Den välkända dikten av Sten Selander
|
|
- Berit Hellström
- för 8 år sedan
- Visningar:
Transkript
1 BERNT HERNELL Kul kulkombinatorik Med utgångspunkt i kulspel på 0-talet undersöker författaren sambandet mellan, pyramider, målade golfbollar och Pascals triangel. Den välkända dikten av Sten Selander borde kunna användas som utgångspunkt i många ämnen i skolan. Vi spelade kula i Torget en dag, en liten folkskolegrabb och jag. Jag hade väl femti, han hade fem. Vi spelte. Och han förlorade dem. Han snorade till och gav mig en blick, då jag visslade överlägset och gick. Men jag ångrade mig när jag kom till vår port, och tyckte det var något fult jag gjort. Jag gnodde tillbaka. Men ingenstans kunde någon säga, var grabben fanns. Och visste jag det, förslog det ej stort. Man kan aldrig ändra det fula man gjort. Man kan inte lämna kulor igen och trösta pojkar, som stelnat till män. Den första av matematikfrågorna är så komplicerad att jag överlåter den till läsaren att besvara. De andra däremot borde kunna tas som utgångspunkt till matematiskt knep och knåp från förskolan upp till diskret matematik på gymnasiet. Det är kanske sant att, man ger inte kulor igen till pojkar som stelnat till män. Men män som mjuknat till pojkar funderar gärna på hur många kulor det finns i en pyramid om kanten t ex är kulor lång. När vi spelade kula på 0-talet använde vi oss mest av fyror, femmor och tior. Någon enstaka gång satte någon rik kulägare upp en tjuga, men då fick kastarna stå så långt ifrån, att det sällan blev någon träff. Historia: Vad är en folkskolegrabb, och vad är berättaren? Hur länge har man spelat kula? Samhällskunskap: Varför har berättaren femtio kulor och folkskolegrabben bara fem? Matematik: Vinner alltid en som har femtio kulor över den som har fem? Hur stora pyramider kunde folkskolegrabben bygga och hur stora kunde berättaren bygga? Hur många kulor kan olika pyramider innehålla? Jag försökte vid ett tillfälle bygga en större pyramid än tjuga för att se hur många kulor som krävdes, men den rasade. Om jag känt till Pascals triangel hade jag vetat utan att bygga. NÄMNAREN NR 00
2 Pascals triangel Man kan gå in i Pascals triangel och direkt se hur många kulor som krävs för en viss storlek på pyramiden. Om vi bortser från femman som är av annat slag än de andra tre, så är antalet kulor i kultetraedrarna del i en serie:,, 0, 0,,,,... I Pascals triangel är detta snedrad i triangeln: Snedrad består av talföljden,,,0,, osv. 0 Av bilden ovan framgår att vi borde kunna se detta som en tvådimensionell variant av pyramiden. Snedrad i Pascals triangel består av talföljden:,,, osv. Detta är den endimensionella varianten av pyramiden: Om nu en snedrad har pyramiden som grafisk representation, kan man ju fråga sig om även de andra raderna kan ges någon liknande geometrisk tolkning. Snedrad 0 består enbart av en kula. Om man kan tala om en nolldimensionell tetraeder, så saknar den utsträckning i rummet, varför det känns naturligt att betrakta denna rad som en sådan. Storlek 0 Dimension kula kulor kulor kulor NÄMNAREN NR 00
3 Fyra dimensioner Om de första fyra raderna är de fyra lägsta dimensionerna av en pyramid (bild ) så kan man kanske våga gissa att nästa rad visar antalet kulor i olika storlekar av en fyrdimensionell pyramid. Rad visar femdimensionella pyramider osv. Enligt bild består i så fall en sexdimensionell pyramid med fem kulor i kanten av 0 kulor. Dimensioner eller antal golfbollar 0 Storlek eller antal färger med fyra färger? + ( ) ( ) 0 Men dessa resultat är samma, som antal kulor i en tredimensionell pyramid med,, och kulor i kanten. Antalet kulor i en tredimensionell pyramid med k kulor i kanten och antalet sätt att måla tre golfbollar med k färger är lika stort och föjer samma rad i Pascals triangel (bild ). Flera olika kombinationer kan alltså utläsas på olika sätt i Pascals triangel, vilket också historien nedan illustrerar (se bild nästa sida). Finns det något annat sätt att räkna som stöder generaliseringen av den tredimensionella pyramiden? Jag har hittat två sätt som tyder på att denna generalisering har en viss betydelse. I. Kombinatorik och pyramider. med,, eller färger? Detta problem kan lösas med en teknik med avgränsare (se t ex Björk & Brolin, ; Grimaldi, 000). Resultatet blir enligt följande: med en färg? + ( ) ( 0 ) med två färger? + ( ) ( ) med tre färger? + ( ) ( ) 0 Historien om trillingarna Erik Jonsson (de hette så alla tre) från Jönköping på skolresa i Gränna den 0 oktober 00. När de kom in i en butik och skulle köpa polkagrisar placerade polkagriskokare Fransson alla sju sorterna på disken, en av varje sort, och sa att det bara var att välja. Trillingarna blev dock misstänksamma, de där var nog inte från dagens kok. Dessutom kunde ju inte alla tre välja saltlakrits om de nu skulle vilja det. Erik tog också fram Pascals triangel, följde den raka raden sju, fyra steg åt höger och fann att det enligt Franssons förslag endast gavs olika möjligheter att välja. Sen följde han snedrad tre och lät den möta snedrad sju från höger och fann att om de valde fritt i butiken så hade de olika möjligheter Helt ovidkommande tänkte han också att om de varit vanliga bröder så hade de haft 0 sätt att välja enligt Franssons förslag, och sätt om de valde fritt i butiken. När de lämnade butiken sa Erik: - Det är tur att man känner till kombinatorik utan återläggning när man ska köpa polkagrisar. - Ja och kombinatorik med återläggning svarade Erik. - Ja, men eftersom vi är identiska trillingar och inte vanliga trillingar så behöver vi inte lära oss permutationer med och utan återläggning, sa Erik. NÄMNAREN NR 00
4 Antal polkagrisar 0 Antal sorter Det vore intressant om sambanden ovan också gällde generellt. Dvs. om en n-dimensionell pyramid med k kulor i kanten, alltid består av lika många kulor som antalet sätt det går att måla n golfbollar med k färger. I Pascals triangel kan vi hitta att en sexdimensionell pyramid med kantkulor borde ha 0 kulor totalt.med samma metod som tidigare kan vi beräkna att golfbollar går att måla på 0 sätt med färger. + 0 ( ) ( ) 0 I detta fall tycks det fungera, vilket kan tyda på att Pascals triangel verkligen kan betraktas som en beskrivning av flerdimensionella pyramider. I nästa stycke börjar jag från ett helt annat håll för att visa detta. II Diskret Volymberäkning Jag behandlar endast fallet med kantlängden, men samma resonemang bör stämma för de andra storlekarna. När man ska beräkna antal kulor i en tvådimensionell pyramid, kan man använda A b h, men med h menas inte höjden i traditionell mening. h är istället antal rader på höjden ökat med en enhet. Att man måste räkna på detta sätt ses i figuren nedan. b h A När V A h ska användas för att räkna ut den tredimensionella pyramiden måste h adderas med en enhet ytterligare, eftersom vi nu har ytterligare en dimension vilket ger att volymen av en tredimensionell pyramid med kantlängd är 0, dvs den består av 0 kulor. V 0 När vi nu ska räkna ut antal kulor i den fyrdimensionella pyramiden kan vi inte se hur beräkningen ska göras, men rimligen bör samma mönster upprepas. I formeln V V h ökas h alltså med ytterligare en enhet. V 0 V V V Fyrdimensionell pyramid storlek Femdimensionell pyramid storlek Sexdimensionell pyramid storlek Sjudimensionell pyramid storlek Generellt blir antalet kulor i en n-dimensionell pyramid med k kulor i kanten V n V (k+n ) n n Denna regel kan också ses som en rekursionsformel för hela Pascals triangel. För några olika värden på n gäller: V 0 (snedrad 0) (k+ ) V k (snedrad ) k(k+ ) k(k+) k(k+) V! (snedrad ) k(k+) (k+ ) k(k+)(k+) V k(k+)(k+) (snedrad )! 0 NÄMNAREN NR 00
5 k(k+)(k+) (k+ ) V k(k+)(k+)(k+) k(k+)(k+)(k+)! ( k + ) (Snedrad ) Varje snedrad kan på detta sätt få sin egen formel. Avslutningsvis några frågor som kanske kan stimulera till ytterligare undersökningar: Den kulpyramid som vi kallade femma är av helt annat slag än de pyramider som behandlats i texten. Finns det något som liknar Pascals triangel för dem? Har hexagonalt tätpackade kristaller, kubiskt ytcentrerade gitter eller kubiskt rymdcentrerade gitter något med pyramider att göra? Är det sant att det är svårare att träffa en pyramid, så att den rasar, om den är vänd med spetsen framåt? Hur ska man t ex i förskolan kunna bygga stora pyramider utan att de rasar? Någon form av ram borde kunna konstrueras med hjälp av några linjaler. Vilken förskola bygger den största pyramiden? Hur bevisar man att en n-dimensionell pyramid med kantlängden k består av lika många kulor som det antal sätt det går att plocka k objekt ur n objekt, oberoende av ordningen och med återläggning? REFERENSER. Björk, L-E., & Brolin, H. (). Matematik 000F. Stockholm: Natur och kultur. Grimaldi, R. (000). Discrete and combinatorial mathematics. Boston: Addison- Wesley. Coneway, J. H.(000). Boken om tal. Lund: Studentlitteratur. Bernt Hernell är lärare på vuxen gymnasiet i Jönköping. Nämnarens redaktion önskar alla läsare en fin och avkopplande sommar NÄMNAREN NR 00
Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll.
ÖREBRO MATEMATIK, ÅR 3 1(5) Eleven kan tolka elevnära information med matematiskt innehåll Eleven kan uttrycka sig muntligt, skriftligt och i handling på ett begripligt sätt med hjälp av vardagligt språk,
Upprepade mönster kan talen bytas ut mot bokstäverna: A B C A B C eller mot formerna: Anna-Lena Ekdahl, Högskolan i Jönköping
Algebra Del 1 Upprepade mönster Anna-Lena Ekdahl, Högskolan i Jönköping Det är välkänt att barn långt innan de börjat skolan utforskar och skapar mönster på olika sätt och med olika material. Ofta skapas
Graärgning och kromatiska formler
Graärgning och kromatiska formler Henrik Bäärnhielm, d98-hba 2 mars 2000 Sammanfattning I denna uppsats beskrivs, för en ickematematiker, färgning av grafer samt kromatiska formler för grafer. Det hela
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Matematik, åk 4-6 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa
MA2047 Algebra och diskret matematik
MA2047 Algebra och diskret matematik Något om kombinatorik Mikael Hindgren 24 september 2018 Vad är kombinatorik? Huvudfråga: På hur många sätt kan en viss operation utföras? Några exempel: Hur många gånger
Terminsplanering årskurs 6 Matematik Ärentunaskolan
Inledning Terminsplanering årskurs 6 Matematik Ärentunaskolan På Ärentunaskolan arbetar vi med läromedlet MatteBorgen. Förutom uppgifter i boken arbetar vi med problemlösning och tränar olika strategier
Nationellt kursprov i MATEMATIK KURS A Våren 2005. Del II
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med 10 juni 2005. Anvisningar Provtid Hjälpmedel
Övningshäfte 2: Induktion och rekursion
GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2017 INLEDANDE ALGEBRA Övningshäfte 2: Induktion och rekursion Övning D Syftet är att öva förmågan att utgående från enkla samband, aritmetiska och geometriska,
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson LÄSANVISNINGAR VECKA 36 VERSION 1. ARITMETIK FÖR RATIONELLA OCH REELLA TAL, OLIKHETER, ABSOLUTBELOPP ADAMS P.1 Real Numbers and the Real
ESN lokala kursplan Lgr11 Ämne: Matematik
ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband
Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper.
Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Lokala mål Tala och lyssna: Jag kan lyssna och förstå
inte följa någon enkel eller fiffig princip, vad man nu skulle mena med det. All right, men
MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 2. Explicita formler och rekursionsformler. Dag mötte vi flera talföljder,
1, 2, 3, 4, 5, 6,...
Dagens nyhet handlar om talföljder, ändliga och oändliga. Talföljden 1,, 3, 4, 5, 6,... är det första vi, som barn, lär oss om matematik över huvud taget. Så småningom lär vi oss att denna talföljd inte
Geometri. Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock
Geometri Matematik åk 4-6 - Centralt innehåll Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock Konstruktion av geometriska objekt Skala Symmetri
Vad är geometri? För dig? I förskolan?
Vad är geometri? För dig? I förskolan? Vad är geometri? Betyder jordmätning En del i matematiken som handlar om rum i olika dimensioner, storlek, figurer och kroppar och deras egenskaper. Viktiga didaktiska
Explorativ övning 5 MATEMATISK INDUKTION
Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk
FORMER, MÖNSTER OCH TESSELERINGAR
FORMER, MÖNSTER OCH TESSELERINGAR Text: Marie Andersson, Learncode AB Illustrationer: Li Rosén Foton: Shutterstock Golv, mattor och byggnader är fulla av geometriska former. Människan har upptäckt att
Gruppuppgift II. Resonemang om tid
Gruppuppgift II. Resonemang om tid Introduktion till eleverna I den här uppgiften ska ni få arbeta tillsammans. Det betyder att ni ska hjälpas åt med uppgiften. Det är viktigt att alla får säga vad de
Centralt innehåll. I årskurs 1.3
3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
Matematik. Kursprov, vårterminen Bedömningsanvisningar. för samtliga skriftliga provdelar
Kursprov, vårterminen 2012 Matematik Bedömningsanvisningar för samtliga skriftliga provdelar 1a Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov
9A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.
9A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier
MÖNSTER OCH TALFÖLJDER
MÖNSTER OCH TALFÖLJDER FÖRELÄSNINGENS INNEHÅLL OCH SYFTE Genomgång av viktiga matematiska begrepp, uttryck och symboler med anknytning till mönster och talföljder. Skälet till att välja detta innehåll
MATEMATIK KURS A Våren 2005
MATEMATIK KURS A Våren 2005 1. Vilket tal pekar pilen på? 51 52 53 Svar: (1/0) 2. Skugga 8 3 av figuren. (1/0) 3. Vad är 20 % av 50 kr? Svar: kr (1/0) 4. Hur mycket vatten ryms ungefär i ett dricksglas?
Del ur Lgr 11: kursplan i matematik i grundskolan
Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet
Vi människor föds in i en tredimensionell värld som vi accepterar och
Güner Ahmet & Thomas Lingefjärd Symbolen π och tredimensionellt arbete med Geogebra I grundskolans geometriundervisning möter elever oftast tvådimensionella former trots att de har störst vardagserfarenhet
Grundläggande matematisk statistik
Grundläggande matematisk statistik Flerdimensionella Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Flerdimensionella Ett slumpförsök kan ge upphov till flera (s.v.): kast med
Samband och förändringar Olika proportionella samband, däribland dubbelt och hälften.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
MATEMATIK 3.5 MATEMATIK
3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
8A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.
8A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier
matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall
Koll på 1B matematik FACIT Läxbok Hanna Almström Pernilla Tengvall Sanoma Utbildning 7 7Hälften och dubbelt av antal, strategier Rita dubbelt så många. Skriv. 2 4 6 4 8 5 Minska med 1. Öka med 1. 1 + 1
Kombinatorik. Kapitel 2. Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av
Kapitel 2 Kombinatorik Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av det antal sätt, på vilket elementen i en given mängd kan arrangeras i delmängder på något sätt.
Explorativ övning 5 MATEMATISK INDUKTION
Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk
Ma7-Per: Geometri. Det tredje arbetsområdet handlar om geometri.
Ma7-Per: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda
7F Ma Planering v2-7: Geometri
7F Ma Planering v2-7: Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar
8F Ma Planering v2-7 - Geometri
8F Ma Planering v2-7 - Geometri Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar
Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. En uppgift per blad och inga svar på baksidan av bladen Lycka till!
Matematik 4-6 II Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 4 hp Studenter i lärarprogrammet LAG 4-6 T3 15 högskolepoäng Tentamensdatum: 15-01-15 Tid: 09.00 13.00 Hjälpmedel: Lgr 11,
Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning
Allmänt om proven Detta prov består av del 1 och. Här finns också facit och förslag till poängsättning och bedömning. Provet finns på lärarwebben, dels som pdf-fil och dels som redigerbar Word-fil. Del
Kombinatorik och sannolikhetslära
Grunder i matematik och logik (2018) Kombinatorik och sannolikhetslära Marco Kuhlmann Sannolikhetslära Detta avsnitt är för det mesta en kompakt sammanfattning av momentet sannolikhetslära som ingår i
"Läsårs-LPP med kunskapskraven för matematik"
"Läsårs-LPP med kunskapskraven för matematik" Grundskola 4 6 1 LPP för hela läsåret med tillhörande kunskapskrav i matrisform Skapad 2016-08-17 av Charlotte Steinwig i Lerbäckskolan 4-6, Lund Grundskolor
Lotto. Singla slant. Vanliga missuppfattningar vad gäller slumpen. Slumpen och hur vi uppfattar den - med och utan tärning
Slumpen och hur vi uppfattar den - med och utan tärning Ingemar Holgersson Högskolan Kristianstad grupper elever Gr, 7, 9 och. grupp lärarstudenter inriktning matematik Ca i varje grupp Gjord i Israel
9E Ma Planering v2-7 - Geometri
9E Ma Planering v2-7 - Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (45 min): Läsa på anteckningar
Steg 1 Klipp ut de figurer du behöver! Steg 2 Bygg din rymdraket! Matematikuppgift 1
Matematikuppgift 1 Rymdraketen - Nivå 1 Nu ska du bygga en rymdraket med hjälp av geometriska figurer. Det du måste börja med är att klippa ut de geometriska figurerna som du behöver för att bygga ihop
Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik
Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs
Kombinatorik 6.19. Förenkla C(n+1,2)-C(n,2) och C(n+1,3)-C(n,3)
Kombinatorik 6.19 Förenkla C(n+1,2)-C(n,2) och C(n+1,3)-C(n,3) S: Sitter med med uppgift 6.19 a och b i EA och trots att det finns lösningsförslag till a på hemsidan så förstår jag inte. C(n+1,2) - C(n,2)
MA 1202 Matematik B Mål som deltagarna skall ha uppnått efter avslutad kurs.
MA 202 Matematik B Mål som deltagarna skall ha uppnått efter avslutad kurs. Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för tillämpningar och vald studieinriktning
MATEMATIK 5.5 MATEMATIK
5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Armin Halilovic: EXTRA ÖVNINGAR
KOMBINATORIK I kombinatoriken sysslar man huvudsakligen med beräkningar av antalet sätt på vilket element i en given lista kan arrangeras i dellistor. Centrala frågor i kombinatoriken är: " Bestäm antalet..."
Lgr 11 matriser i Favorit matematik 4 6
Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://w3.msi.vxu.se/users/pa/vektorgeometri/gymnasiet.html Institutionen för datavetenskap, fysik och matematik Linnéuniversitetet Vektorer i planet
Problemdemonstration 1
Problemdemonstration 1 Divisorsummor och perfekta tal Låt oss för ett givet positivt naturligt tal x, summera alla naturliga tal d som x är delbar med, och som är mindre än x. Talen d kallas divisorer
Storvretaskolans Kursplan för Matematik F-klass- år 5
2010-11-01 Storvretaskolans Kursplan för Matematik F-klass- år 5 Skolan skall i sin undervisning sträva efter att eleven : utvecklar intresse för matematik samt tilltro till det egna tänkandet och den
kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt
Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda
Kapitel 2. Grundläggande sannolikhetslära
Sannolikhetslära och inferens II Kapitel 2 Grundläggande sannolikhetslära 1 Att beräkna en sannolikhet I många slumpförsök gäller att alla utfall i S är lika sannolika. Exempel: Tärningskast, slantsingling.
4-10 Rymdgeometri fördjupning Namn:..
4-10 Rymdgeometri fördjupning Namn:.. Inledning I kapitlet om rymdgeometri lärde du dig känna igen de vanligaste tredimensionella kropparna, och hur man beräknar deras yta och volym. I detta kapitel skall
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter
Rep 1 NÅGOT EXTRA. Sidan 88. Sidan 85. Sidan 89. Sidan 86. Sidan 87. Sidan 90
2 VOLYM OCH SKALA / REP 1 FACIT TILL ELEVBOKEN 125 a dl b ml c cl d l 126 5 st 127 200 cm 3 (2 dl = 0,2 l = 0,2 dm 3 = 200 cm 3 ) Sidan 85 128 A B C D Vas tom 235 g 528 g 0,85 kg 1,250 kg Vas med vatten
Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl
1 Matematiska Institutionen KTH Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl 14.00-19.00. Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel är tillåtna
Matematikdidaktik för bättre matematikkunskaper Jonas Bergman Ärlebäck
Version 206-04-20 Fraktaler En fraktal brukar man beskriva som en geometrisk figur som består av mindre kopior av sig själv. Den upprepar sig själv på ett sådant sätt att varje liten del av figuren är
En parallellogram har delats i två delar P och Q som figuren visar. Vilket av följande påståenden är säkert sant?
En parallellogram har delats i två delar P och Q som figuren visar. Vilket av följande påståenden är säkert sant? P har större omkrets än Q. P har mindre omkrets än Q. P har mindre area än Q Q och P har
Catherine Bergman Maria Österlund
Lgr 11 Matematik Åk 3 Geometri, mätningar och statistik FA C I T Catherine Bergman Maria Österlund Kan du använda geometriska begrepp? Kan du beskriva figurernas egenskaper, likheter och skillnader? Skriv
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte
Matematik Syfte Matematiken har en mångtusenårig historia med bidrag från många kulturer och har utvecklats ur människans praktiska behov och naturliga nyfikenhet. Matematiken är kreativ och problemlösande
Bedömning för lärande i matematik
HANDLEDNING TILL Bedömning för lärande i matematik FÖR ÅRSKURS 1 9 1 Handledning I denna handledning ges förslag på hur du kan komma igång med materialet Bedömning för lärande i matematik åk 1 9. Du börjar
Upprepade mönster (fortsättning från del 1)
Modul: Algebra Del 2: Resonemangsförmåga Upprepade mönster (fortsättning från del 1) Anna-Lena Ekdahl och Robert Gunnarsson, Högskolan i Jönköping Ett viktigt syfte med att arbeta med upprepade mönster
Golv, Tapeter, och andra Mönster
Golv, Tapeter, och andra Mönster De Arkimediska plattläggningarna Tänk dig att du ska lägga ett golv. Till ditt förfogande har du plattor av varierande utseende, men alla är så kallade reguljära månghörningar,
Matematik 92MA41 (15hp) Vladimir Tkatjev
Matematik 92MA41 (15hp) Vladimir Tkatjev Med anledning av de nya kursplanerna har Strävorna reviderats. Formen, en matris med rutor, är densamma men istället för att som tidigare anknyta till mål att sträva
Kursplanen i matematik 2011 - grundskolan
Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust
Skolverkets förslag till kursplan i matematik i grundskolan. Matematik
Matematik Matematiken har en mångtusenårig historia med bidrag från många kulturer. Den har utvecklats ur människans praktiska behov och hennes naturliga nyfikenhet och lust att utforska. Matematisk verksamhet
Övningshäfte 1: Induktion, rekursion och summor
LMA100 VT2006 ARITMETIK OCH ALGEBRA DEL 2 Övningshäfte 1: Induktion, rekursion och summor Övning A 1. Kan ni fortsätta följden 1,3,5,7,9,11,...? 2. Vilket är det 7:e talet i följden? Vilket är det 184:e?
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen.
Sidor i boken 40-4 Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Läxa 1. En rät linje, L 1, skär y-axeln
Matematik. Ämnesprov, läsår 2013/2014. Delprov B. Årskurs. Elevens namn och klass/grupp
Ämnesprov, läsår 2013/2014 Matematik Delprov B Årskurs 6 Elevens namn och klass/grupp Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta
Lokal pedagogisk planering
Lokal pedagogisk planering RO/Skola: Rebbelberga skola Arbetsområde: Taluppfattning Ämne: Matematik Termin/År: ht 2013 Årskurs: 1 Ämnets syfte enligt grundskolans kursplan: Genom undervisningen i ämnet
Försök med matematik och Mattehuset Tema Trollkarlen
Försök med matematik och Mattehuset Tema Trollkarlen PROVLEKTION: Att mäta runda saker Följande provlektion är ett utdrag ur Försök med matematik och Mattehuset Tema Trollkarlen. Lektionerna handlar om
Andragradsekvationer möter elever under sitt första år på gymnasiet.
Christoph Kirfel Komplettera kvadraten och kuben med bilder Elever som för första gången ställs inför att lösa andragradsekvationer kan få hjälp att förstå kvadratkomplettering med hjälp av väl uttänkta
ALGORITMER, OPTIMERING OCH LABYRINTER
ALGORITMER, OPTIMERING OCH LABYRINTER Text: Marie Andersson, Learncode AB Illustrationer: Li Rosén Foton: Shutterstock Har du någonsin lagat mat efter recept eller monterat ihop en möbel från IKEA? Då
Här är två korta exempel på situationer då vi tillämpar den distributiva lagen:
Modul: Algebra Del 8: Avslutande reflektion och utvärdering Distributiva lagen Cecilia Kilhamn, Göteborgs Universitet Distributiva lagen a (b + c) = a b + a c Den distributiva lagen kallas den räknelag
2. 1 L ä n g d, o m k r e t s o c h a r e a
2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda
Lösningar och lösningsskisser
Lösningar och lösningsskisser Diskret matematik för gymnasiet, :a upplagan, Liber AB Kapitel, Sannolikhetslära och Kombinatorik 0. a) ( ) ( ) h!! ( )!!! 9!! 9!!! h! ( h)!! h! ( h)!! h! ( h)! Likheten är
Om Lgr 11 och Favorit matematik 4 6
Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med
Mönster och Algebra. NTA:s första matematiktema. Per Berggren
Mönster och Algebra NTA:s första matematiktema Per Berggren 1 Lgr11- Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Lära och namnge färger, Rekonstruera motiv från kort, fri lek
Art.Nr. 21007 ToPoLoGo Geo Innehåll: 1 trälåda Ålder: 4+ Antal spelare: 1+ 52 byggklossar (12 gula kvadrater, 4 gula halvdiskar (halvcirklar), 8 gröna rektanglar, 8 gröna "broar", 4 blå "broar", 4 blå
Delprov A Muntligt delprov
Delprov A Muntligt delprov Äp6Ma15 Delprov A 15 Beskrivning av delprov A, muntligt delprov Det muntliga delprovet kan genomföras fr.o.m. vecka 11 och resten av vårterminen. Det muntliga delprovet handlar
En av matematikhistoriens mest berömda trianglar är Pascals triangel,
Michael Naylor Okända skrymslen i Pascals triangel Pascals triangel, som har varit känd av indiska, persiska, arabiska och kinesiska matematiker i mer än tusen år, fick sitt nuvarande namn i mitten av
Om Lgr 11 och Favorit matematik 4 6
Om Lgr och Favorit matematik 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med undervisningen
Skolmatematiktenta LPGG06 Kreativ Matematik Delkurs 2 21 januari
Skolmatematiktenta LPGG06 Kreativ Matematik Delkurs 2 21 januari 2016 8.15 13.15 Hjälpmedel: Miniräknare Ansvarig lärare: Maria Lindström 054-7002146 eller 070-5699283, Kristina Wallin 054-7002316 eller
Ämnesplan i matematik för Häggenås, Bringåsen och Treälven
Ämnesplan i matematik för Häggenås, Bringåsen och Treälven (2009-05-14) Namn Utarbetad under läsåret 08/09 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik
Avd. Matematik VT z = 2 (1 + 3i) = 2 + 6i, z + w = (1 + 3i) + (1 + i) = i + i = 2 + 4i.
STOCKHOLMS UNIVERSITET iagnostiskt prov Lösningar MTEMTISK INSTITUTIONEN Vektorgeometri och funktionslära vd. Matematik VT 20 Lösning till uppgift (Komplexa tal) Vi börjar med första och andra uträkningen.
Addition och subtraktion generalisering
Modul: Algebra Del 8: Avslutande reflektion och utvärdering Addition och subtraktion generalisering Håkan Lennerstad, Blekinge Tekniska Högskola & Cecilia Kilhamn, Göteborgs Universitet Detta lärandeobjekt
Lathund, geometri, åk 9
Lathund, geometri, åk 9 I årskurs 7 och 8 räknade ni med sträckor och ytor i en dimension (1D) respektive två dimensioner (2D). Nu i årskurs 9 har ni istället börjat räkna volymer av geometriska kroppar
Läroplanens mål. Målen för eleverna i grundskolan är i läroplanen uppdelad i mål att sträva mot och mål att uppnå.
Läroplanens mål Målen för eleverna i grundskolan är i läroplanen uppdelad i mål att sträva mot och mål att uppnå. Mål att sträva mot är det som styr planeringen av undervisningen och gäller för alla årskurser.
TAMS79: Föreläsning 4 Flerdimensionella stokastiska variabler
TAMS79: Föreläsning 4 Flerdimensionella stokastiska variabler Johan Thim (johan.thim@liu.se) 1 november 18 Vi fokuserar på två-dimensionella variabler. Det är steget från en dimension till två som är det
matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall
Koll på 2B matematik FACIT Läxbok Hanna Almström Pernilla Tengvall Sanoma Utbildning 7 7Addition, subtraktion Dubbelt. Skriv. 2 + 2 = 5 + 5 = + = + = 6 8 9 + 9 = 7 + 7 = 8 + 8 = 6 + 6 = 8 6 2 Tiokamrater.
Extramaterial till Matematik Y
LIBR PROGRAMMRING OH DIGITAL KOMPTNS xtramaterial till Matematik Y NIVÅ TVÅ Geometri LÄRAR Desmos Geometry är ett matematikverktyg som bland annat kan hjälpa dig att avbilda geometriska figurer och göra
Röda tråden. Skyttorps skola, Vattholmaskolan, Pluggparadiset, Storvretaskolan och Ärentunaskolan Reviderad:
Matematik Åk 1 Åk 2 Åk 3 Taluppfattning och tals användning. Naturliga tal och deras egenskaper samt hur talen kan delas upp och hur det kan användas för att ange antal och ordning. Kunna läsa och skriva
GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april
GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare Karlstads universitet 19-0 april Exempel på elevaktiviteter framtagna i skolutvecklingsprojektet IKT och lärande i matematik 1
Matematisk Statistik och Disktret Matematik, MVE051/MSG810, VT19
Matematisk Statistik och Disktret Matematik, MVE051/MSG810, VT19 Nancy Abdallah Chalmers - Göteborgs Universitet March 25, 2019 1 / 36 1. Inledning till sannolikhetsteori 2. Sannolikhetslagar 2 / 36 Lärare
Planering - Geometri i vardagen v.3-7
Planering - Geometri i vardagen v.3-7 Syfte Undervisningen i ämnet matematik ska syfta till att eleverna utvecklar kunskaper om matematik och matematikens användning i vardagen och inom olika ämnesområden.
En glimt av Mr Mxyzptlks värld
per-eskil persson En glimt av Mr Mxyzptlks värld Med utgångspunkt i serien tålmannen undersöks vad som händer när vardagliga geometriska objekt som kuben och tetraedern flyttas till fjärde och femte dimensionen.