Översikt. TSFS06 Diagnos och övervakning Föreläsning 8 - Change detection. Change detection. Change detection
|
|
- Lars-Olof Jan Viklund
- för 6 år sedan
- Visningar:
Transkript
1 Översikt TSFS6 Diagnos och övervakning Föreläsning 8 - Change detection Erik Frisk Institutionen för systemteknik Linköpings universitet frisk@isy.liu.se 6-5- Change detection Likelihood-funktionen Likelihood-kvot och hypotestester Algoritmer för change detection θ känd - CUSUM θ okänd - GLR CUSUM och residualer Sammanfattning Change detection Denna föreläsning baseras på ett inledande kapitel i boken: Detection of Abrupt Changes: Theory and Application av M. Basseville, I.V. Nikiforov I kursen ingår ej hela kapitlet. Avsnitt som kan ses som överkurs är:..,..,..6,.3,..,..3.,.5,.6 (men läs dem gärna ändå). För den som är intresserad av sådan här teori finns hela boken elektroniskt tillgänglig via länk från kurshemsidan. Avsnitt.7 i textkompendiet Change detection Tidigare i kursen såg hypotestesterna ut liknande H : θ Θ H : θ Θ C = Θ dvs, antingen θ Θ eller θ Θ hela tiden. I detta avsnitt antas att hopp-tillfället beaktas, dvs. att hypoteserna ser ut liknande: H : θ Θ, t { H Θ, t < : θ Θ C = Θ, t Egentligen ingen skillnad mot tidigare, endast att parametrarna som testas inkluderar hopptiden 3
2 y y Hur passar detta in i det stora hela? Change detection -problemet σ= σ= Teststorhetskapitlet där man beaktar hopptiden Klassiskt statistiskproblem, väl utvecklad teori Allmänbildning Här det enklaste fallet (oberoende data) Förändringar i olinjära dynamiska modeller följer samma princip men kräver lite mer invecklade algoritmer 3 µ= =5 µ= t 3 5 = t Ta hänsyn till hopp-tiden då en parameter hoppar från ett värde till ett annat dvs θ. ( ) ( ) µ σ θ =, θ = 5 6 Var byter mätsignalen nivå? Var byter mätsignalen varians?
3 Likelihood-funktionen Definition (Likelihood-funktion) Låt f (z θ) vara täthetsfunktionen för Z = [Z, Z,... Z n ]. Då är likelihood-funktionen, givet att z = Z observeras, funktionen som definieras av Likelihood-funktionen Modell: Z N(θ, ) Två oberoende observationer: z = 3, z = θ=.6.5 x =3,x =5 L(θ z) = f (z θ).3.5. En teststorhet kan formas som: f(x θ)..5 L(θ).3. T (z) = max θ Θ L(θ z)..5. Not: likelihood-funktionen är en funktion av θ medans täthetsfunktionen är en funktion av z. Tolkning: Hur sannolikt är det att observera det utfall vi observerat x Täthetsfunktion f (z i θ) = (z πσ e i θ) σ 6 8 θ Likelihood-funktionen L(θ) = f (3 θ)f (5 θ) 9 Likelihood-kvot Likelihood-kvot Antag man har hypoteserna.3.5 H : θ = θ H : θ = θ p. och man känner fördelningsfunktionen för data givet θ, f (z θ) = L(θ). Eftersom Likelihood-funktionen säger något om hur sannolikt ett visst värde på θ är så är det rimligt att förkasta nollhypotesen om.5..5 p L(θ ) > L(θ ) dvs. att kvoten är större än en given tröskel. L(θ ) L(θ ) = f (z θ ) f (z θ ) Rimligt att välja H om p > p Starka kopplingar till normalisering av teststorheter baserat på likelihood-funktionen.
