Inbyggda funktioner i MATLAB

Storlek: px
Starta visningen från sidan:

Download "Inbyggda funktioner i MATLAB"

Transkript

1 Inbyggda funktioner i MATLAB MATLAB innehåller som vi redan sett ett stort antal inbyggda funktioner (se Holly Moore: Appendix A, Chapman avsn. 2.14, MATLAB 8 avsn. 2.3, 2.6): Elementär matematik: abs,exp,log10,rem,sqrt,sum, Trigonometri: sin,cos,tan,asin,atan,sinh,atanh, Komplexa tal: abs,angle,conj,imag,real,isreal, Avrundning: ceil,fix,floor,ceil Slumptal: rand,randn,randi Matriser: ones,xeros,eye,det,sum, Dataanalys: max,min,mean,median,std,sort,size, In- och utmatning: input,disp,fprintf,save,load, Diagram i 2D: plot,polar,pie,bar,axis,legend,text Diagram i 3D: plot3,mesh,pie3,bar3, Symbolisk matematik: diff,int,matlabfunction,simplify,solve Special: pi,eps,i,j,inf,nan, Numeriska metoder: polyfit,polyval,quad,integral, fzero,root,ode45,ode23, Föreläsning 6 sid.1 SF 1518/19 ht sept.

2 Egendefinierade funktioner på.m-fil Väljer man function i menyn under knappen så får man denna mall i editorn: function [ output_args ] = untitled2( input_args ) %UNTITLED2 Summary of this function goes here % Detailed explanation goes here end Där ersätter man untitled2 med ett funktionsnamn, som inte kolliderar med de inbyggda, input_args med parameter(-rar), output_args med resultatvariabel(-ler), satser som bl.a. som ger resultatvärde i funktionskroppen (i det blanka före end). Exempel: function res = kvotkub(x,y) if x==0 & y==0 disp( 0/0, bryt? ); pause else res=x^3/y^3; end Sparas med knappen Save under namnet kvotkub.m Kan användas direkt: kvotkub(36,3) ger 1728 kvotkub(1,0) ger Inf Föreläsning 6 sid.2 SF 1518/19 ht sept.

3 Egendefinierade anonyma (inline) funktioner och funktionshandtag Man kan också definiera en anonym funktion direkt i programmet: kvotkuban och anropa på samma sätt. Man skapar då ett funktionshandtag (function handle) och lägger det i variabeln, här kvotkuban. Man kan skapa ett funktionshandtag på många fler sätt: + för en sparad funktion: kv + från ett namn i en sträng: kv = str2func( kvotkub ) + för en symbolisk funktion: syms x; f=sin(sin(x)); sinsin = matlabfunction(f) kv(36,3) ger 1728 Föreläsning 6 sid.3 SF 1518/19 ht sept.

4 Funktioner som parametrar Man kan ge funktionshandtag (eller strängar med funktionsnamn eller funktionsuttryck) som parametrar till funktioner: function res=computef2(f,a,b);res=f(a,b); end Anropas eller v=computef2(kv,36,3) (kv sattes men v=computef2(kvotkub,36,3) ger Error Ett antal bra funktioner för numeriska metoder anropas med funktionshandtag eller strängar som första parametrar: fzero( cos,[0,pi]) fzero( exp(x)-2,[0 1]) 10],[ ]) med function r=de(x,y); r=[y(2) -2*x*y(2)-y(1)^2]; Föreläsning 6 sid.4 SF 1518/19 ht sept.

5 Hitta rötter till icke-linjära ekvationer Rötterna till en ekvation, f(x)=0 kan i de flesta fall inte uttryckas i exakt eller sluten form utan behöver approximeras. Flertalet metoder för att hitta rötterna bygger på att man hittar en startapproximation och sedan iterativt (upprepat) hittar bättre approximationer. Metoderna konvergerar om man startar tillräckligt nära roten. En bra förberedelse för att hitta ett startvärde är att rita upp f(x). Exempel: Man vill veta om f(x) = x 3-3 x = 0 har fler rötter än den uppenbara 3. Låt oss på försök titta på intervallet [-2:4] och rita kurvan och linjen y=0. x=-2:0.01:4; f=x.^3-3.^x; plot(x,0.*x,x,f) Föreläsning 6 sid.5 SF 1518/19 ht sept.

