Miniprojekt: Vattenledningsnäten i Lutorp och Vingby 1
|
|
- Gustav Lind
- för 7 år sedan
- Visningar:
Transkript
1 22 januari 214 Miniprojekt 1 (6) Beräkningsvetenskap I/KF Institutionen för informationsteknologi Beräkningsvetenskap Besöksadress: ITC hus 2, Polacksbacken Lägerhyddsvägen 2 Postadress: Box Uppsala Telefon: (växel) Telefax: Hemsida: Department of Information Technology Division of Scientific Computing Miniprojekt: Vattenledningsnäten i Lutorp och Vingby 1 Du är nyanställd på konsultföretaget Pollax Pipes AB i vattenledningsbranchen och du har nu blivit engagerad i ditt första uppdrag vid tekniska kontoret i Gaussby kommun. Din uppgift är att kontrollera att vattenledningsnätet i den lilla tätorten Lutorp är väldimensionerat, och sedan skriva ett program med vars hjälp man kan bygga ut vattenledningsnätet i den lite större tätorten Vingby. Del 1 Före den planerade utbyggnaden består Lutorp av ett fåtal bostäder. De är anslutna till en egen del av det kommunala vattenledningsnätet. Hos Tekniska kontoret i Gaussby kommun finns en schematisk skiss över det lokala vattenledningsnätet i Lutorp före utbyggnaden. (Se Figur 1.) Visiting address: ITC bldg 2, Polacksbacken Lägerhyddsvägen 2 Postal address: Box 337 SE Uppsala SWEDEN Telephone: (switch) Telefax: Web page: Figur 1: Skiss av vattenledningsnätet i Lutorp. Noderna (knutpunkterna) i nätet är numrerade 1, 2, 3, 4, 5, 6. Till nod 1 är en vattenreservoar ansluten, och nod 5 och 6 är kopplade till avtappningskranar i två bostäder. Tryckvärdena i de olika noderna betecknas med p 1, p 2, p 3, p 4, p 5 respektive p 6. Ditt uppdrag är beräkna trycket i de inre noderna (2, 3 & 4) och se till att vattentornet är dimensionerat så att trycket i dessa noder är tillräckligt högt. 1 Del 1 baseras på Problem 5.1 i A. Quarteroni & F. Saleri, Scientific Computing with MATLAB, Springer-Verlag Berlin Heidelberg, 23
2 2 (6) Matematisk modell Trycket anges som skillnaden mellan vattentrycket och det omgivande atmosfäriska trycket. I beräkningarna används därför en skala där det atmosfäriska trycket sätts till. För beräkningen av trycket används följande samband: 1. För rörledning nummer j kan vattenflödeshastigheten Q j (i m 3 =s) uttryckas: Q j = k A L (p in p ut ) : (1) Beteckningar: 1=k är det hydrauliska motståndet i den aktuella rörledningen, så k är inversen av det hydrauliska motståndet vilket mäts i m 2 =bar s. A är rörledningens tvärsnittsarea i m 2, L dess längd i m. p in är trycket vid inloppet till rörledningen och p ut är trycket vid utloppet från samma rörledning, där trycken mäts i bar. I det här fallet är k konstant och lika med :1. 2. Summan av flödena in till en knutpunkt är lika med summan av flödena ut från samma knutpunkt. Samband 2 ovan ger följande ekvationer för de tre inre noderna i Lutorps vattenledningsnät (se Figur 1): Punkt 2: Q 1 = Q 2 + Q 3 Punkt 3: Q 3 = Q 4 + Q 6 Punkt 4: Q 2 + Q 4 = Q 5 för de rörled- Tekniska kontoret tillhandahåller en tabell över värdena på k och A L ningar som ingår i Lutorps vattenledningsnät före utbyggnaden: rör A=L rör A=L Vidare är trycket i vattenreservoaren 1 bar och trycket p vid avtappningsställena cirka bar. Genom in sambandet (1) i ekvation 2 och värdena för k och A, får vi efter förenkling följande system av sex ekvationer för trycken i de olika L noderna: 1: :3 1:3 :5 :5 :5 1:6 :6 :5 :5 :6 1:6 :5 1: 1: 1 C B p 1 p 2 p 3 p 4 p 5 p 6 1 = C B 1 1 C A (2)