4 Likelihood-kvot/ratio Betrakta ett hypotestest med enkla hypoteser: H : θ = θ H : θ = θ Log-likelihood kvoten blir då (byter notation för att passa utdelad text): s(y) = log L(θ y) L(θ y) = log P θ (y) P θ (y) Huvudegenskapen som gör den användbar E θ (s) >, E θ (s) < dvs, en förändring i parametern θ visar sig som en förändring av tecken hos s. Neyman-Pearson lemma Antag hypoteserna H : θ = θ H : θ = θ där pdf för observationerna är den kända fördelningsfunktionen f (z θ i ) i de två fallen. En lite slarvig formulering av Neyman-Pearson lemma är då: Den bästa tänkbara teststorheten (tänk styrkefunktion) för dessa hypoteser är T (z) = f (z θ ) f (z θ ) Finns generaliserade resultat för nollhypoteser som inte är singeltons. Slutsats: LR är bra att sikta på om man har en god statistisk modell över sina observationer. 3 Översikt Algoritmer för Change Detection Delar in algoritmerna i två kategorier: Change detection Likelihood-funktionen Likelihood-kvot och hypotestester H : θ = θ H : θ = θ Algoritmer för change detection θ känd - CUSUM θ okänd - GLR CUSUM och residualer Sammanfattning θ känd Shewhart control chart Geometrical Moving Average Finite Moving Average Filtered Derivative Algorithm CUSUM (CUmulative SUM).... θ ej känd GLR (Generalized Likelihood Ratio)... Alla dessa detektionsalgoritmer har gemensamt att likelihood-kvoten är en grundsten. 5 6
5 Shewhart control chart Samla in batchar med N data och beräkna teststorheten enligt: T = N s i, s i = log P θ (y i ) P θ (y i ) Varför summera på det där viset? Ett grundantagande som ofta görs är att y i :na är oberoende, då gäller att log L(θ y,..., y N ) L(θ y,..., y N ) = log P θ (y,..., y N ) P θ (y,..., y N ) = = log N P θ (y i ) N P θ (y i ) = log P θ (y i ) N P θ (y i ) = s i = T Vilket också förklarar varför log-likelihood ratio ofta används istället för likelihood-ratio. Ex.: Hopp hos medelvärde för normalfördelad variabel Mätsignal y(t) som är en oberoende sekvens av variabler med fördelning N(µ, σ), σ känd. s i = log P θ (y i ) P θ (y i ) = log H : µ = µ H : µ = µ πσ e (y i µ ) σ = = µ µ πσ e (y i µ ) σ σ ( y i µ ) + µ Teststorheten blir då ett ganska naturligt och intuitivt mått (tolka): T = N s i = N µ µ σ ( ȳ µ ) + µ 7 8 Ex.: Hopp hos varians för normalfördelad variabel Mätsignal y(t) som är en oberoende sekvens av variabler med fördelning N(µ, σ). s i = log P θ (y i ) P θ (y i ) = log H : σ = σ H : σ = σ πσ e (y i µ) σ πσ e (y i µ) σ = = = log σ (y i µ) ( σ σ ) σ Teststorheten blir då ett kopplad till en variansskattning av y T = N s i = N log σ σ N ( σ σ )ˆσ i. 9 Exempel forts. Tanken bakom teststorheten är inte helt enkel att tolka. Vi kan verifiera att den uppfyller de grundläggande villkoren på teststorheten. Väntevärdet av teststorheten under nollhypotesen är E Θ {T } = N log σ σ N ( σ σ )σ = N ( σ σ ) log σ σ < Sista olikheten eftersom x log x och likhet endast då x =, dvs då σ = σ. Under mothypotesen blir motsvarande räkningar enligt samma olikhet E Θ {T } = N log σ σ N ( σ σ )σ = N ( ) σ σ log σ σ >
6 CUSUM - intuitiv härledning Hittills har ej hopp-tiden beaktats, det är detta som görs i CUSUM algoritmen. Hur uppför sig den kumulativa summan s i typiskt runt tiden för förändringen? Intuitivt borde man därför bilda teststorheten enligt: t t a h där T k = S k m k S k = k s i m k = min j<k S j CUSUM - härledning Likelihood ratio och oberoende ger: L k ( ) = P H (y) P H (y) = Log-likelihood ratio: H : θ = θ, t { H θ t < : θ = θ t tch P θ (y i ) k i= P θ (y i ) k P = θ (y i ) k log L k ( ) = log P (y θ i) P θ (y i ) = i= k i= s i = S k k P (y θ i) P θ (y i ) i= Problem: Hopp-tiden är okänd. Standardlösning inom statistikfältet: gör