. - med tonvikt på plana, terrestra nät. Clas-Göran Persson. handbok i mät- och kartfrågor
HMK handbok i mät- och kartfrågor handbok i mät- och kartfrågor Teknisk rapport 2018:3 Beräkning och analys av stomnät - med tonvikt på plana, terrestra nät Clas-Göran Persson Förord Denna tekniska rapport
Teknisk specifikation SIS-TS 21143:2013
Teknisk specifikation SIS-TS 21143:2013 Publicerad/Published: 2013-10-15 Utgåva/Edition: 4 Språk/Language: svenska/swedish ICS: 91.200 Byggmätning Geodetisk mätning, beräkning och redovisning av byggnadsverk
Sverige byter referenssystem
Kommunerna har en nyckelroll Sverige byter referenssystem Förenklad användning av lägesbunden information FOTO: Björn Hårdstedt Ett enhetligt referenssystem förenklar användningen av lägesbunden information.
Kortslutningsströmmar i lågspänningsnät Detta är ett nedkortat utdrag ur kursdokumentation.
1(7) Kortslutningsströmmar i lågspänningsnät Detta är ett nedkortat utdrag ur kursdokumentation. Enligt punkt 434.1 i SS 4364000 ska kortslutningsströmmen bestämmas i varje punkt så erfordras. Bestämningen
Experimentella metoder, FK3001. Datorövning: Finn ett samband
Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska
Krav avseende beräkning och redovisning i beräkningstjänsten utifrån SIS-TS och BVS. 1 Sammanfattning
Uppdragsnr: 10141701 1 (10) PM Krav avseende beräkning och redovisning i beräkningstjänsten utifrån SIS-TS och BVS 1 Sammanfattning Detta PM är en del i Trafikverkets forsknings- och innovationsprojekt
Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2019.
FÖRSÄTTSBLAD I nstitutionen för Naturgeografi och Ekosystemvetenskaper I nstitutionen för Teknik och Samhälle Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 15 januari, 2019. Denna tentamen
Redogörelse för stomnätsanalys och framtagande av restfelsmodell Luleå kommun
L A N T M Ä T E R I E T Lantmäteriverket Informationsförsörjning BYTE AV REFERENSSYSTEM 1 (2) Geodetiska utvecklingsenheten SWEREF 99 Tina Kempe 2008-11-12 Redogörelse för stomnätsanalys och framtagande
Norsecraft Geo Position AB Specialister på precision, vi leverera rätt system till rätt pris.
Norsecraft Geo Position AB Specialister på precision, vi leverera rätt system till rätt pris. Massdata capture Geoslam Simultaneous Localization and Mapping. SLAM Starta mätning med Zeb Horizon Inmätning
Metoder för att etablera fri station
Metoder för att etablera fri station En jämförelsestudie av GNSS-etableringar och traditionell etablering Methods to establish free station A comparison study of GNSS-establishment and traditional establishment
HMK. handbok i mät- och kartfrågor. Kravställning vid geodetisk mätning
HMK handbok i mät- och kartfrågor Kravställning vid geodetisk mätning 2017 Förord 2017 2017 års revision av de HMK-dokument som beskriver geodetisk infrastruktur och geodetisk mätning har utförts av en
HMK. HMK-Geodesi Workshop. 17 juni 2013 GRUPPDISKUSSION GRUPP 2. HMK Geodesi, Workshop KTH 2013-06-17. - en handbok i mät- och kartfrågor
HMK - en handbok i mät- och kartfrågor HMK-Geodesi Workshop 17 juni 2013 GRUPPDISKUSSION GRUPP 2 HMK Geodesi, Workshop KTH 2013-06-17 Diskussion 1 - Struktur och kärndokument Struktur: Synpunkter på strukturen
Leica SmartStation Total station med integrerad GPS
Leica SmartStation Total station med integrerad GPS Leica SmartStation Totalstation med integrerad GPS Nytt revolutionerande mätsystem. Världens första perfekt kombinerade TPS och GPS. Totalstation med
SweRef99-SS - samordningsbehov
SweRef99-SS - samordningsbehov 1. En projektplan som överordnat beskriver aktiviteter och då framförallt tidplaner i jan-feb 2009, då det kritiska skedet är. 2. Vi önskar att SLK stöttar med kompetens
Lägesosäkerhet vid mätning av dold punkt med totalstation och GNSS
AKADEMIN FÖR TEKNIK OCH MILJÖ Avdelningen för industriell utveckling, IT och samhällsbyggnad Lägesosäkerhet vid mätning av dold punkt med totalstation och GNSS Patrik Persson och Dennis Sjölén 2018 Examensarbete,
UNIKONSOL- patenterad lösning för instrumentetablering.
UNIKONSOL- patenterad lösning för instrumentetablering. En presentation och beskrivning av UNIKONSOL-systemet. Unikonsol-systemet är en markeringstyp speciellt framtagen för att användas där markering
Bestämning av luminanskoefficient i diffus belysning
Publikation 1994:45 Bestämning av luminanskoefficient i diffus belysning Metodbeskrivning 504:1996 1 Orientering... 3 2 Sammanfattning... 3 3 Säkerhet... 3 4 Benämningar... 3 4.1 Objekt... 3 4.2 Mätplats...
TANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall
Styrande dokument för rutiner som ska säkerställa mätnoggrannhet
Styrande dokument för rutiner som ska säkerställa mätnoggrannhet Fallstudie Väg 55 Linnea Hellsing 2013 Examensarbete, Grundnivå (högskoleexamen), 7,5 hp Geomatik Geomatikprogrammet Handledare: Kenneth
Redogörelse för stomnätsanalys och framtagande av restfelsmodell Södertälje och Nykvarns kommuner
L A N T M Ä T E R I E T Lantmäteriet Division Informationsförsörjning BYTE AV REFERENSSYSTEM 1 (7) Geodetiska utvecklingsenheten SWEREF 99 Tina Kempe 2009-09-04 Redogörelse för stomnätsanalys och framtagande
Högskoleprovet Kvantitativ del
Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. Ägna inte för lång