3 3 (6) Uppgift Skriv i Matlab ett program (ett matlabscript/kommandofil) som ställer upp detta system, löser det med Matlabs inbyggda backslash -operator samt skriver ut lösningen. Dessutom ska programmet rita upp en graf över trycket i de olika noderna. Utskriften och grafen ska vara sådan att dina uppdragsgivare på Tekniska kontoret förstår den utan att du behöver ge någon kompletterande, muntlig information. I grafen ska man på x-axeln se knutpunkternas nummer och i y-led de beräknade tryckvärdena. Förutom ovanstående vill man kontrollera att trycket i systemet är tillräckligt högt genom att beräkna medeltrycket. I Lutorp vill man inte att medeltrycket ska understiga 2 bar. Medelvärdet över trycken kan beräknas med hjälp av MATLABs inbyggda funktion mean. Om p är en vektor så beräknas medelvärdet genom kommandot medeltryck = mean(p); (där medeltryck och p är variabler och kan ersättas med vilka variabelnamn som helst). Lägg till beräkning av medelvärdet till ditt program. Använd sedan ditt program för att se hur högt trycket i vattentornet minst måste vara för att medeltrycket ska bli minst 2 bar. Tips: När du ska skriva matlabprogram, dvs ett matlabscript, skriv och testa gärna kommandon direkt i kommandofönstret, för att se hur de och olika delar av problemet fungerar och kan lösas. Det brukar sällan bli rätt om man skriver ett helt program direkt i en m-fil.
4 4 (6) Del 2 I Gaussby kommun ska en lite större tätort, Vingby, byggas ut kraftigt och det behövs en motsvarande utbyggnad av vattenledningsnätet. Vingby är beläget runt några sjöar med befolkningen koncentrerad kring stränderna. En av sjöarna är formad som en flygplansvinge, därav namnet Vingby. Det ska byggas tre vattentorn, och uppdraget består i att dimensionera dessa för att trygga vattenförsörjningen. Precis som i Lutorp vill man inte att medeltrycket i Vingbys vattenledningsnät ska understiga 2 bar. Man vill även ha en jämn fördelning av trycket i nätet. Medelvärdet av trycket kan beräknas med hjälp av MATLABs inbyggda funktion mean precis som tidigare, och jämn tryckfördelningen kan beräknas med den s k standardavvikelsen 2. Det är ett mått från statistiken som beskriver hur mycket något varierar kring medelvärdet. Ett lågt värde på standardavvikelsen innebär en liten variation, dvs ett jämnfördelat tryck. I Matlab kan standardavvikelsen beräknas med hjälp av den inbyggda funktionen std som tar en vektor som indata, t ex enligt tryckvariation = std(p); Slutprodukten i den här uppgiften ska vara två program som utför samma sak, men det ena programmet är effektivare än den andra. Slutprodukten motsvarar resultaten i punkt c. och d. nedan. Här är det fråga om tusentals noder och att lägga in ett sådan ekvationssystem i Matlab för hand blir omöjligt. Därför har ditt konsultföretag skapat ett program för att hantera detta. Det programmet är redan färdigt, och består av en matlabfunktion som finns i filen GenerateMatrix.m. Den funktionen genererar automatiskt matrisen utifrån indata som beskriver ledningsnätet. Dessa indata ska finnas i tre textfiler, som ska namnges så att ändelserna blir.coords.txt,.graph.txt respektive.source.txt. Det avslutande.txt kan uteslutas i alla tre fallen om man vill, men det kan vara bra att använda den ändelsen eftersom din dator då automatiskt öppnar filen med en texthanterare om du öppnar filen. Om du exempelvis ska använda GenerateMatrix för problemet i Del 1, dvs lutorp och ger kommandot [A, sources] = GenerateMatrix( lutorp ); så ska det i den katalog där du arbetar då finnas tre textfiler: lutorp.coords.txt, lutorp.graph.txt och lutorp.source.txt. Förutom systemmatrisen A, returneras även vektorn sources som innehåller index för de noder som är källor (dvs bara 1 för Lutorp). Dessutom ritas en bild över vattenledningsnätet upp, med blå punkter för öppna kranar, och röda punkter för vattentorn. Man måste inte använda just variabelnamn A eller sources, utan man kan välja andra lämpliga variabelnamn. För mer information om GenerateMatrix, se programmets hjälptext. Uppgift När man löser lite större problem som det här är, är strategin att man löser lite i taget. Man börjar med med enklast möjliga lösning, och bygger ut successivt tills man har den färdiga slutprodukten. Dessutom inleder man vanligen med att lösa q P 2 1 N Standardavvikelsen är definierad som p := N i=1 (pi p)2, där p är p:s medelvärde.