en ML-skattning av och sätt in i formeln. CUSUM, forts. ML-skattningen av blir då: ˆ = arg max log k Lk ( ) = arg och uttrycket för teststorheten max k S k T k = S kˆ = max S t k k ch = max S k S = S k min vilket är samma uttryck som resonerades fram tidigare: T k = S k m k S CUSUM, forts. Teststorheten beräknas som där S k = T k = S k m k k s i, m k = min j<k S j Ett lite enklare, och vanligare, sätt är istället beräkna T i = max(, T i + s i ), T = där S k = k s i, m k = min j<k S j Att besluten från de två olika algoritmerna är samma ges av Proposition T (t) = max(, T (t)) 3
7 GLR (Generalized Likelihood Ratio) CUSUM krävde kunskap om det nya värdet på variabeln θ. Vad gör vi i det (normala) fallet då θ är okänt? Svar: Hanterar det på exakt samma sätt som den okända hopptiden hanterades i CUSUM, dvs. gör en ML-skattning av θ. T k = max θ, log P H (y) P H (y) Log-likelihood ratio blir alltså en funktion av både och θ : k k St k ch (θ ) = s i = log P (y θ i) P θ (y i ) i= i= Implementation och ytterligare detaljer Principen enligt förra bilden men den dubbla maximeringen kan vara svår att göra effektiv. Mer information om GLR (bland annat implementationsdetaljer) och liknande algoritmer hittas i Adaptive Filtering and Change Detection, Fredrik Gustafsson, Wiley,. Detection of Abrupt Changes - Theory and Application, Michèle Basseville and Igor V. Nikiforov, previously published by Prentice-Hall, 993. (Nu tillgänglig på nätet, se kurshemsidan) Kay, Steven M. Fundamentals of statistical signal processing, volume II: detection theory. (998). ML-skatta genom att maximera över båda variablerna T k = max max St k k θ ch (θ ) 5 6 Översikt Change detection Likelihood-funktionen Likelihood-kvot och hypotestester Algoritmer för change detection θ känd - CUSUM θ okänd - GLR CUSUM och residualer Sammanfattning CUSUM och residualer Grunden för CUSUM var att man hade en s.k. score-function s(t) med egenskapen E H {s(t)} <, E H {s(t)} > då CUSUM-algoritmen blev T i = max(, T i + s i ), T = Tidigare har s(t) varit log-likelihood kvoten. Antag vi inte har den statistiska kunskapen utan har genererat residualer. Kan CUSUM ändå vara intressant? Residualer har ju typiskt egenskapen { brusig runt under H r(t) = signifikant skild från under H 7 8
8 CUSUM och residualer, forts. Dieselmotor i SCANIA-lastbil med EGR/VGT Det är enkelt åtgärdat, definiera till exempel s(t) = r(t) ν där ν är, i runda slängar, i storleksordning lika som r(t):s största värde under H. ν kallas en driftsfaktor ν är ett mått på modellosäkerheten adaptivitet kan med fördel infogas i ν, stort ν då systemet opererar i arbetsområden med stor modellosäkerhet etc. olinjärt filter som visar sig vara ett användbart alternativ till linjära lågpassfilter för efterbehandling av residualer. 9 Alla modellvariabler är kopplade via turbo och EGR Ett fel påverkar därför typiskt alla mätta variabler Viktigt att systematiskt kunna utnyttja ovanstående Svårmodellerat system 3 Dieselmotor i SCANIA-lastbil med EGR/VGT W egr p im XO im EGR cooler u δ W ei Intake manifold Cylinders Intercooler u egr EGR valve W eo p em XO em Exhaust manifold W c u vgt Compressor Turbine ω t W t 3 Dynamisk modell av motorn Motorn har tydligt dynamiskt beteende och kan beskrivas av ett system av ordinära differentialekvationer d x = g(x, u) dt y = h(x) där tillstånden, mätsignalerna, och styrsignalerna är x = (p im, p em, ω t ), y = (p im, p em, ω t, W af ), u = (δ, EGR, VGT ) En modell som bygger på grundläggande fysikaliska principer, innehåller mappar som kalibrerats via experiment i testcell. Tydligt olinjär Används för reglerdesign Hyfsat korrekt över motorns hela arbetsområde Tydliga bias och osäkerheter på sina ställen 3