6 Kurvan och noll-linjen En rot 2,5 utöver den uppenbara 3. Föreläsning 6 sid.6 SF 1518/19 ht sept.

7 Intervallhalvering Om man vet att i f(x)=0 funktionen f(x) har olika tecken i ändpunkterna av ett intervall, [a, b], (och är kontinuerlig) så måste det finnas minst en rot i intervallet. Med hjälp av en graf kan man stänga in precis en rot. Genom att successivt beräkna f((a+b)/2) kan man minska intervallet och stänga in rötterna, algoritm: för att hitta roten med mindre fel än epsilon. 1. m:=(a+b)/2; Bilda f(m). Om f(m)=0 så roten:=m (precis!). Avbryt. 2. Om f(m)*f(a)>0 (samma sida) a:=m, annars b:=m 3. Om b-a > epsilon så gör om från 1., annars roten:=(a+b)/2 4. Felskattning: (b-a)/2 = eps/2 För x 3-3 x = 0 finns en rot i intervallet [2.2, 2.8]. Föreläsning 6 sid.7 SF 1518/19 ht sept.

8 Exempel på intervallhalvering För x 3-3 x = 0 finns en rot, r, i intervallet [2.2, 2.8]. Lås oss beräkna den med tre decimaler, osäkerhet E< 5*10-4. Från början r=2.5±0.3, E=0.3, efter ett varv E=0.15, efter n varv E=0.3*2 -n. För E< 5*10-4 krävs 0.3*2 -n <5*10-4 Tiologaritmera: -n* < , n > 9.2 I MATLAB: f=@(x)3^x-x^3 a=2.2; b=2.8; i=0; while (b-a)/2>5e-4 i=i+1; m=(a+b)/2; if f(m)*f(a)>0 a=m else b=m end end i ger 10 rot=(a+b)/2 ger E=(b-a)/2 ger 2.9e-04 Föreläsning 6 sid.8 SF 1518/19 ht sept.

9 Newton-Raphsons metod Idé: För att hitta en rot till f(x)=0 utgår man från en första Approximation x 0 och använder derivatan för att dra en tangent som skär x-axeln närmare roten och upprepar detta tills man är tillräckligt nära: x n+1 = x n f(x n )/f (x n ) Om f är ett formeluttryck så kan man normalt lätt bilda derivatan f Föreläsning 6 sid.9 SF 1518/19 ht sept.

10 Exempel (EXS 2.6) med Newton-Raphson P(x)=4x 4-7x x x 50 = 0. Hitta noga roten nära 1.5. P (x)=16x 3 21x x p=[ ] for k=1:4 %derivatan pprim(k)=(5-k)*p(k); end x=1.5; dx=1; format long ger while abs(dx/x)>1e-12 px=polyval(p,x); pprimx=polyval(pprim,x); dx=-px/pprimx; disp([x dx]); x=x+dx; end Fördubblat antal decimaler varje varv Kvadratisk konvergens? Föreläsning 6 sid.10 SF 1518/19 ht sept.

Från förra gången: Newton-Raphsons metod

Från förra gången: Newton-Raphsons metod Från förra gången: Newton-Raphsons metod Idé: För att hitta en rot till f(x)=0 utgår man från en första Approximation x 0 och använder derivatan för att dra en tangent som skär x-axeln närmare roten och

Läs mer

LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering

LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med

Läs mer

LABORATION cos (3x 2 ) dx I =

LABORATION cos (3x 2 ) dx I = SF1518,SF1519,numpbd14 LABORATION 2 Trapetsregeln, ekvationer, ekvationssystem, MATLAB-funktioner Studera kapitel 6 och avsnitt 5.2.1, 1.3 och 3.8 i NAM parallellt med arbetet på denna laboration. Genomför

Läs mer

Newtons metod. 1 Inledning. 2 Newtons metod. CTH/GU LABORATION 6 MVE /2013 Matematiska vetenskaper

Newtons metod. 1 Inledning. 2 Newtons metod. CTH/GU LABORATION 6 MVE /2013 Matematiska vetenskaper CTH/GU LABORATION 6 MVE011-2012/2013 Matematiska vetenskaper 1 Inledning Newtons metod Vi skall fortsätta med att lösa ekvationer. I förra veckan såg vi på intervallhalveringsmetoden. Den är pålitlig men

Läs mer

Ickelinjära ekvationer

Ickelinjära ekvationer Löpsedel: Icke-linjära ekvationer Ickelinjära ekvationer Beräkningsvetenskap I Varför är det svårt att lösa icke-linjära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod

Läs mer

Linjärisering och Newtons metod

Linjärisering och Newtons metod CTH/GU STUDIO 5 TMV36a - 214/215 Matematiska vetenskaper 1 Inledning Linjärisering och Newtons metod Vi skall fortsätta med att lösa ekvationer. I förra studioövningen såg vi på intervallhalveringsmetoden.

Läs mer

Föreläsning 1. Numeriska metoder grundkurs II, DN1240. Carina Edlund Mottagningstid i rum 4516: onsdagar kl.

Föreläsning 1. Numeriska metoder grundkurs II, DN1240. Carina Edlund Mottagningstid i rum 4516: onsdagar kl. Föreläsning 1 Numeriska metoder grundkurs II, DN1240 Carina Edlund carina@nada.kth.se Mottagningstid i rum 4516: onsdagar kl. 13-15 Kurshemsida: http://www.csc.kth.se/utbildning/kth/kurser/dn1240/numi09/

Läs mer

Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration

Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration 10 februari 2017 Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration Syfte med övningen: Introduktion till ett par numeriska metoder för lösning av ekvationer respektive

Läs mer

Block 5: Ickelineära. ekvationer? Läroboken. Löpsedel: Icke-lineära. ekvationer. Vad visade laborationen? Vad visade laborationen?

Block 5: Ickelineära. ekvationer? Läroboken. Löpsedel: Icke-lineära. ekvationer. Vad visade laborationen? Vad visade laborationen? Block 5: Ickelineära ekvationer Löpsedel: Icke-lineära ekvationer Varför är det svårt att lösa ickelineära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod Noggrannhet/stoppvillkor

Läs mer

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 8-12, 19:e Mars, 2019 Provkod: TEN1 Hjälpmedel:

Läs mer

Lösningsförslag Tentamen i Beräkningsvetenskap I, 5.0 hp,

Lösningsförslag Tentamen i Beräkningsvetenskap I, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Lösningsförslag Tentamen i Beräkningsvetenskap I, 5. hp, 14-6-4 Kursmål (förkortade), hur de täcks i uppgifterna och maximalt

Läs mer

% Föreläsning 4 22/2. clear hold off. % Vi repeterar en liten del av förra föreläsningen:

% Föreläsning 4 22/2. clear hold off. % Vi repeterar en liten del av förra föreläsningen: % Föreläsning 4 22/2 clear hold off % Vi repeterar en liten del av förra föreläsningen: % Vi kan definiera en egen funktion på följande sätt: f = @(x) 2*exp(-x/4) + x.^2-7*sin(x) f(2) % Detta ger nu funktionsvärdet

Läs mer

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 14-18, 13:e Mars, 2018 Provkod: TEN1 Hjälpmedel:

Läs mer

Linjärisering, Jacobimatris och Newtons metod.

Linjärisering, Jacobimatris och Newtons metod. Linjärisering, Jacobimatris och Newtons metod Analys och Linjär Algebra, del C, K/Kf/Bt, vt0 Inledning Vi skall lösa system av icke-linjära ekvationer Som exempel kan vi ta, x = 0, x = 0, som är ett system

Läs mer

Newtons metod och arsenik på lekplatser

Newtons metod och arsenik på lekplatser Newtons metod och arsenik på lekplatser Karin Kraft och Stig Larsson Beräkningsmatematik Chalmers tekniska högskola 1 november 2004 Introduktion Denna övning ingår i Lärardag på Chalmers för kemilärare

Läs mer

Newtons metod. 1 Inledning. CTH/GU LABORATION 3 MVE /2014 Matematiska vetenskaper

Newtons metod. 1 Inledning. CTH/GU LABORATION 3 MVE /2014 Matematiska vetenskaper CTH/GU LABORATION 3 MVE270-2013/2014 Matematiska vetenskaper Newtons metod 1 Inledning Vi skall lösa system av icke-linjära ekvationer. Som exempel kan vi ta, { x1 (1 + x 2 2) 1 = 0 x 2 (1 + x 2 1 ) 2

Läs mer

Laboration 3. Funktioner, vektorer, integraler och felskattning

Laboration 3. Funktioner, vektorer, integraler och felskattning 1 SF1520 K2 HT2014 NA 21 december 2015 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,

Läs mer

Icke-linjära ekvationer

Icke-linjära ekvationer stefan@it.uu.se Exempel x f ( x = e + x = 1 5 3 f ( x = x + x x+ 5= 0 f ( x, y = cos( x sin ( x + y = 1 Kan endast i undantagsfall lösas exakt Kan sakna lösning, ha en lösning, ett visst antal lösningar

Läs mer

Labb 3: Ekvationslösning med Matlab (v2)

Labb 3: Ekvationslösning med Matlab (v2) Envariabelanalys Labb 3: Ekvationslösning 1/13 Labb 3: Ekvationslösning med Matlab (v2) Envariabelanalys 2007-03-05 Björn Andersson (IT-06), bjoa@kth.se Johannes Nordkvist (IT-06), nordkv@kth.se Det finns

Läs mer

Institutionen för Matematik. F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar

Institutionen för Matematik. F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar Institutionen för Matematik Göteborg F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar Heath 1: a) -01416 resp -0046 b) -0001593 resp -000051 c) 000165

Läs mer

Variabler och konstanter

Variabler och konstanter Variabler och konstanter Deklareras automatisk när man stoppar in data i dem. X = 7 Y = A Z = Kalle Definieras av att de har: ett namn (X) en datatyp (Integer) ett värde (t.ex. 7) Lagras i datorns minne!

Läs mer

Intervallhalveringsmetoden, GKN sid 73. Sekantmetoden, GKN sid 79

Intervallhalveringsmetoden, GKN sid 73. Sekantmetoden, GKN sid 79 e x sin(x) = 2 Intervallhalveringsmetoden, GKN sid 73 f(x) = 0 = Roten finns x f(x) i intervallet Skrivs Intervallangd ----------------------------------------------------------------------------- 1.0-0.1232

Läs mer

Beräkning av integraler

Beräkning av integraler Beräkning av integraler a b f(x) dx = {ytan mellan kurvan och x-axeln från a till b} Många tekniska beräkningsproblem kan formuleras som integraler. En del integraler kan beräknas exakt men flertalet kan

Läs mer

Tentamen del 1 SF1511, , kl , Numeriska metoder och grundläggande programmering

Tentamen del 1 SF1511, , kl , Numeriska metoder och grundläggande programmering KTH Matematik Tentamen del SF5, 28-3-6, kl 8.-., Numeriska metoder och grundläggande programmering Namn:... Personnummer:... Program och årskurs:... Bonuspoäng. Ange dina bonuspoäng från kursomgången HT7-VT8

Läs mer

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 017-0-14 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)

Läs mer

Laboration 3. Funktioner, vektorer, integraler och felskattning

Laboration 3. Funktioner, vektorer, integraler och felskattning 1 SF1520 VT2017 NA, KTH 16 januari 2017 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,

Läs mer

Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2

Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Kursen avses ge dig kunskap om numeriska metoder, hur man kan använda dessa genom elementär programmering i MATLAB samt

Läs mer

MMA132: Laboration 1 Introduktion till MATLAB

MMA132: Laboration 1 Introduktion till MATLAB MMA132: Laboration 1 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med kombinationer

Läs mer

Introduktion till Matlab

Introduktion till Matlab Introduktion till Matlab Analys och Linjär Algebra, del A, K1/Kf1/Bt1, ht10 1 Inledning Ni kommer använda Matlab i nästan alla kurser i utbildningen. I matematikkurserna kommer vi ha studio-övningar nästan

Läs mer

Fixpunktsiteration. Kapitel Fixpunktsekvation. 1. f(x) = x = g(x).

Fixpunktsiteration. Kapitel Fixpunktsekvation. 1. f(x) = x = g(x). Kapitel 5 Fixpunktsiteration 5.1 Fixpunktsekvation En algebraisk ekvation kan skrivas på följande två ekvivalenta sätt (vilket innebär att lösningarna är desamma). 1. f(x) = 0. En lösning x kallas en rot

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Datorlektion 4. Funktioner 1 Egna Funktioner Uppgift 1.1 En funktion f(x) ges av uttrycket 0, x 0, f(x)= sin(x), 0 < x π 2, 1, x > π 2 a) Skriv en Matlab funktion

Läs mer

MMA132: Laboration 2 Matriser i MATLAB

MMA132: Laboration 2 Matriser i MATLAB MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen

Läs mer

Numeriska metoder, grundkurs II. Dagens program. Hur skriver man en funktion? Administrativt. Hur var det man gjorde?

Numeriska metoder, grundkurs II. Dagens program. Hur skriver man en funktion? Administrativt. Hur var det man gjorde? Numeriska metoder, grundkurs II Övning 1 för I2 Dagens program Övningsgrupp 1 Johannes Hjorth hjorth@nada.kth.se Rum 163:006, Roslagstullsbacken 35 08-790 69 00 Kurshemsida: http://www.csc.kth.se/utbildning/kth/kurser/2d1240/numi07

Läs mer

TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen.

TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen. TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen. 2008 10 14 A. Talsystemen. (Adams P.1. Anteckningar från introkursen.) N de naturliga talen Z de hela talen Q de rationella

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en

Läs mer

Numeriska Metoder och Grundläggande Programmering för P1, VT2014

Numeriska Metoder och Grundläggande Programmering för P1, VT2014 Numeriska Metoder och Grundläggande Programmering för P1, VT2014 Föreläsning 2: Styrstrukturer & Programmeringsstrategi (Kap. 3 4 i MATLAB Programming for Engineers, S. Chapman) January 21, 2014 Innehåll:

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.

Läs mer

Numeriska metoder, grundkurs II. Dagens program. Gyllenesnittminimering, exempel Gyllenesnittetminimering. Övningsgrupp 1

Numeriska metoder, grundkurs II. Dagens program. Gyllenesnittminimering, exempel Gyllenesnittetminimering. Övningsgrupp 1 Numeriska metoder, grundkurs II Övning 5 för I Dagens program Övningsgrupp 1 Johannes Hjorth hjorth@nada.kth.se Rum :006, Roslagstullsbacken 5 08-790 69 00 Kurshemsida: http://www.csc.kth.se/utbildning/kth/kurser/d0/numi07

Läs mer

) + γy = 0, y(0) = 1,

) + γy = 0, y(0) = 1, Institutionen för Matematik, KTH Tentamen del Numeriska metoder SF545 8.00-.00 / 04 Inga hjälpmedel är tillåtna (ej heller miniräknare). Råd för att undvika poängavdrag: Skriv lösningar med fullständiga

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Föreläsning 5 Institutionen för matematik KTH 5 september 2017 Hur mycket behöver man jobba? Vi har ett gemensamt ansvar: Jag visar vad som behöver göras Men det är ni som måste göra det Viktigt faktum:

Läs mer

Om datorns användning matematikundervisningen

Om datorns användning matematikundervisningen i Om datorns användning matematikundervisningen Syftet med denna artikel är att diskutera, och ge några exempel på, hur datorn med fördel kan användas i matematikundervisningen. Karl Greger och Thomas

Läs mer

Introduktion till Matlab

Introduktion till Matlab Introduktion till Matlab Inledande matematik, I1, ht10 1 Inledning Detta är en koncis beskrivning av de viktigaste delarna av Matlab. Till en början är det enkla beräkningar och grafik som intresserar

Läs mer

Introduktion till MATLAB

Introduktion till MATLAB 29 augusti 2017 Introduktion till MATLAB 1 Inledning MATLAB är ett interaktivt program för numeriska beräkningar med matriser. Med enkla kommandon kan man till exempel utföra matrismultiplikation, beräkna

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 18:e augusti klockan

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 18:e augusti klockan MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 18:e augusti klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.

Läs mer

Kapitel 4. Iterativ lösning av ekvationer

Kapitel 4. Iterativ lösning av ekvationer Kapitel 4. Iterativ lösning av ekvationer Vi skall nu undersöka, har man löser numeriskt ekvationer av formen f(x) = 0. Dylika ekvationer kallas också olinjära, eftersom funktionen oftast har ett olinjärt

Läs mer

Funktionsstudier med derivata

Funktionsstudier med derivata Funktionsstudier med derivata Derivatan ett kraftfullt verktyg för att studera och tolka funktioner Det här avsnittet handlar om att man kan använda derivatan till att bestämma en funktions egenskaper

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.

Läs mer

Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering

Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering KTH Matemati Tentamen del 2 SF1511, 2017-03-16, l 800-1100, Numerisa metoder och grundläggande programmering Del 2, Max 50p + bonuspoäng (max 4p) Inga hjälpmedel Rättas endast om del 1 är godänd Betygsgränser

Läs mer

Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs

Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs KTH Matematik Tentamen del 1 SF154, 1-3-3, 8.-11., Numeriska metoder, grundkurs Namn:... Bonuspoäng. Ange dina bonuspoäng från kursomgången läsåret HT15/VT1 här: Max antal poäng är. Gränsen för godkänt/betyg

Läs mer

Mer om texter i MATLAB och om iterativ lösning av linjära ekvationssystem

Mer om texter i MATLAB och om iterativ lösning av linjära ekvationssystem Mer om texter i MATLAB och om iterativ lösning av linjära ekvationssystem Texter (strängar) i MATLAB skrivs omgivna av '' och behandlas som vektorer, med samma operationer: text = 'iss'; disp(['m' text

Läs mer

Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde:

Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde: TANA81: Beräkningar med Matlab - Variabler och Matriser - Logiska uttryck och Villkor - Repetitionssatser - Grafik - Funktioner Variabler I Matlab skapas en variabel genom att man anger dess namn och ger

Läs mer

17.1 Kontinuerliga fördelningar

17.1 Kontinuerliga fördelningar 7. Kontinuerliga fördelningar En SV X är kontinuerlig om F X (x) är kontinuerlig för alla x F X (x) är deriverbar med kontinuerlig derivata för alla x utom eventuellt för ändligt många värden Som vi tidigare

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

Konvergens för iterativa metoder

Konvergens för iterativa metoder Konvergens för iterativa metoder 1 Terminologi Iterativa metoder används för att lösa olinjära (och ibland linjära) ekvationssystem numeriskt. De utgår från en startgissning x 0 och ger sedan en följd

Läs mer

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS

Matematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 Digitala övningar med TI-8 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 digitala övningar med TI-8 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel kan

Läs mer

Numerisk Analys, MMG410. Lecture 10. 1/17

Numerisk Analys, MMG410. Lecture 10. 1/17 Numerisk Analys, MMG410. Lecture 10. 1/17 Ickelinjära ekvationer (Konvergensordning) Hur skall vi karakterisera de olika konvergenshastigheterna för halvering, sekant och Newton? Om f(x x k+1 x ) = 0 och

Läs mer

4 Numerisk integration och av differentialekvationer

4 Numerisk integration och av differentialekvationer Matematik med Matlab M1 och TD1 1999/2000 sid. 27 av 47 4 Numerisk integration och av differentialekvationer Redovisning redovisas som tidigare med en utdatafil skapad med diary 4.1 Numerisk av ekvationer.

Läs mer

TANA81: Simuleringar med Matlab

TANA81: Simuleringar med Matlab TANA81: Simuleringar med Matlab - Textsträngar och Texthantering. - Utskrifter till fil eller skärm. - Exempel: Slumptal och Simulering. - Exempel: Rörelseekvationerna. - Vanliga matematiska problem. Typeset

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen

SF1625 Envariabelanalys Lösningsförslag till tentamen SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.

Läs mer

Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln

Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln Matlab-föreläsning (4), 10 september, 015 Innehåll m-filer (script) - fortsättning från föreläsning 1 In- och utmatning Sekvenser, vektorer och matriser Upprepning med for-slingor (inledning) Matlab-script

Läs mer

Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel

Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 3c GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning

Läs mer

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer

Läs mer

TMV225 Inledande Matematik M

TMV225 Inledande Matematik M MATEMATIK Hjälpmedel: Inga, inte ens räknedosa Chalmers tekniska högskola Datum: 201-08-28 kl. 8.0 12.0 Tentamen Telefonvakt: Anders Martinsson Telefon: 070 088 04 TMV225 Inledande Matematik M Tentan rättas

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där

Läs mer

Matlab övningsuppgifter

Matlab övningsuppgifter CTH/GU MVE5-7/8 Matematiska vetenskaper Matlab övningsuppgifter Inledning Vi skall först se hur man kan lösa system av icke-linjära ekvationer. Därefter skall vi se på optimering utan bivillkor. Vi skall

Läs mer

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och...

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och... Allt du behöver veta om MATLAB: Industristandard för numeriska beräkningar och simulationer. Används som ett steg i utvecklingen (rapid prototyping) Har ett syntax Ett teleskopord för «matrix laboratory»

Läs mer

Tentamen i Beräkningsvetenskap I/KF, 5.0 hp,

Tentamen i Beräkningsvetenskap I/KF, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I/KF, 5. hp, 215-3-17 Skrivtid: 14 17 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat

Läs mer

Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer

Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer Eddie Wadbro 18 november, 2015 Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (1 : 37)

Läs mer

TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20

TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20 Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 2016-05-31, kl 08-11 SF1547+SF1543 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20 Uppgift 1 Man vill lösa ekvationssystemet

Läs mer

MMA132: Laboration 1 & 2 Introduktion till MATLAB

MMA132: Laboration 1 & 2 Introduktion till MATLAB MMA132: Laboration 1 & 2 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med

Läs mer

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Felfortplantning och kondition

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Felfortplantning och kondition Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN2 09-02-10 Hedvig Kjellström hedvig@csc.kth.se! Repetition av FN2! Felkalkyl (GNM kap 2)! Olinjära ekvationer (GNM kap 3)! Linjära

Läs mer

Sammanfattning (Nummedelen)

Sammanfattning (Nummedelen) DN11 Numeriska metoder och grundläggande programmering Sammanfattning (Nummedelen Icke-linjära ekvationer Ex: y=x 0.5 Lösningsmetoder: Skriv på polynomform och använd roots(coeffs Fixpunkt x i+1 =G(x i,

Läs mer

Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1

Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1 Facit Tentamen i Beräkningsvetenskap I (1TD9) STS ES W K1 Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna på ett kladdpapper,

Läs mer

André Jaun, HT-2005 Anteckningar från lektioner i Numeriska Metoder fys-åk2. (Sid 60) Problemformulering. Använd matematik

André Jaun, HT-2005 Anteckningar från lektioner i Numeriska Metoder fys-åk2. (Sid 60) Problemformulering. Använd matematik André Jaun, HT-2005 Anteckningar från lektioner i Numeriska Metoder fys-åk2. (Sid 60) Lektion 5 Ekvationslösning Problemformulering Förarbete Använd matematik Begränsa sökområdet Rita Skriv funktionsprogram

Läs mer

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 14-18, 14:e Mars, 2017 Provkod: TEN1 Hjälpmedel:

Läs mer

Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering

Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering KTH Matematik Tentamen del 2 SF1511, 2018-03-16, kl 8.00-11.00, Numeriska metoder och grundläggande programmering Del 2, Max 50p + bonuspoäng (max 4p). Rättas ast om del 1 är godkänd. Betygsgränser inkl

Läs mer

Inledande matematik för I1. MVE011 läsperiod Matlab vecka 2 övningsuppgifter

Inledande matematik för I1. MVE011 läsperiod Matlab vecka 2 övningsuppgifter Inledande matematik för I1 MVE011 läsperiod 1 010 Matlab vecka övningsuppgifter Linjära ekvationssystem Matlab har många kraftfulla redskap för att hantera matriser och därmed också linjära ekvationssystem.

Läs mer

Modul 4 Tillämpningar av derivata

Modul 4 Tillämpningar av derivata Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 4 Tillämpningar av derivata Denna modul omfattar kapitel 4 i kursboken Calculus av Adams och Essex och undervisas på tre föreläsningar,

Läs mer

FÖRSÄTTSBLAD TILL TENTAMEN. ELLER (fyll bara i om du saknar tentamenskod): Datum: 16 januari Bordsnummer:

FÖRSÄTTSBLAD TILL TENTAMEN. ELLER (fyll bara i om du saknar tentamenskod): Datum: 16 januari Bordsnummer: FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 16 januari 2013 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393)

Läs mer

Numeriska metoder för fysiker Lördag , kl 10-14

Numeriska metoder för fysiker Lördag , kl 10-14 FyL, Num met för fysiker, NADA, KTH/SU, Ninni Carlsund 8--9 Numeriska metoder för fysiker Lördag 8--9, kl -4 Skrivtid 4 tim Maximal poäng 35 + bonuspoäng från årets laborationer (max 4p) Betygsgänser:

Läs mer

Omtentamen i DV & TDV

Omtentamen i DV & TDV Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2005-06-07 Skrivtid: 9-15 Hjälpmedel: inga

Läs mer

Du kan söka hjälp efter innehåll eller efter namn

Du kan söka hjälp efter innehåll eller efter namn Du kan söka hjälp efter innehåll eller efter namn Skalärer x = 2 y = 1.234 pi, inf Ex: Skriver du >> x+100*pi Så blir svaret ans = 316.1593 (observera decimalpunkt.) Vektorer v = [1 2 3 4] radvektor u

Läs mer

Komponentvisa operationer,.-notation Multiplikation (*), division (/) och upphöj till (ˆ) av vektorer följer vanliga vektoralgebraiska

Komponentvisa operationer,.-notation Multiplikation (*), division (/) och upphöj till (ˆ) av vektorer följer vanliga vektoralgebraiska Matlab-föreläsning 3 (4), 17 september, 2015 Innehåll Sekvenser (från förra föreläsningen) Upprepning med for-slingor och while-slingor Villkorssatser med if - then -else - Logik Sekvenser - repetion från

Läs mer

vux GeoGebraexempel 3b/3c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker

vux GeoGebraexempel 3b/3c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker vux 3b/3c GeoGebraexempel Till läsaren i elevböckerna i serien matematik origo finns uppgifter där vi rekommenderar användning

Läs mer

MAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp

MAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp MAA7 Derivatan 2. Funktionens egenskaper 2.1 Repetition av grundbegerepp - Det finns vissa begrepp som återkommer i nästan alla kurser i matematik. Några av dessa är definitionsmängd, värdemängd, största

Läs mer

Planering för Matematik kurs D

Planering för Matematik kurs D Planering för Matematik kurs D Läromedel: Holmström/Smedhamre, Matematik från A till E, kurs D Antal timmar: 9 (7 + ) I nedanstående planeringsförslag tänker vi oss att D-kursen studeras på 9 klocktimmar.

Läs mer

SAMMANFATTNING TATA41 ENVARIABELANALYS 1

SAMMANFATTNING TATA41 ENVARIABELANALYS 1 SAMMANFATTNING TATA4 ENVARIABELANALYS LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 04 Senast reviderad: 05-06-0 Författare: Viktor Cheng INNEHÅLLSFÖRTECKNING Diverse knep...3

Läs mer

TMV156/TMV155E Inledande matematik E, 2009

TMV156/TMV155E Inledande matematik E, 2009 TMV156/TMV155E Inledande matematik E, 2009 DATORÖVNING 2 PÅ VÄG MOT PROGRAMMERING Instruktioner Skapa en ny filkatalog ( directory ) Lab2 för denna övning. Gör alltid uppgifterna i script-filer eller funktionsfiler.

Läs mer

SF1661 Perspektiv på matematik Tentamen 24 oktober 2013 kl Svar och lösningsförslag. z 11. w 3. Lösning. De Moivres formel ger att

SF1661 Perspektiv på matematik Tentamen 24 oktober 2013 kl Svar och lösningsförslag. z 11. w 3. Lösning. De Moivres formel ger att SF11 Perspektiv på matematik Tentamen 4 oktober 013 kl 14.00 19.00 Svar och lösningsförslag (1) Låt z = (cos π + i sin π ) och låt w = 1(cos π 3 + i sin π 3 ). Beräkna och markera talet z11 w 3 z 11 w

Läs mer

f(x + h) f(x) h f(x) f(x h) h

f(x + h) f(x) h f(x) f(x h) h NUMPROG, D för M, vt 008 Föreläsning N: Numerisk derivering och integrering Inledning: numerisk lösning av analytiska problem Skillnader mellan matematisk analys och numeriska metoder. Grundläggande begrepp

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 13:e januari klockan

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 13:e januari klockan MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 13:e januari klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.

Läs mer

Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel

Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 3b GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning

Läs mer

DN1212 för M: Projektrapport. Krimskramsbollen. av Ninni Carlsund

DN1212 för M: Projektrapport. Krimskramsbollen. av Ninni Carlsund Författare: Ninni Carlsund DN1212-projekt: Krimskramsbollen Kursledare: Ninni Carlsund DN1212 för M: Projektrapport Krimskramsbollen av Ninni Carlsund. 2010-04-29 1 Författare: Ninni Carlsund DN1212-projekt:

Läs mer

Textsträngar från/till skärm eller fil

Textsträngar från/till skärm eller fil Textsträngar från/till skärm eller fil Textsträngar [Kapitel 8.1] In- och utmatning till skärm [Kapitel 8.2] Rekursion Gränssnitt Felhantering In- och utmatning till fil Histogram 2010-10-25 Datorlära,

Läs mer

Uppgift 1. (SUBPLOT) (Läs gärna help, subplot innan du börjar med uppgiften.) 1 A) Testa och förklara hur nedanstående kommandon fungerar.

Uppgift 1. (SUBPLOT) (Läs gärna help, subplot innan du börjar med uppgiften.) 1 A) Testa och förklara hur nedanstående kommandon fungerar. INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Kurskod: HF1006, HF1008 Skolår: 2016/17 armin@kth.se www.sth.kth.se/armin Redovisas under sista två (av totalt fem) labbövningar i Analys-delen. Preliminärt:

Läs mer

Sekantmetoden Beräkningsmatematik TANA21 Linköpings universitet Caroline Cornelius, Anja Hellander Ht 2018

Sekantmetoden Beräkningsmatematik TANA21 Linköpings universitet Caroline Cornelius, Anja Hellander Ht 2018 Sekantmetoden Beräkningsmatematik TANA21 Linköpings universitet Caroline Cornelius, Anja Hellander Ht 2018 1. Inledning Inom matematiken är det ofta intressant att finna nollställen till en ekvation f(x),

Läs mer

Del I: Lösningsförslag till Numerisk analys,

Del I: Lösningsförslag till Numerisk analys, Lösningsförslag till Numerisk analys, 2016-08-22. Del I: (1) Nedan följer ett antal påståenden. Använd nyckelbegreppen därunder och ange det begrepp som är mest lämpligt. Skriv rätt bokstav (a)-(l) i luckan

Läs mer

x +y +z = 2 2x +y = 3 y +2z = 1 x = 1 + t y = 1 2t z = t 3x 2 + 3y 2 y = 0 y = x2 y 2.

x +y +z = 2 2x +y = 3 y +2z = 1 x = 1 + t y = 1 2t z = t 3x 2 + 3y 2 y = 0 y = x2 y 2. Lösningar till tentamen i Inledande matematik för M/TD, TMV155/175 Tid: 2006-10-27, kl 08.30-12.30 Hjälpmedel: Inga Betygsgränser, ev bonuspoäng inräknad: 20-29 p. ger betyget 3, 30-39 p. ger betyget 4

Läs mer

Sammanfattninga av kursens block inför tentan

Sammanfattninga av kursens block inför tentan FÖRELÄSNING 14 Sammanfattninga av kursens block inför tentan BILD Vi har jobbat med numerisk metoder, datorprogram och tolkning av lösning. Numeriska metoder BILD olika områden: Linjära ekvationssytem,

Läs mer

a = a a a a a a ± ± ± ±500

a = a a a a a a ± ± ± ±500 4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att

Läs mer