5 5 (6) ett lite mindre problem så man får en uppfattning över vad som händer och hur funktioner fungerar, dvs man får en förståelse för problemet. Här följer ett förslag på en sådan strategi som du kan följa: a. För att förstå hur programmet fungerar och hur det används, börja med samma exempel som i Del 1, dvs Lutorp. Ladda ner GenerateMatrix.m från kurshemsidan. Ladda dessutom ner de tre textfilerna lutorp.coords.txt, lutorp.graph.txt och lutorp.source.txt, som innehåller de data som krävs för fallet Lutorp. Testa sedan att anropa GenerateMatrix i kommandofönstret och jämför med matrisen och figuren i Del 1. Undersök (titta i) de tre textfilerna och försök förstå hur de siffror som finns där stämmer överens med figuren över vattensystemet i Lutorp. När detta är gjort skriver du Matlabprogram (matlabscript/kommandofil) som skapar matrisen A för Lutorp med hjälp av GenerateMatrix, konstruerar högerled och löser systemet (med standardmetoden i Matlab). Alla ekvationer utom den första har i högerledet. Värdet i första ekvationens högerled är p r, dvs vattentrycket i reservoaren. Skriv programmet så att användaren själv kan mata in p r från kommandofönstret när programmet körs. Resultatet ska presenteras i en graf där man på x-axeln ska se knutpunkternas nummer och i y-led de beräknade tryckvärdena. Lös Lutorp-problemet med samma vattenreservoarstryck som i Del 1 och jämför resultaten. Skapa gärna en egen stad, t ex MinStad, genom att skriva egna filer: MinStad.coords.txt, MinStad.graph.txt och MinStad.source.txt (du kan utgå från lutorp-filerna). Beräkna trycket i detta vattenledningsnät med hjälp av programmet du skrev i föregående uppgift. b. När du förstår hur man ska använda GenerateMatrix kan du gå vidare till att lösa problemet för området Vingby. Ladda först ner de tre textfiler från kurshemsidan, som innehåller de data för Vingby som krävs. Kopiera programmet i föregående uppgift och modifiera kopian så att användaren får mata in namnet på fallet, t ex lutorp för Lutorp, vingby för Vingby eller MinStad för din egen stad. Observera att Vingby har flera vattentorn som användaren skall kunna bestämma trycket i. Programmet ska kunna fungera oberoende av hur många vattentorn som finns i nätet. Det ska alltså automatiskt fråga efter tryck i rätt antal vattentorn och skapa högerledet efter detta. Här måste du använda en programmeringskonstruktion. c. Precis som i Lutorp vill man att medeltrycket i Vingbys vattenledningsnät inte ska understiga 2 bar. Man vill dessutom ha en jämn tryckfördelningen, vilket man kunde beräkna med den standardavvikelsen enligt ovan. Utvidga nu programmet så att användaren kan ge olika värden på trycken i vattentornen, så att man kan komma fram till en fördelning som är jämn och tillräckligt hög. När användaren testar olika tryck i vattentornen skall medeltryck och standardavvikelse visas på skärmen. När resultatet har presenterats, så ska användaren ges möjlighet att mata in nya tryck i vattentornen, titta på resultatet, mata in nya tryck i vattentornen igen etc. Detta upprepas tills användaren väljer att inte mata in ytterligare värden. Det är inte säkert att
6 6 (6) användaren vill se en graf efter varje test, och därför ska detta kunna väljas efter varje beräkning. När du är klar med detta har du nått slutprodukten, och det här programmet redovisas. d. När man kör många test, är det viktigt att det inte tar för lång tid att köra programmet. Kanske finns det ett sätt att snabba upp beräkningarna? Fundera ut och implementera ett effektivare sätt att utföra de upprepade beräkningarna, så att resultaten från tidigare beräkningar så långt som möjligt återanvänds när nya tryck behandlas. Redovisa även detta förbättrade program. Redovisa även något körexempel. Del 3 - Diskussion och reflektion När uppgiften är klar är det viktigt att ni i gruppen reflekterar över vad ni gjort, hur ni arbetet och vad ni lärt er. Det är också viktigt att relatera det ni gjort till mer teoretiska delar av kursen, t ex olika nyckelbegrepp. Fundera exempelvis på och skriv några rader om Vad har ni lärt er i uppgiften? Vilka är t ex de två viktigaste lärdomarna? Behandla inte enbart att ni lärt er vissa delar i Matlabanvändning, utan även mer teoretiska kunskaper. Var det något som ni tyckte var särskilt svårt? Och hur löste ni det i så fall? Försök även koppla samman det ni gjort i uppgiften med olika nyckelbegrepp inom momentet linjära ekvationssystem. Ovanstående är ett förslag och det kan finnas annat som ni vill diskutera. Inget som ni skriver kommer att bedömas som fel, utan det viktiga är att ni reflekterar.