9 European Transient Cycle - experimentdata Residualgenerator via estimering 3 pim pem u Process y [kpa] [kpa] 3 Observer - ŷ + r [krpm] ω t [kg/s] WAF t Kandidatmetod att användas i en toolbox är stokastiska filter som till exempel: Extended Kalman Filter (EKF)/Unscented Kalman Filter (UKF)/Particle Filter (PF) plug and play Inga garantier. 3 t [min] 3 t [min] 3 33 Residualgenerator via estimering Residualer - % fel i trycksensor på lastbilsmotor u Process y Observer - ŷ + r ˆx = EKF(observations) r = p im ˆp im (Intake manifold pressure) r = p em ˆp em (Exhaust manifold pressure) r 3 = ω t ˆω t (Turbine speed) r = W af Ŵ af (Air mass flow past air-filter) 33 3
10 CUSUM och residualer Change Detection - Sammanfattning tiden för förändring tas med i beaktande här enkla fall och grundalgoritmer teorin bygger på likelihood kvoter - optimal CUSUM - om θ är känd GLR - om θ ej är känd alternativ till efterbehandling av residualer, oavsett hur de är genererade. Enkelt att införa och tolka adaptiv tröskel. Applicera CUSUM på två av residualerna från förra bilden Enkelt att göra ett pålitligt beslut TSFS6 Diagnos och övervakning Föreläsning 8 - Change detection Erik Frisk Institutionen för systemteknik Linköpings universitet frisk@isy.liu.se
Teststorheten är ett modellvalideringsmått Betrakta. Översikt. Modellvalideringsmått, forts. Titta lite noggrannare på testet.
Ämnen för dagen TSFS6 Diagnos och övervakning Föreläsning 5 - Konstruktion av teststorheter Erik Frisk Institutionen för systemteknik Linköpings universitet frisk@isy.liu.se 27-4-5 En teststorhet är ett
Ämnen för dagen. TSFS06 Diagnos och övervakning Föreläsning 5 - Konstruktion av teststorheter. Beteendemoder och felmodeller.
Ämnen för dagen TSFS6 Diagnos och övervakning Föreläsning 5 - Konstruktion av teststorheter Erik Frisk Institutionen för systemteknik Linköpings universitet erik.frisk@liu.se 29-4-8 En teststorhet är ett
Tentamen. TSFS06 Diagnos och övervakning 4 juni, 2007, kl
Tentamen TSFS06 Diagnos och övervakning 4 juni, 2007, kl. 08.00-12.00 Tillåtna hjälpmedel: TeFyMa, Beta, Physics Handbook, Reglerteknik (Glad och Ljung), Formelsamling i statistik och signalteori och miniräknare.
SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt
Tentamen med lösningsdiskussion. TSFS06 Diagnos och övervakning 1 juni, 2013, kl
Tentamen med lösningsdiskussion TSFS6 Diagnos och övervakning juni, 23, kl. 4.-8. Tillåtna hjälpmedel: TeFyMa, Beta, Physics Handbook, Reglerteknik (Glad och Ljung), Formelsamling i statistik och signalteori
Härledning av Black-Littermans formel mha allmänna linjära modellen
Härledning av Black-Littermans formel mha allmänna linjära modellen Ett sätt att få fram Black-Littermans formel är att formulera problemet att hitta lämpliga justerade avkastningar som ett skattningsproblem
Föreläsning 8: Konfidensintervall
Föreläsning 8: Konfidensintervall Matematisk statistik Chalmers University of Technology Maj 4, 2015 Projektuppgift Projektet går ut på att studera frisättningen av dopamin hos nervceller och de två huvudsakliga
Dagens föreläsning. TSFS06 Diagnos och övervakning Föreläsning 6 - Tröskling och analys av teststorheter. Tröskelsättning och beslut i osäker miljö
Dagens föreläsning TSFS6 Diagnos och övervakning Föreläsning 6 - Tröskling och analys av teststorheter Erik Frisk Institutionen för systemteknik Linköpings universitet frisk@isy.liu.se 22-3-28 Tröskelsättning
MVE051/MSG Föreläsning 7
MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel
Matematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar
Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik
Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =
Matematisk statistik KTH. Formelsamling i matematisk statistik
Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska
Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 10 27 november 2017 1 / 28 Idag Mer om punktskattningar Minsta-kvadrat-metoden (Kap. 11.6) Intervallskattning (Kap. 12.2) Tillämpning på
Föreläsning 11: Mer om jämförelser och inferens
Föreläsning 11: Mer om jämförelser och inferens Matematisk statistik David Bolin Chalmers University of Technology Maj 12, 2014 Oberoende stickprov Vi antar att vi har två oberoende stickprov n 1 observationer
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2010-01-15 Sal KÅRA Tid 14-18 Kurskod TSFS06 Provkod TEN1 Kursnamn Diagnos och övervakning Institution ISY Antal uppgifter
Tentamen. TSFS06 Diagnos och övervakning 12 januari, 2012, kl
Tentamen TSFS06 Diagnos och övervakning 12 januari, 2012, kl. 14.00-18.00 Tillåtna hjälpmedel: TeFyMa, Beta, Physics Handbook, Reglerteknik (Glad och Ljung), Formelsamling i statistik och signalteori samt
Dagens föreläsning. TSFS06 Diagnos och övervakning Föreläsning 6 - Tröskling och analys av teststorheter. Tröskelsättning och beslut i osäker miljö
Dagens föreläsning SFS6 Diagnos och övervakning Föreläsning 6 - röskling och analys av teststorheter Erik Frisk Institutionen för systemteknik Linköpings universitet frisk@isy.liu.se 25-4-2 röskelsättning
Föreläsning 7. Statistikens grunder.
Föreläsning 7. Statistikens grunder. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Föreläsningens innehåll Översikt, dagens föreläsning: Inledande
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska
Föreläsning 12, FMSF45 Hypotesprövning
Föreläsning 12, FMSF45 Hypotesprövning Stas Volkov 2017-11-14 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F12: Hypotestest 1/1 Konfidensintervall Ett konfidensintervall för en parameter θ täcker rätt
TMS136. Föreläsning 10
TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis
Föreläsning 5: Hypotesprövningar
Föreläsning 5: Hypotesprövningar Johan Thim (johan.thim@liu.se) 24 november 2018 Vi har nu studerat metoder för hur man hittar lämpliga skattningar av okända parametrar och även stängt in dessa skattningar
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2010-06-01 Sal(3) U6, U7, U10 Tid 14-18 Kurskod TSFS06 Provkod TEN1 Kursnamn Diagnos och övervakning Institution ISY Antal
Del I. Uppgift 1 Låt A och B vara två oberoende händelser. Det gäller att P (A) = 0.4 och att P (B) = 0.3. Bestäm P (B A ). Svar:...
Avd. Matematisk statistik EXEMPELTENTAMEN I SANNOLIKHETSTEORI OCH STATISTIK, Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk statistik (utdelas vid tentamen). Tentamen består av två delar,
1. En kortlek består av 52 kort, med fyra färger och 13 valörer i varje färg.
Tentamenskrivning för TMS63, Matematisk Statistik. Onsdag fm den 1 juni, 16, Eklandagatan 86. Examinator: Marina Axelson-Fisk. Tel: 7-88113. Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte
FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD 208-08-26 Sannolikhetsteori Följande gäller för sannolikheter: 0 P(A P(Ω = P(A
Lufttorkat trä Ugnstorkat trä
Avd. Matematisk statistik TENTAMEN I SF1901 och SF1905 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 18:E OKTOBER 2012 KL 14.00 19.00. Examinator: Tatjana Pavlenko, tel 790 8466. Tillåtna hjälpmedel:
TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder
TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 Punktskattningar Egenskaper Väntevärdesriktig Effektiv Konsistent
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology September 21, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.