Miniprojekt: Vattenledningsnäten i Lutorp och Vingby 1
11 oktober 215 Miniprojekt 1 (5) Beräkningsvetenskap I/KF Institutionen för informationsteknologi Teknisk databehandling Besöksadress: MIC hus 2, Polacksbacken Lägerhyddsvägen 2 Postadress: Box 337 751
Miniprojekt: Vattenledningsnätet i Lutorp 1
26 mars 212 Miniprojekt 1 (5) Beräkningsvetenskap I Institutionen för informationsteknologi Teknisk databehandling Besöksadress: MIC hus 2, Polacksbacken Lägerhyddsvägen 2 Postadress: Box 337 751 5 Uppsala
Miniprojekt: Vattenledningsnätet i Lutorp 1
31 oktober 28 Miniprojekt 1 (4) Beräkningsvetenskap I Institutionen för informationsteknologi Teknisk databehandling Besöksadress: MIC hus 2, Polacksbacken Lägerhyddsvägen 2 Postadress: Box 337 751 5 Uppsala
Miniprojekt: Vattenledningsnätet i Lutorp 1
2 november 212 Miniprojekt 1 (4) Institutionen för informationsteknologi Beräkningsvetenskap Besöksadress: MIC hus 2, Polacksbacken Lägerhyddvägen 2 Postadress: Box 337 751 5 Uppsala Telefon: 18 471 (växel)
Problemlösning och miniprojekt
2008-03-27 1 (2) Beräkningsvetenskap I Institutionen för informationsteknologi Teknisk databehandling Problemlösning och miniprojekt I tre av kursens block behandlas beräkningsalgoritmer för tre typer
Tentamen i Beräkningsvetenskap I/KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I/KF, 5. hp, 215-3-17 Skrivtid: 14 17 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, 2008-2-9 Skrivtid: 4 00 7 00 (OBS! Tre timmars skrivtid!) Hjälpmedel:
Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1
Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1 Del A Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna på
Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26
TAIU07 Föreläsning 2 Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26 Matriselement och Index För att manipulera
Laboration: Grunderna i MATLAB
Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar
TANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall
Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 2015-12-17 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Miniprojekt: MEX och molekyldynamik
4 september 2013 Miniprojekt 1 (5) Beräkningsvetenskap DV Institutionen för informationsteknologi Beräkningsvetenskap Besöksadress: Polacksbacken, hus 2 Lägerhyddsvägen 2 Postadress: Box 337 751 05 Uppsala
TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 2 november 2015 Sida 1 / 23
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 2 november 2015 Sida 1 / 23 Föreläsning 2 Index. Kolon-notation. Vektoroperationer. Summor och medelvärden.
Laboration: Grunderna i Matlab
Laboration: Grunderna i Matlab Att arbeta i kommandofönstret och enkel grafik Den här delen av laborationen handlar om hur man arbetar med kommandon direkt i Matlabs kommandofönster. Det kan liknas vid
FÖRSÄTTSBLAD TILL TENTAMEN. ELLER (fyll bara i om du saknar tentamenskod): Datum: 16 januari Bordsnummer:
FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 16 januari 2013 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393)
Linjär algebra med tillämpningar, lab 1
Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt
Laboration: Vektorer och matriser
Laboration: Vektorer och matriser Grundläggande om matriser Begreppet matris är en utvidgning av vektorbegreppet, och det används bl a när man löser linjära ekvationssystem. Namnet Matlab står för MATrix
Instruktion för laboration 1
STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för matematisk statistik ANL/TB SANNOLIKHETSTEORI I, HT07. Instruktion för laboration 1 De skrifliga laborationsrapporterna skall vara skrivna så att
KPP053, HT2016 MATLAB, Föreläsning 1. Introduktion till MATLAB Skript Inläsning och utskrift av variabler Ekvationssystem Anonyma funktioner
KPP053, HT2016 MATLAB, Föreläsning 1 Introduktion till MATLAB Skript Inläsning och utskrift av variabler Ekvationssystem Anonyma funktioner MATLAB Väletablerat Mycket omfattande program GNU OCTAVE Öppen
Introduktion till Matlab
Introduktion till Matlab Inledande matematik, I1, ht10 1 Inledning Detta är en koncis beskrivning av de viktigaste delarna av Matlab. Till en början är det enkla beräkningar och grafik som intresserar
TSBB14 Laboration: Intro till Matlab 1D
TSBB14 Laboration: Intro till Matlab 1D Utvecklad av Maria Magnusson med mycket hjälp av Lasse Alfredssons material i kursen Introduktionskurs i Matlab, TSKS08 Avdelningen för Datorseende, Institutionen
Tekniska Högskolan i Linköping Institutionen för Datavetenskap (IDA) Torbjörn Jonsson Plot och rekursion
Tekniska Högskolan i Linköping Institutionen för Datavetenskap (IDA) Torbjörn Jonsson 2010-11-19 Plot och rekursion I denna laboration skall du lära dig lite om hur plot i MatLab fungerar samt använda
Instruktion för laboration 1
STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för matematisk statistik MD, ANL, TB (rev. JM, OE) SANNOLIKHETSTEORI I Instruktion för laboration 1 De skriftliga laborationsrapporterna skall vara
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Laboration 1. Vektorberäkningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall vi träna på
FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum
Johan Helsing, 11 oktober 2018 FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum Inlämningsuppgift 3 Sista dag för inlämning: onsdag den 5 december. Syfte: att träna på att hitta lösningar
Introduktion till MATLAB
29 augusti 2017 Introduktion till MATLAB 1 Inledning MATLAB är ett interaktivt program för numeriska beräkningar med matriser. Med enkla kommandon kan man till exempel utföra matrismultiplikation, beräkna
MMA132: Laboration 2 Matriser i MATLAB
MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen
2 Matrisfaktorisering och lösning till ekvationssystem
TANA21+22/ 5 juli 2016 LAB 2. LINJÄR ALGEBRA 1 Inledning Lösning av ett linjärt ekvationssystem Ax = b förekommer ofta inom tekniska beräkningar. I laborationen studeras Gauss-elimination med eller utan
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 13:e januari klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 13:e januari klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Inledande matematik för I1. MVE011 läsperiod Matlab vecka 2 övningsuppgifter
Inledande matematik för I1 MVE011 läsperiod 1 010 Matlab vecka övningsuppgifter Linjära ekvationssystem Matlab har många kraftfulla redskap för att hantera matriser och därmed också linjära ekvationssystem.
5B1146 med Matlab. Laborationsr. Laborationsgrupp: Sebastian Johnson Erik Lundberg, Ann-Sofi Åhn ( endst tal1-3
1 Revision 4 2006-12-16 2. SIDFÖRTECKNING 5B1146 med Matlab Laborationsr Laborationsgrupp: Sebastian Johnson, Ann-Sofi Åhn ( endst tal1-3 Titel Sida 1. Uppgift 1.8.1....3 2. Uppgift 1.8.2....6 3. Uppgift
MATLAB the Matrix Laboratory. Introduktion till MATLAB. Martin Nilsson. Enkel användning: Variabler i MATLAB. utvecklat av MathWorks, Inc.
Introduktion till MATLAB Martin Nilsson Avdelningen för teknisk databehandling Institutionen för informationsteknologi Uppsala universitet MATLAB the Matrix Laboratory utvecklat av MathWorks, Inc. Matematisk
När man vill definiera en matris i MATLAB kan man skriva på flera olika sätt.
"!$#"%'&)(*,&.-0/ 177 Syftet med denna övning är att ge en introduktion till hur man arbetar med programsystemet MATLAB så att du kan använda det i andra kurser. Det blir således inga matematiska djupdykningar,
Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism. Inledning. Fysikalisk bakgrund
Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism En civilingenjör ska kunna idealisera ett givet verkligt problem, göra en adekvat fysikalisk modell och behandla modellen med matematiska
SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011
Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i
Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1
Facit Tentamen i Beräkningsvetenskap I (1TD9) STS ES W K1 Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna på ett kladdpapper,
Innehåll. Vad är MATLAB? Grunderna i MATLAB. Informationsteknologi. Informationsteknologi.
Grunderna i MATLAB eva@it.uu.se Innehåll Vad är MATLAB? Användningsområden MATLAB-miljön Variabler i MATLAB Funktioner i MATLAB Eempel och smakprov: Grafik Beräkningar Bilder GUI Vad är MATLAB? Utvecklat
Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln
Matlab-föreläsning (4), 10 september, 015 Innehåll m-filer (script) - fortsättning från föreläsning 1 In- och utmatning Sekvenser, vektorer och matriser Upprepning med for-slingor (inledning) Matlab-script
Introduktion till Matlab
Introduktion till Matlab Analys och Linjär Algebra, del A, K1/Kf1/Bt1, ht10 1 Inledning Ni kommer använda Matlab i nästan alla kurser i utbildningen. I matematikkurserna kommer vi ha studio-övningar nästan
Hemuppgift 2, SF1861 Optimeringslära för T, VT-10
Hemuppgift 2, SF1861 Optimeringslära för T, VT-1 Kursansvarig: Per Enqvist, tel: 79 6298, penqvist@math.kth.se. Assistenter: Mikael Fallgren, werty@kth.se, Amol Sasane, sasane@math.kth.se. I denna uppgift
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade
Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde:
TANA81: Beräkningar med Matlab - Variabler och Matriser - Logiska uttryck och Villkor - Repetitionssatser - Grafik - Funktioner Variabler I Matlab skapas en variabel genom att man anger dess namn och ger
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, 010-06-07 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Matriser och linjära ekvationssystem
Linjär algebra, I1 2011/2012 Matematiska vetenskaper Matriser och linjära ekvationssystem Matriser En matris är som ni vet ett rektangulärt talschema: a 11 a 1n A = a m1 a mn Matrisen ovan har m rader
LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod
TANA21+22/ 30 september 2016 LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER 1 Inledning Vi skall studera begynnelsevärdesproblem, både med avseende på stabilitet och noggrannhetens beroende av steglängden. Vi
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels
Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall
Konsolfönster i Windows Momentet ingår i kursen PDA DTR1206 Lab 1 DOS http://www.cwdata.se Konsolfönstret
Konsolfönster i Windows Momentet ingår i kursen PDA DTR1206 Lab 1 DOS http://www.cwdata.se Konsolfönstret Med ett kommandobaserat gränssnitt menas ett helt textbaserat gränssnitt. Istället för att klicka
TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 27 oktober 2015 Sida 1 / 31
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 27 oktober 2015 Sida 1 / 31 TANA17 Kursmål och Innehåll Målet med kursen är att Ge grundläggande färdighet
ELLER (fyll bara i om du saknar tentamenskod): Datum: 32 maj Bordsnummer: Kontrollera att du fått rätt tentamensuppgifter
FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 32 maj 4711 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393 DEMO)
Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 3 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT15 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla
Uppgift 1 ( Betyg 3 uppgift )
2008-03-12.kl.14-19 Uppgift 1 ( Betyg 3 uppgift ) Du skall skriva ett program som läser igenom en textfil som heter FIL.TXT och skriver ut alla rader där det står ett decimaltal först på raden. Decimaltal
Matriser och vektorer i Matlab
CTH/GU LABORATION 2 TMV157-2014/2015 Matematiska vetenskaper Matriser och vektorer i Matlab 1 Inledning Först skall vi se lite på matriser, vilket är den grundläggande datatypen i Matlab, sedan skall vi
Dagens program. Programmeringsteknik och Matlab. Administrativt. Viktiga datum. Kort introduktion till matlab. Övningsgrupp 2 (Sal Q22/E32)
Programmeringsteknik och Matlab Övning Dagens program Övningsgrupp 2 (Sal Q22/E2) Johannes Hjorth hjorth@nada.kth.se Rum 458 på plan 5 i D-huset 08-790 69 02 Kurshemsida: http://www.nada.kth.se/kurser/kth/2d2
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en
LABORATION 1. Syfte: Syftet med laborationen är att
LABORATION 1 Syfte: Syftet med laborationen är att ge övning i hur man kan använda det statistiska programpaketet Minitab för beskrivande statistik, grafisk framställning och sannolikhetsberäkningar, visa
Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 8-12, 20 Mars, 2015 Provkod: TEN1 Hjälpmedel:
SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2
Matematisk Statistik SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 1 Introduktion Denna laboration är inte poänggivande utan är till för den som vill bekanta sig med MATLAB. Fokusera
KPP053, HT2015 MATLAB, Föreläsning 1. Introduktion till MATLAB Skript Inläsning och utskrift av variabler Ekvationssystem Anonyma funktioner
KPP053, HT2015 MATLAB, Föreläsning 1 Introduktion till MATLAB Skript Inläsning och utskrift av variabler Ekvationssystem Anonyma funktioner MATLAB Väletablerat Mycket omfattande program GNU OCTAVE Öppen
Tentamen för kursen TME135 Programmering i Matlab för M1
Tentamen för kursen TME135 Programmering i Matlab för M1 Tid: 18 oktober 2011 kl 8:30-12:30 Lärare: Håkan Johansson, mobil: 0739-678 219, kontor: 772 8575 Tillåtna hjälpmedel: P. Jönsson: MATLAB-beräkningar
Lägg märke till skillnaden, man ser det tydligare om man ritar kurvorna.
Matlabövningar 1 Börja med att läsa igenom kapitel 2.1 2 i läroboken och lär dig att starta och avsluta Matlab. Starta sedan Matlab. Vi övar inte på de olika fönstren nu utan återkommer till det senare.
% Föreläsning 3 10/2. clear hold off. % Vi börjar med att titta på kommandot A\Y som löser AX=Y
% Föreläsning 3 10/2 clear % Vi börjar med att titta på kommandot A\Y som löser AX=Y % Åter till ekvationssystemen som vi avslutade föreläsning 1 med. % Uppgift 1.3 i övningsboken: A1=[ 1-2 1 ; 2-6 6 ;
Arbeta med normalfördelningar
Arbeta med normalfördelningar I en större undersökning om hur kvinnors längd gjorde man undersökning hos kvinnor i ett viss åldersintervall. Man drog sedan ett slumpmässigt urval på 2000 kvinnor och resultatet
STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 1: TIDSSERIER.
MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-03-24 DATORLABORATION 1: TIDSSERIER. I Tarfala har man under en lång följd av
Laboration 6. Ordinära differentialekvationer och glesa system
1 DN1212 VT2012 för T NADA 20 februari 2012 Laboration 6 Ordinära differentialekvationer och glesa system Efter den här laborationen skall du känna igen problemtyperna randvärdes- och begynnelsevärdesproblem
Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 14-18, 13:e Mars, 2018 Provkod: TEN1 Hjälpmedel:
Block 2: Lineära system
Exempel Från labben: Block : Lineära system Del 1 Trampolinens böjning och motsvarande matris (här 6060-matris) Matrisen är ett exempel på - gles matris (huvuddelen av elementen nollor) - bandmatris Från
LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 03/04. Laboration 3 3. Torsionssvängningar i en drivaxel
Lennart Edsberg Nada, KTH December 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 M2 LÄSÅRET 03/04 Laboration 3 3. Torsionssvängningar i en drivaxel 1 Laboration 3. Differentialekvationer
Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem.
11 april 2005 2D1212 NumProg för T1 VT2005 A Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem. Kapitel 8 och 5 i Q&S Stationär värmeledning i 1-D Betrakta
TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 9 november 2015 Sida 1 / 28 Föreläsning 3 Linjära ekvationssystem. Invers. Rotationsmatriser. Tillämpning:
Laboration 1. Ekvationslösning
Laboration 1 Ekvationslösning Sista dag för bonuspoäng, se kursplanen. Kom väl förberedd och med välordnade papper till redovisningen. Numeriska resultat ska finnas noterade. Båda i laborationsgruppen
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 18:e augusti klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 18:e augusti klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg. Laboration 1. Simulering
Matematikcentrum (7) Matematisk Statistik Lunds Universitet Per-Erik Isberg Laboration Simulering HT 006 Introduktion Syftet med laborationen är dels att vi skall bekanta oss med lite av de olika funktioner
Hemuppgift 1, SF1861 Optimeringslära, VT 2017
Hemuppgift 1, SF1861 Optimeringslära, VT 2017 Examinator: Krister Svanberg, tel: 790 7137, krille@math.kth.se. Labassistent: David Ek, daviek@kth.se, Lämnas i Matematiks svarta postlåda (SF) för inlämningsuppgifter,
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet
TDIU Regler
Regler Student får lämna salen tidigast en timme efter tentans start. Vid toalettbesök eller rökpaus ska pauslista utanför salen fyllas i. All form av kontakt mellan studenter under tentans gång är strängt
Kontrollera att följande punkter är uppfyllda innan rapporten lämnas in: Första sidan är ett försättsblad (laddas ned från kurshemsidan)
Statistiska institutionen VT 2012 Inlämningsuppgift 1 Statistisk teori med tillämpningar Instruktioner Ett av problemen A, B eller C tilldelas gruppen vid första övningstillfället. Rapporten ska lämnas
Uppgift 1 ( Betyg 3 uppgift )
2008-03-25.kl.14-19 Uppgift 1 ( Betyg 3 uppgift ) Du skall skriva ett program (en funktion), my_plot_figure, som läser in ett antal sekvenser av koordinater från tangentbordet och ritar ut dessa till en
repetera begreppen sannolikhetsfunktion, frekvensfunktion och fördelningsfunktion
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF25: MATEMATISK STATISTIK KOMPLETTERANDE PROJEKT DATORLABORATION 1, 14 NOVEMBER 2017 Syfte Syftet med dagens laboration är att du ska träna
i LabVIEW. Några programmeringstekniska grundbegrepp
Institutionen för elektroteknik Några programmeringstekniska grundbegrepp 1999-02-16 Inledning Inom datorprogrammering förekommer ett antal grundbegrepp som är i stort sett likadana oberoende om vi talar
MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och...
Allt du behöver veta om MATLAB: Industristandard för numeriska beräkningar och simulationer. Används som ett steg i utvecklingen (rapid prototyping) Har ett syntax Ett teleskopord för «matrix laboratory»
DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03. bli bekant med summor av stokastiska variabler.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03 Syfte: Syftet med dagens laborationen är att du skall: få förståelse
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så
Mathematica. Utdata är Mathematicas svar på dina kommandon. Här ser vi svaret på kommandot från. , x
Mathematica Första kapitlet kommer att handla om Mathematica det matematiska verktyg, som vi ska lära oss hantera under denna kurs. Indata När du arbetar med Mathematica ger du indata i form av kommandon
Uppgift 1 (grundläggande konstruktioner)
Uppgift 1 (grundläggande konstruktioner) a) Skriv ett program som låter användaren mata in 7 heltal och som gör utskrifter enligt nedanstående körexempel. Mata in 7 heltal: 1 0 0 3 1 1 1 Tal nr 2 var en
Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 2c GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning
DATORÖVNING 5: SANNOLIKHETSFÖRDELNINGAR FÖR
DATORÖVNING 5: SANNOLIKHETSFÖRDELNINGAR FÖR STICKPROVSMEDELVÄRDEN I denna datorövning ska du använda Minitab för att slumpmässigt dra ett mindre antal observationer från ett större antal, och studera hur
Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration
10 februari 2017 Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration Syfte med övningen: Introduktion till ett par numeriska metoder för lösning av ekvationer respektive
Robotarm och algebra
Tekniska Högskolan i Linköping Institutionen för Datavetenskap (IDA) Torbjörn Jonsson 2010-12-07 Robotarm och algebra I denna laboration skall du lära dig lite mer om möjlighetera att rita ut mer avancerade
Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar
MMA132: Laboration 1 & 2 Introduktion till MATLAB
MMA132: Laboration 1 & 2 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med
Första sidan är ett försättsblad (laddas ned från kurshemsidan) Alla frågor som nns i uppgiftstexten är besvarade
HT 2011 Inlämningsuppgift 1 Statistisk teori med tillämpningar Instruktioner Ett av problemen A, B eller C tilldelas gruppen vid första övningstillfället. Rapporten ska lämnas in senast 29/9 kl 16.30.
bli bekant med summor av stokastiska variabler.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för diskreta, bivariate
Tekniska beräkningar. Vad är tekn beräkningar? Vad är beräkningsvetenskap? Informationsteknologi. Informationsteknologi
Tekniska beräkningar stefan@it.uu.se Vad är tekn beräkningar? Finns några olika namn för ungefär samma sak Numerisk analys (NA) Klassisk NA ligger nära matematiken: sats bevis, sats bevis, mer teori Tekniska