MVE051/MSG Föreläsning 14
MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik
3 Maximum Likelihoodestimering
Lund Universitet med Lund Tekniska Högskola Finansiell Statistik Matematikcentrum, Matematisk Statistik VT 2006 Parameterestimation och linjär tidsserieanalys Denna laborationen ger en introduktion till
Föreläsning 11, FMSF45 Konfidensintervall
Repetition Konfidensintervall I Fördelningar Konfidensintervall II Föreläsning 11, FMSF45 Konfidensintervall Stas Volkov 2017-11-7 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F11: Konfidensintervall
Lösningsförslag till Tentamen. TSFS06 Diagnos och övervakning 14 augusti, 2007, kl
Lösningsförslag till Tentamen TSFS06 Diagnos och övervakning 14 augusti, 007, kl. 14.00-18.00 Tillåtna hjälpmedel: TeFyMa, Beta, Physics Handbook, Reglerteknik (Glad och Ljung), Formelsamling i statistik
Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper
Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att
Kapitel 9 Egenskaper hos punktskattare
Sannolikhetslära och inferens II Kapitel 9 Egenskaper hos punktskattare 1 Egenskaper hos punktskattare En skattare är en funktion av stickprovet och således en slumpvariabel. En bedömning av kvaliteten
Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar
Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Anna Lindgren (Stanislav Volkov) 31 oktober + 1 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F10: Punktskattning 1/18 Matematisk
PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd
Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING I Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/4 Statistik
Matematisk statistik TMS063 Tentamen
Matematisk statistik TMS63 Tentamen 8-8- Tid: 4:-8: Tentamensplats: SB Hjälpmedel: Bifogad formelsamling och tabell samt Chalmersgodkänd räknare. Kursansvarig: Olof Elias Telefonvakt/jour: Olof Elias,
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 6 Johan Lindström 13 september 2017 Johan Lindström - johanl@maths.lth.se FMSF70/MASB02 F6 1/22 : Rattonykterhet Johan Lindström - johanl@maths.lth.se
Matematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 11 Johan Lindström 13 november 2018 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03 F11 1/25 Repetition Stickprov & Skattning Maximum likelihood
Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall
Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F9: Konfidensintervall 1/19 Stickprov & Skattning Ett stickprov, x 1, x 2,...,
Del I. Uppgift 1 Låt X och Y vara stokastiska variabler med följande simultana sannolikhetsfunktion: p X,Y ( 2, 1) = 1
Avd. Matematisk statistik TENTAMEN I SF1920/SF1921 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAG 11 MARS 2019 KL 8.00 13.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling
TMS136. Föreläsning 13
TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra
Tentamen för kursen. Linjära statistiska modeller. 22 augusti
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 22 augusti 2008 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus
SF1922/SF1923: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 14 maj 2018
SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 14-15 PASSNING AV FÖRDELNING: χ 2 -METODER. Tatjana Pavlenko 14 maj 2018 PLAN FÖR DAGENS FÖRELÄSNING Icke-parametriska metoder. (Kap. 13.10) Det
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E JANUARI 2018 KL 14.00 19.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling
Kapitel 10 Hypotesprövning
Sannolikhetslära och inferens II Kapitel 10 Hypotesprövning 1 Vad innebär hypotesprövning? Statistisk inferens kan utföras genom att ställa upp hypoteser angående en eller flera av populationens parametrar.
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
Statistiska metoder för säkerhetsanalys
F10: Intensiteter och Poissonmodeller Frågeställningar Konstant V.v.=Var Cyklister Poissonmodeller för frekvensdata Vi gör oberoende observationer av de (absoluta) frekvenserna n 1, n 2,..., n k från den
FÖRELÄSNING 8:
FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:
SF1922/SF1923: SANNOLIKHETSTEORI OCH INTERVALLSKATTNING. STATISTIK. Tatjana Pavlenko. 24 april 2018
SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 11 INTERVALLSKATTNING. Tatjana Pavlenko 24 april 2018 PLAN FÖR DAGENS FÖRELÄSNING Vad är en intervallskattning? (rep.) Den allmänna metoden för
Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012
Föreläsning 7 Stokastiska Processer och ARIMA Patrik Zetterberg 19 december 2012 1 / 22 Stokastiska processer Stokastiska processer är ett samlingsnamn för Sannolikhetsmodeller för olika tidsförlopp. Stokastisk=slumpmässig
SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 4 oktober 2016
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 12 HYPOTESPRÖVNING. Tatjana Pavlenko 4 oktober 2016 PLAN FÖR DAGENS FÖRELÄSNING Intervallskattning med normalfördelade data: två stickprov (rep.) Intervallskattning
(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka.
Avd. Matematisk statistik TENTAMEN I SF1901, SF1905 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 11 JANUARI 2016 KL 14.00 19.00. Kursledare för CINEK2: Thomas Önskog, tel: 08 790 84 55 Kursledare för
Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:...
Avd. Matematisk statistik TENTAMEN I SF9/SF94/SF95/SF96 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 4:E OKTOBER 08 KL 8.00 3.00. Examinator för SF94/SF96: Tatjana Pavlenko, 08-790 84 66 Examinator för
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer
Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.
Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för
Föreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
Monte Carlo-metoder. Bild från Monte Carlo
Monte Carlo-metoder 0 Målen för föreläsningen På datorn Bild från Monte Carlo http://en.wikipedia.org/wiki/file:real_monte_carlo_casino.jpg 1 Begrepp En stokastisk metod ger olika resultat vid upprepning
Introduktion till statistik för statsvetare
"Det finns inget så praktiskt som en bra teori" November 2011 Repetition Vad vi gjort hitills Vi har börjat med att studera olika typer av mätningar och sedan successivt tagit fram olika beskrivande mått
Övning 1 Sannolikhetsteorins grunder
Övning 1 Sannolikhetsteorins grunder Två händelser A och B är disjunkta om {A B} =, det vill säga att snittet inte innehåller några element. Om vi har en mängd händelser A 1, A 2, A 3,..., A n, vilka är
TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng
Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-08-31 Tid:
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret
TAMS65 - Föreläsning 6 Hypotesprövning
TAMS65 - Föreläsning 6 Hypotesprövning Martin Singull Matematisk statistik Matematiska institutionen Innehåll Exempel Allmän beskrivning P-värde Binomialfördelning Normalapproximation TAMS65 - Fö6 1/33
Autokorrelation och Durbin-Watson testet. Patrik Zetterberg. 17 december 2012
Föreläsning 6 Autokorrelation och Durbin-Watson testet Patrik Zetterberg 17 december 2012 1 / 14 Korrelation och autokorrelation På tidigare föreläsningar har vi analyserat korrelationer för stickprov
Exempel på tentamensuppgifter
STOCKHOLMS UNIVERSITET 4 mars 2010 Matematiska institutionen Avd. för matematisk statistik Mikael Andersson Exempel på tentamensuppgifter Uppgift 1 Betrakta en allmän I J-tabell enligt 1 2 3 J Σ 1 n 11
b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)
Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF194 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAG 1 AUGUSTI 019 KL 8.00 13.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling
TMS136. Föreläsning 11
TMS136 Föreläsning 11 Andra intervallskattningar Vi har sett att vi givet ett stickprov och under vissa antaganden kan göra intervallskattningar för väntevärden Man kan även gör intervallskattningar för
F13 Regression och problemlösning
1/18 F13 Regression och problemlösning Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/3 2013 2/18 Regression Vi studerar hur en variabel y beror på en variabel x. Vår modell
Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall
Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall Anna Lindgren 7+8 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F11: Konfidensintervall 1/19 Stickprov & Skattning Ett
(a) Avgör om A och B är beroende händelser. (5 p) (b) Bestäm sannolikheten att A inträffat givet att någon av händelserna A och B inträffat.
Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSLÄRA OCH STATISTIK I, MÅNDAGEN DEN 15 AUGUSTI 2016 KL 08.00 13.00. Examinator: Tatjana Pavlenko, 08 790 84 66. Kursledare: Thomas Önskog, 08 790
Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p)
Avd. Matematisk statistik TENTAMEN I SF1901, SF1905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel-
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad
Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar
Föreläsning 6 (kap 6.1, 6.3, 7.1-7.3): Punktskattningar Marina Axelson-Fisk 4 maj, 2016 Stickprov (sample) Idag: Stickprovsmedelvärde och varians Statistika (statistic) Punktskattning (point estimation)
Föreläsning 7. Reglerteknik AK. c Bo Wahlberg. 26 september Avdelningen för Reglerteknik Skolan för elektro- och systemteknik
Föreläsning 7 Reglerteknik AK c Bo Wahlberg Avdelningen för Reglerteknik Skolan för elektro- och systemteknik 26 september 2013 Introduktion Förra gången: Känslighet och robusthet Dagens program: Repetion
FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02 Sannolikhetsteori Följande gäller för sannolikheter:
Matematisk statistik, Föreläsning 5
Matematisk statistik, Föreläsning 5 Ove Edlund LTU 2011-12-09 Ove Edlund (LTU) Matematisk statistik, Föreläsning 5 2011-12-09 1 / 25 Laboration 4 Jobba i grupper med storlek 2 Ove Edlund (LTU) Matematisk
Formler och tabeller till kursen MSG830
Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)
1. För tiden mellan två besök gäller. V(X i ) = 1 λ 2 = 25. X i Exp (λ) E(X i ) = 1 λ = 5s λ = 1 5
LÖSNINGAR TILL Matematisk statistik Tentamen: 29 7 kl 8 3 Matematikcentrum FMSF45 Matematisk statistik AK för D,I,Pi,F, 9 h Lunds universitet MASB3 Matematisk statistik AK för fysiker, 9 h. För tiden mellan
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF90 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 26:E OKTOBER 206 KL 8.00 3.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling
Stokastiska processer med diskret tid
Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna
!"# $ $ $ % & ' $ $ ( ) *( + $', - &! # %. ( % / & ) 0
!"#$ $ $ % & '$$( )*(+$',- &! # %.( %/& )0 = + = ϕ θ + #" $! = $ $ (! ) = % "! "!! = R( )! =! + ) ( &&) ( &&* ) [ ] ( ) $ ( ) Π + ( &-&) ","& Π 2 ( ) (& ' = '." % % Π % % / = = % % % = 01(&*&* = 7" "6""
TMS136. Föreläsning 4
TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 28:E OKTOBER 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn Olof Skytt 08-790 86 49. Tillåtna
Jesper Rydén. Matematiska institutionen, Uppsala universitet Tillämpad statistik 1MS026 vt 2014
Föreläsning 2. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper@math.uu.se Tillämpad statistik 1MS026 vt 2014 ML-metoden: Standardfördelningar ML-skattning av parametrar i följande standardfördelningar:
Övningstentamen i kursen Statistik och sannolikhetslära (LMA120)
Övningstentamen i kursen Statistik sannolikhetslära (LMA0). Beräkna ( ) 04.. Malin har precis yttat, ska skruva ihop sitt rektangulära skrivbord igen. Bordet har ett ben i varje hörn, har två långsidor
SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)
SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012
TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder
TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 I Punktskattningar I Egenskaper I Väntevärdesriktig I E ektiv I Konsistent
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341, STN2) 213-1-11 kl 14 18 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd
Tentamen i Matematisk Statistik, 7.5 hp
Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.
Lösningar till tentamensskrivning för kursen Linjära statistiska modeller. 14 januari
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Lösningar till tentamensskrivning för kursen Linjära statistiska modeller 14 januari 2010 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se
TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng
Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-05-29 Tid:
Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion
Avd. Matematisk statistik TENTAMEN I 5B57 MATEMATISK STATISTIK FÖR T och M ONSDAGEN DEN 9 OKTOBER 25 KL 8. 3.. Examinator: Jan Enger, tel. 79 734. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk
Thomas Önskog 28/
Föreläsning 0 Thomas Önskog 8/ 07 Konfidensintervall På förra föreläsningen undersökte vi hur vi från ett stickprov x,, x n från en fördelning med okända parametrar kan uppskatta parametrarnas värden Detta
ESS011: Matematisk statistik och signalbehandling Tid: 14:00-18:00, Datum:
ESS0: Matematisk statistik och signalbehandling Tid: 4:00-8:00, Datum: 20-0-2 Examinatorer: José Sánchez och Bill Karlström Jour: Bill Karlström, tel. 070 624 44 88. José Sánchez, tel. 03 772 53 77. Hjälpmedel: