F8: Resterna. Substitutionschiffer (Lab 3) Permutationer Rekursion Formelbehandling Simulering Iteration, frekvens-dubbling och kaos Radplanering

Storlek: px
Starta visningen från sidan:

Download "F8: Resterna. Substitutionschiffer (Lab 3) Permutationer Rekursion Formelbehandling Simulering Iteration, frekvens-dubbling och kaos Radplanering"

Transkript

1 F8: Resterna Substitutionschiffer (Lab 3) Permutationer Rekursion Formelbehandling Simulering Iteration, frekvens-dubbling och kaos Radplanering p 1 (21) Staffan Romberger, CSC, KTH,

2 Substitutionschiffer Caesar-rullning Ex. Alfabete: 1234; text: ; Substitution: Ett stegs cykliskt skift 1->2 2->3 3->4 4->1 % subst-chiffer alfab = [ ]; indx = [ ]; % en permutation av 1..n txt = [ ] txt2 = alfab(indx(txt)) % hur översätta tillbaka? p 2 (21) Staffan Romberger, CSC, KTH,

3 iindx(indx)=1:4 %invers-permutationen: %iindx(indx)=indx(iindx)=1:4 txt3 = alfab(iindx(txt2)) p 3 (21) Staffan Romberger, CSC, KTH,

4 ASCII och char Alla tecken : % alla ASCII tecken indx = 1:256; char(indx) pause txt = ' hej hej ö #Å' txt2 = char(indx(double(txt))) pause indx = rand_perm(256); % slump-permutation txt3 = char(indx(double(txt))) pause iindx(indx)=1:256; % invers-permutationen txt4 = char(iindx(double(txt3))) p 4 (21) Staffan Romberger, CSC, KTH,

5 Permutationer Hur generera en slumpmässig permutation av n objekt talen 1,2,,n 1. Dragning utan återläggning : Tag objekt slumpmässigt tills inga är kvar: rand_perm2 2. Kortblandning : Byt obj 1 mot slumpmässigt annat, sedan 2 mot annat, etc. Upprepa n gånger: rand_perm function indx = rand_perm2(n) % by selection w/o return tmp = 1:n; L = n; % number of items indx = tmp; for k = 1:n k1 = floor(l*rand)+1; % random selection indx(k)= tmp(k1); % save the item tmp(k1)= []; % remove it from list (*) L = L-1; % length decreases by 1 end p 5 (21) Staffan Romberger, CSC, KTH,

6 function indx = rand_perm(n) % indx is a random permutation of 1...n % algorithm: do n times % swap two elements indx = 1:n; for k = 1:n k1 = floor(n*rand)+1; % swap indx(k1), indx(k) tmp = indx(k1); indx(k1)= indx(k); indx(k)= tmp; end Denna är mycket snabbare än rand_perm2. Det beror på den dynamiska minnesallokeringen som krävs vid borttagningen av element (rad (*)). Tidtagning och användning av profil-verktyget bekräftar denna hypotes. Det senare visar att 70% av tiden i rand_perm2 ägnas åt borttagningen! p 6 (21) Staffan Romberger, CSC, KTH,

7 Permutationer och rekursion Hur generera en lista över alla permutationer av talen 1..n? Det är ganska enkelt att göra en rekursiv algoritm. * Givet en lista över permutationer av n-1 objekt, så får man listan för n genom att ersätta var och en av dem med de n olika man får genom att sätta det nya objektet i position 1, 2,, n. * Om bara ett objekt finns har listan bara ett element. 1: 1 1,2: 2 1; 1 2 1,2,3: 3 2 1;2 3 1; 2 1 3;3 1 2; 1 3 2; ,2,3,4: ; ; ; ; p 7 (21) Staffan Romberger, CSC, KTH,

8 function A = recperm(v) % generate all permutations of elements in % array v by recursion % n = length(v); if n == 1 % just return V A = v; else B = recperm(v(1:n-1)); % permute all % but the last, col = v(n)*ones(size(b(:,1))); % make a column of % correct size A = [col,b]; % first block of % rows of A end for k = 1:n-1 end A = [A;... [B(:,1:k),col,B(:,k+1:end)]]; % n-1 next blocks p 8 (21) Staffan Romberger, CSC, KTH,

9 Rekursionen kräver att hela tillståndet för funktionen sparas för n, n-1,, tills man kommer till n = 1. Då först sänds något tillbaka och listorna växer. Men här är tillståndet litet: data växer först i else-delen ovan. p 9 (21) Staffan Romberger, CSC, KTH,

10 Formelbehandling Med Matlabs»Symbolic algebra toolbox» kan man göra formelbehandling. Matlab känner till deriverings- och integrationsregler och kan göra viss formelförenkling. n = 4; syms x; A = x.^((0:n)'*(0:n)) A = [1, 1, 1, 1, 1] [1, x, x^2, x^3, x^4] [1, x^2, x^4, x^6, x^8] [1, x^3, x^6, x^9, x^12] [1, x^4, x^8, x^12, x^16] p 10 (21) Staffan Romberger, CSC, KTH,

11 Formelbehandling forts. >>D = diff(log(a)) % obs... komponentvis ln D = [0, 0, 0, 0, 0] [0, 1/x, 2/x, 3/x, 4/x] [0, 2/x, 4/x, 6/x, 8/x] [0, 3/x, 6/x, 9/x, 12/x] [0, 4/x, 8/x, 12/x, 16/x] >>syms a b; expand((a^3+b^2)^3) ans = a^9+3*a^6*b^2+3*a^3*b^4+b^6 p 11 (21) Staffan Romberger, CSC, KTH,

12 Formelbehandling forts. I laboration 5 finns en differensapproximation till derivatan av en funktion i dess vänstra ändpunkt. Låt funktionsvärdena på gitter-punkterna vara u i = u(x i ), x i = ih, i = 0,1,,N-1, N där h=l/n. Om vi approximerar funktionen med en rät linje får vi u ʹ x ) = ( u u ) / h ( Approximera istället med en parabel (x 0 = 0!) 2 u ( x) = A( x x0 ) + B( x x0) + C, uʹ ( x) = 2A( x x0) + och bestäm A, B, och C så att parabeln går genom B (x 0 +kh,u k ), k = 0,1,2: p 12 (21) Staffan Romberger, CSC, KTH,

13 syms A B C u0 u1 u2 h d e e = solve('a*0+b*0+c=u0',... 'A*h^2+B*h+C=u1',... 'A*(2*h)^2+B*(2*h)+C=u2','A','B','C'); d = 2*A*0+B; >> e.b ans = 1/2*(-3*u0-u2+4*u1)/h Det stämmer med formeln i labb 5. Man kan göra motsvarande för funktionens högra ände. p 13 (21) Staffan Romberger, CSC, KTH,

14 Formelbehandling forts. Med syms deklarerar man vilka variabler som ska vara symboliska. S = solve('eqn1','eqn2',...,'eqnn',... 'var1','var2',...'varn') löser {vari},i=1:n ur ekvationssystemet {eqni } som S.vari. subs(f, {v1 v2 vn}, {e1, e2,, en}) ersätter i formeln f variablerna vi med uttrycken ei. simplify(f) förenklar formeln f. Se hjälpen för information om hur man kan styra förenklingen. p 14 (21) Staffan Romberger, CSC, KTH,

15 Simulering Pachinko Gör ett program som simulerar en Pachinko-maskin. Se t ex Wikipedia för detaljer om pachinko, som är mycket populärt i Japan. Figur: Vänster, förkrigs mekanisk pachinko-maskin, höger vår maskin. p 15 (21) Staffan Romberger, CSC, KTH,

16 En kula faller ner genom en labyrint av spikar i ett regelbundet mönster så att vid varje spik väljer kulan med lika sannolikhet vänster eller höger. Längst ner samlas kulorna upp. Här har tre kulor ramlat igenom och en är på väg ner. Tips: Spikmattan är ett statiskt grafikobjekt som kan genereras med en slinga. Varje kula är ett eget grafikobjekt som genereras när den startar längst upp h = plot(.);. Sedan flyttas den genom set(h, xdata,x, ydata,y). En tabell bins samlar ihop ett histogram över kulornas slutlägen. Matlab kan spela ljud, men det räcker att pipa (beep) när en kula träffar en spik och göra en kort paus ( pause(0.1)) innan den flyttas till någon av de två möjliga spikarna i nästa rad. När kulan ramlat ner görs lite längre paus innan nästa kula startas. Utvidgning: Låt spelaren vinna om kulan träffar vissa speciella spikar; den försvinner då och maskinen betalar ut en vinst och spelar en låt. help sound! För den statistik-intresserade: Vad blir fördelningen för antalet kulor i lådorna? p 16 (21) Staffan Romberger, CSC, KTH,

17 %Pachinko clear all N = 10; nballs = 50; ybot = -5; bins = zeros(1,2*n+1); % bins % number of rows of nails % number of balls to play % plot the grid of nails figure(1) clf axis([0 2*N+1 ybot N+1]) hold on for k = 0:N-1 plot(-k+n:2:k+n,n-k-0.3,'.k','markersize',5) % - every second in x! end % drop the balls for m = 1:nballs x = N;y = N; % starting position h =... plot(x,y,'ok','linewidth',2,'markersize',10); % new graphics object beep, pause(0.1) for y = N-1:-1:0 x = x+2*(rand > 0.5)-1; set(h,'xdata',x,'ydata',y) % move ball to here beep, pause(0.1) p 17 (21) Staffan Romberger, CSC, KTH,

18 end end bins(x)=bins(x)+1; % collect ball in bin set(h,'xdata',x,'ydata',ybot+bins(x)*0.5) % and plot it pause(0.5) p 18 (21) Staffan Romberger, CSC, KTH,

19 Iteration, frekvensdubbling och... kaos Logistiska ekvationen (Verhulst/Perl) Eulers metod: yn+ 1 = yn + Δt ( yn yn ) y 2 n + n 1 = p ( yn yn ) :? 2 yʹ = y y : Om p liten, y n -> 1. Kontraktionssatsen? Men p stor? Prova: clear all figure(1),clf,hold on n = 400; for p = linspace(1,4,100) x = linspace(0,1,n); for k = 1:2*n x = K*x.*(1-x); end plot(p*ones(1,n),x,'.') end 2 p 19 (21) Staffan Romberger, CSC, KTH,

20 Det finns mer i Matlab Ni kan fördjupa det ni redan har sett. Ni kan lära känna Matlabs verktygslådor. Ni kan lära er objektorienterad programmering med Matlab. Kursen fortsätter med Programmeringslaborationer Numeriska metoder inkl. laborationer Projektet Tentan p 20 (21) Staffan Romberger, CSC, KTH,

21 Hur går du vidare? Använd Matlab i nummedelen och i andra kurser. Läs kursen Tillämpad datalogi (tilda). p 21 (21) Staffan Romberger, CSC, KTH,

F8: Resterna. Substitutionschiffer. Permutationer. ASCII och char. Substitutionschiffer (Lab 3) Permutationer Rekursion

F8: Resterna. Substitutionschiffer. Permutationer. ASCII och char. Substitutionschiffer (Lab 3) Permutationer Rekursion F8: Resterna Substitutionschiffer (Lab 3) Permutationer Rekursion Formelbehandling Skrivning och läsning med formatstyrning forts. Substitutionschiffer Caesar-rullning Ex. Alfabete: 1234; text: 2 3 1 1

Läs mer

Matlab-repetition. p 1 (25) Staffan Romberger, CSC, KTH,

Matlab-repetition. p 1 (25) Staffan Romberger, CSC, KTH, Matlab-repetition Substitutionschiffer Permutationer Rekursion Function functions Fil-skrivning och läsning med formatstyrning Formelbehandling Ank-race p 1 (25) Staffan Romberger, CSC, KTH, 2012-09-19

Läs mer

Komplexa tal. F4 (5): Datastrukturer (kap. 6 7)

Komplexa tal. F4 (5): Datastrukturer (kap. 6 7) F4 (5): Datastrukturer (kap. 6 7) komplexa tal strängar och textbehandling glesa tabeller celltabeller posttabeller logisk tabell och mask formelbehandling Komplexa tal Den imaginära enheten skrivs i eller

Läs mer

Datorövning 1 Fördelningar

Datorövning 1 Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 1 Fördelningar I denna datorövning ska du utforska begreppen sannolikhet

Läs mer

F4: Datastrukturer (kap. 6 7) Komplexa tal Ö3: 5.2, 5.7, 5.14, 5.20

F4: Datastrukturer (kap. 6 7) Komplexa tal Ö3: 5.2, 5.7, 5.14, 5.20 F4: Datastrukturer (kap. 6 7) Ö3: 5.2, 5.7, 5.14, 5.20 komplexa tal strängar och textbehandling glesa tabeller celltabeller posttabeller logisk tabell och mask formelbehandling Komplexa tal Testa: ritakomplex('exp');:

Läs mer

Beräkningsverktyg HT07

Beräkningsverktyg HT07 Beräkningsverktyg HT07 Föreläsning 1, Kapitel 1 6 1.Introduktion till MATLAB 2.Tal och matematiska funktioner 3.Datatyper och variabler 4.Vektorer och matriser 5.Grafik och plottar 6.Programmering Introduktion

Läs mer

Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering

Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering KTH Matematik Tentamen del 2 SF1511, 2018-03-16, kl 8.00-11.00, Numeriska metoder och grundläggande programmering Del 2, Max 50p + bonuspoäng (max 4p). Rättas ast om del 1 är godkänd. Betygsgränser inkl

Läs mer

Scratch Junior. makeandshape.com. by MIT. Gränssnitt Scratch Junior

Scratch Junior. makeandshape.com. by MIT. Gränssnitt Scratch Junior Scratch Junior by MIT Gränssnitt Scratch Junior 1. Spara 2. Scen 3. Presentationsläge (fullskärm) 4. Rutnät 5. Byt bakgrund 6. Lägg till text 7. Återställ figur (till sin ursprungliga position) 8. Grön

Läs mer

Läsning, skrivning, tangentbord, skärm. F6: Filhantering (kap. 8) Tabell på skärmen. save

Läsning, skrivning, tangentbord, skärm. F6: Filhantering (kap. 8) Tabell på skärmen. save F6: Filhantering (kap. 8) Läsning från tangentbordet, skrivning på skärmen Binär skrivning och läsning med save och load Skrivning på och läsning från textfil med save och load Användning av filreferenser,

Läs mer

Datorövning 1: Fördelningar

Datorövning 1: Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, VT-17 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och

Läs mer

Datorövning 1: Fördelningar

Datorövning 1: Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF45/MASB03: MATEMATISK STATISTIK, 9 HP, VT-18 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och

Läs mer

String [] argv. Dagens Agenda. Mer om arrayer. Mer om arrayer forts. String [] argv. argv är variabelnamnet. Arrayer och Strängar fortsättning

String [] argv. Dagens Agenda. Mer om arrayer. Mer om arrayer forts. String [] argv. argv är variabelnamnet. Arrayer och Strängar fortsättning Dagens Agenda String [] argv String [] argv Arrayer och Strängar fortsättning Booleska operatorer if, for, while satser Introduktion till algoritmer public static void main(string [] argv) argv är variabelnamnet

Läs mer

Matriser och linjära ekvationssystem

Matriser och linjära ekvationssystem Linjär algebra, AT3 211/212 Matematiska vetenskaper Matriser och linjära ekvationssystem Matriser En matris är som ni redan vet ett rektangulärt talschema: a 11 a 1n A = a m1 a mn Matrisen ovan har m rader

Läs mer

Imperativ programmering. Imperativ programmering konstruktioner i Lisp. Datastrukturer (kap ) arraystruktur poststruktur

Imperativ programmering. Imperativ programmering konstruktioner i Lisp. Datastrukturer (kap ) arraystruktur poststruktur Imperativ programmering konstruktioner i Lisp Imperativ programmering I den imperativa programmeringen skriver vi program satsvist. Datastrukturer (kap.-.) aystruktur poststruktur Iterativa uttryck (avs.)

Läs mer

Tentamen i Grundläggande Programvaruutveckling, TDA548

Tentamen i Grundläggande Programvaruutveckling, TDA548 Tentamen i Grundläggande Programvaruutveckling, Joachim von Hacht/Magnus Myreen Datum: 2016-12-20 Tid: 08.30-12.30 Hjälpmedel: Engelskt-Valfritt språk lexikon Betygsgränser: U: -23 3: 24-37 4: 38-47 5

Läs mer

Innehåll. Vad är MATLAB? Grunderna i MATLAB. Informationsteknologi. Informationsteknologi.

Innehåll. Vad är MATLAB? Grunderna i MATLAB. Informationsteknologi. Informationsteknologi. Grunderna i MATLAB eva@it.uu.se Innehåll Vad är MATLAB? Användningsområden MATLAB-miljön Variabler i MATLAB Funktioner i MATLAB Eempel och smakprov: Grafik Beräkningar Bilder GUI Vad är MATLAB? Utvecklat

Läs mer

Objektorienterad programmering Föreläsning 9. Copyright Mahmud Al Hakim Agenda (halvdag)

Objektorienterad programmering Föreläsning 9. Copyright Mahmud Al Hakim  Agenda (halvdag) Objektorienterad programmering Föreläsning 9 Copyright Mahmud Al Hakim mahmud@webacademy.se www.webacademy.se Agenda (halvdag) Fält Grunderna Fält med komponenter av struct-typ Fält med referenser Standardklassen

Läs mer

LULEÅ TEKNISKA UNIVERSITET

LULEÅ TEKNISKA UNIVERSITET LULEÅ TEKNISKA UNIVERSITET Tentamen i Objektorienterad programmering och design Totala antalet uppgifter: 5 Lärare: Håkan Jonsson, Andrey Kruglyak, 491000 Resultatet offentliggörs senast: 2010-04-09. Tillåtna

Läs mer

MR-laboration: design av pulssekvenser

MR-laboration: design av pulssekvenser MR-laboration: design av pulssekvenser TSBB3 Medicinska Bilder Ansvarig lärare: Anders Eklund anders.eklund@liu.se Innehåll Uppgift Initialisering av k-space Koordinater i k-space Navigering i k-space

Läs mer

TDDC74 Lab 02 Listor, sammansatta strukturer

TDDC74 Lab 02 Listor, sammansatta strukturer TDDC74 Lab 02 Listor, sammansatta strukturer 1 Översikt I denna laboration kommer ni att lära er mer om: Mer komplexa rekursiva mönster, procedurer och processer. Hur man kan hantera listor och andra enklare

Läs mer

Programmeringsuppgift Game of Life

Programmeringsuppgift Game of Life CTH/GU STUDIO TMV06a - 0/0 Matematiska vetenskaper Programmeringsuppgift Game of Life Analys och Linär Algebra, del A, K/Kf/Bt Inledning En cellulär automat är en dynamisk metod som beskriver hur komplicerade

Läs mer

DN1212/numpm Numeriska metoder och grundläggande programmering Laboration 1 Introduktion

DN1212/numpm Numeriska metoder och grundläggande programmering Laboration 1 Introduktion Staffan Romberger 2008-10-31 DN1212/numpm Numeriska metoder och grundläggande programmering Laboration 1 Introduktion Efter den här laborationen ska du kunna hantera vektorer och matriser, villkorssatser

Läs mer

Lösningsförslag till övningsuppgifter, del II

Lösningsförslag till övningsuppgifter, del II Lösningsförslag till övningsuppgifter del II Obs! Preliminär version! Ö.1. För varje delare d till n låt A d var mängden av element a sådana att gcd(a n = d. Partitionen ges av {A d : d delar n}. n = 6:

Läs mer

Dugga Datastrukturer (DAT036)

Dugga Datastrukturer (DAT036) Dugga Datastrukturer (DAT036) Duggans datum: 2012-11-21. Författare: Nils Anders Danielsson. För att en uppgift ska räknas som löst så måste en i princip helt korrekt lösning lämnas in. Enstaka mindre

Läs mer

Introduktion till programmering SMD180. Föreläsning 9: Tupler

Introduktion till programmering SMD180. Föreläsning 9: Tupler Introduktion till programmering Föreläsning 9: Tupler 1 1 Sammansatta datatyper Strängar Sekvenser av tecken Icke muterbara Syntax: "abcde" Listor Sekvenser av vad som helst Muterbara Syntax: [1, 2, 3]

Läs mer

SCB :-0. Uno Holmer, Chalmers, höger 2 Ex. Induktiv definition av lista. // Basfall

SCB :-0. Uno Holmer, Chalmers, höger 2 Ex. Induktiv definition av lista. // Basfall Rekursiva funktioner Föreläsning 10 (Weiss kap. 7) Induktion och rekursion Rekursiva funktioner och processer Weiss 7.1-3 (7.4, 7.5.3 utgår) Fibonaccital (7.3.4) Exempel: Balansering av mobil (kod se lab

Läs mer

Quicksort. Koffman & Wolfgang kapitel 8, avsnitt 9

Quicksort. Koffman & Wolfgang kapitel 8, avsnitt 9 Quicksort Koffman & Wolfgang kapitel 8, avsnitt 9 1 Quicksort Quicksort väljer ett spcifikt värde (kallat pivot), och delar upp resten av fältet i två delar: alla element som är pivot läggs i vänstra delen

Läs mer

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 3 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT15 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla

Läs mer

PROGRAMMERING-Java Omtentamina

PROGRAMMERING-Java Omtentamina PROGRAMMERING-Java Omtentamina Nicolina Månsson 2007-08 13 Tentamensinstruktioner Poängsättning Hela tentamen omfattar 41 poäng. Poäng för varje uppgift står angivet inom parentes före varje uppgift. -

Läs mer

Algoritmanalys. Genomsnittligen behövs n/2 jämförelser vilket är proportionellt mot n, vi säger att vi har en O(n) algoritm.

Algoritmanalys. Genomsnittligen behövs n/2 jämförelser vilket är proportionellt mot n, vi säger att vi har en O(n) algoritm. Algoritmanalys Analys av algoritmer används för att uppskatta effektivitet. Om vi t. ex. har n stycken tal lagrat i en array och vi vill linjärsöka i denna. Det betyder att vi måste leta i arrayen tills

Läs mer

TMV225 Inledande matematik M. Veckoprogram för läsvecka 4

TMV225 Inledande matematik M. Veckoprogram för läsvecka 4 MATEMATISKA VETENSKAPER TMV5 016 Chalmers tekniska högskola Läsvecka 4 Examinator: Anders Logg TMV5 Inledande matematik M Veckoprogram för läsvecka 4 Denna vecka kommer vi först att definiera och studera

Läs mer

MMA132: Laboration 2 Matriser i MATLAB

MMA132: Laboration 2 Matriser i MATLAB MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen

Läs mer

Fredag 10 juni 2016 kl 8 12

Fredag 10 juni 2016 kl 8 12 KTH CSC, Alexander Baltatzis DD1320/1321 Lösningsförslag Fredag 10 juni 2016 kl 8 12 Hjälpmedel: En algoritmbok (ej pythonkramaren) och ditt eget formelblad. För betyg E krävs att alla E-uppgifter är godkända,

Läs mer

Agenda. Objektorienterad programmering Föreläsning 13

Agenda. Objektorienterad programmering Föreläsning 13 Objektorienterad programmering Föreläsning 13 Copyright Mahmud Al Hakim mahmud@dynamicos.se www.webacademy.se Agenda Ett objektorienterat exempel Repetition Mer om arv Abstrakta klasser Abstrakta metoder

Läs mer

Två fall: q Tom sekvens: () q Sekvens av element: (a b c) ; (sum-rec '(2 4 6)) = 12. q Första elementet uppfyller vissa villkor: (2 a b c)

Två fall: q Tom sekvens: () q Sekvens av element: (a b c) ; (sum-rec '(2 4 6)) = 12. q Första elementet uppfyller vissa villkor: (2 a b c) Programmönster: # Listan som sekvens, Rekursiv process Enkel genomgång av sekvens (element på toppnivån i en lista)) TDDC60 Programmering: abstraktion och modellering Föreläsning 5 Rekursiva och iterativa

Läs mer

Tentamen: Programutveckling ht 2015

Tentamen: Programutveckling ht 2015 Tentamen: Programutveckling ht 2015 Datum: 2015-11-04 Tid: 09:00-13:00 Sal: Ansvarig: Resultat: Hjälpmedel: Maxpoäng: Betygsgränser: Anslås inom 3 veckor. Inga 40 p 20 p för G, 32 p för VG. Iakttag följande:

Läs mer

Exempel. Arrayer. Lösningen. Ett problem. Arrayer och hakparanteser. Arrayer

Exempel. Arrayer. Lösningen. Ett problem. Arrayer och hakparanteser. Arrayer Exempel for (int antal=; antal < 75; antal++) System.out.println (antal); Arrayer for (int num=5; num

Läs mer

Tentamen i Introduktion till programmering

Tentamen i Introduktion till programmering Tentamen i Introduktion till programmering Kurskod: Skrivtid: D0009E 09:00-13:00 (4 timmar) Totalt antal uppgifter: 7 Totalt antal poäng: 38 Tentamensdatum: 2014-05-17 Jourhavande lärare: Tillåtna hjälpmedel:

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där

Läs mer

LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering

LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med

Läs mer

Laboration: Grunderna i MATLAB

Laboration: Grunderna i MATLAB Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar

Läs mer

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 Matematisk Statistik SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 1 Introduktion Denna laboration är inte poänggivande utan är till för den som vill bekanta sig med MATLAB. Fokusera

Läs mer

Magnus Nielsen, IDA, Linköpings universitet

Magnus Nielsen, IDA, Linköpings universitet Föreläsning 7 Introduktion till sortering TDDC91,TDDE22,725G97: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 24 september 2018 Magnus Nielsen, IDA, Linköpings universitet 7.1 1

Läs mer

Transformationer i R 2 och R 3

Transformationer i R 2 och R 3 Linjär algebra, I / Matematiska vetenskaper Inledning Transformationer i R och R 3 Vi skall se på några geometriska transformationer; rotation, skalning, translation och projektion. Rotation och skalning

Läs mer

public static void mystery(int n) { if (n > 0){ mystery(n-1); System.out.print(n * 4); mystery(n-1); } }

public static void mystery(int n) { if (n > 0){ mystery(n-1); System.out.print(n * 4); mystery(n-1); } } Rekursion 25 7 Rekursion Tema: Rekursiva algoritmer. Litteratur: Avsnitt 5.1 5.5 (7.1 7.5 i gamla upplagan) samt i bilderna från föreläsning 6. U 59. Man kan definiera potensfunktionen x n (n heltal 0)

Läs mer

Sökning och sortering

Sökning och sortering Sökning och sortering Programmering för språkteknologer 2 Sara Stymne 2013-09-16 Idag Sökning Analys av algoritmer komplexitet Sortering Vad är sökning? Sökning innebär att hitta ett värde i en samling

Läs mer

Föreläsning 5. Rekursion

Föreläsning 5. Rekursion Föreläsning 5 Rekursion Föreläsning 5 Algoritm Rekursion Rekursionsträd Funktionsanrop på stacken Binär sökning Problemlösning (möjliga vägar) Läsanvisningar och uppgifter Algoritm En algoritm är ett begränsat

Läs mer

Ett problem. Kontrollstrukturer och arrayer. Arrayer. Lösningen. Arrayer och hakparanteser. Exempel int[] results; results = new int[10]; // 0..

Ett problem. Kontrollstrukturer och arrayer. Arrayer. Lösningen. Arrayer och hakparanteser. Exempel int[] results; results = new int[10]; // 0.. Ett problem Kontrollstrukturer och er Hur sparas data T ex när man vill spara resultaten av en tävling Exempel med 3 deltagare: public class Competition private int result1; private int result2; private

Läs mer

Universitetet i Linköping Institutionen för datavetenskap Anders Haraldsson

Universitetet i Linköping Institutionen för datavetenskap Anders Haraldsson 1 2 - Block, räckvidd Dagens föreläsning Programmering i Lisp - Bindning av variabler (avs 14.6) fria variabler statisk/lexikalisk och dynamisk bindning - Felhantering (kap 17) icke-normala återhopp catch

Läs mer

Datorövning 1 Introduktion till Matlab Fördelningar

Datorövning 1 Introduktion till Matlab Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-12 Datorövning 1 Introduktion till Matlab Fördelningar I denna datorövning ska du först

Läs mer

4 Diskret stokastisk variabel

4 Diskret stokastisk variabel 4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används

Läs mer

TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2

TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2 Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 218-5-28, kl 8-11 SF1547 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2 Rättas endast om del 1 är godkänd. Betygsgräns

Läs mer

Laboration 6. Ordinära differentialekvationer och glesa system

Laboration 6. Ordinära differentialekvationer och glesa system 1 DN1212 VT2012 för T NADA 20 februari 2012 Laboration 6 Ordinära differentialekvationer och glesa system Efter den här laborationen skall du känna igen problemtyperna randvärdes- och begynnelsevärdesproblem

Läs mer

3 Jämförelse mellan Polyas urna och en vanlig urna

3 Jämförelse mellan Polyas urna och en vanlig urna LUNDS UNIVERSITET MATEMATIKCENTRUM MATEMATISK STATISTIK 1 Förberedelser LABORATION 1: POLYAS URNMODELL MATEMATISK STATISTIK AK, MAS 101:A, VT-01 Laborationen, som presenterar en urnmodell introducerad

Läs mer

Föreläsning 8 Datastrukturer (DAT037)

Föreläsning 8 Datastrukturer (DAT037) Föreläsning 8 Datastrukturer (DAT037) Fredrik Lindblad 1 22 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037

Läs mer

Föreläsning 4. Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö

Föreläsning 4. Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö Föreläsning 4 Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö Kö (ADT) En kö fungerar som en kö. Man fyller på den längst bak och tömmer den längst fram

Läs mer

Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering

Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering Anna Lindgren 8+9 september 216 Anna Lindgren - anna@maths.lth.se FMS12/MASB3: transform 1/11 Stokastisk variabel Kvantil Stokastisk

Läs mer

1 Förberedelser. 2 Teoretisk härledning av värmeförlust LABORATION 4: VÄRMEKRAFTVERK MATEMATISK STATISTIK AK, MAS 101:A, VT-01

1 Förberedelser. 2 Teoretisk härledning av värmeförlust LABORATION 4: VÄRMEKRAFTVERK MATEMATISK STATISTIK AK, MAS 101:A, VT-01 LUNDS UNIVERSITET MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 4: VÄRMEKRAFTVERK MATEMATISK STATISTIK AK, MAS 101:A, VT-01 1 Förberedelser I denna laboration modelleras värmeförlusten i ett kraftverk

Läs mer

Extend för Dummies Teknologer

Extend för Dummies Teknologer Extend för Dummies Teknologer (Till dig som ska använda Extend för första gången) Den huvudsakliga tanken med denna manual är att Ni på ett enkelt sätt ska kunna sätta Er in i Extend och konstruera Er

Läs mer

Dagens föreläsning Programmering i Lisp. - Bindning av variabler (avs 14.6) fria variabler statisk/lexikalisk och dynamisk bindning

Dagens föreläsning Programmering i Lisp. - Bindning av variabler (avs 14.6) fria variabler statisk/lexikalisk och dynamisk bindning 1 Dagens föreläsning Programmering i Lisp - Block, räckvidd - Bindning av variabler (avs 14.6) fria variabler statisk/lexikalisk och dynamisk bindning - Felhantering (kap 17) icke-normala återhopp catch

Läs mer

Föreläsning 3, Matematisk statistik Π + E

Föreläsning 3, Matematisk statistik Π + E Repetition Kvantil Presentation Slumptal Transformer Inversmetoden Föreläsning 3, Matematisk statistik Π + E Sören Vang Andersen 13 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F3 1/19 Repetition

Läs mer

Objektorienterad programmering E. Back to Basics. En annan version av printtable. Ett enkelt exempel. Föreläsning 10

Objektorienterad programmering E. Back to Basics. En annan version av printtable. Ett enkelt exempel. Föreläsning 10 Objektorienterad programmering E Föreläsning 10 Rekursion Länkade datastrukturer Back to Basics Exekvera programmet för hand! public class Param { public static int f(int x) { return x+1; public static

Läs mer

Datorteknik TSIU02 Lab 2 Morsesändare v0.7

Datorteknik TSIU02 Lab 2 Morsesändare v0.7 Inledning För att skriva program i något programspråk förenklar det att ha ett strukturerat angreppssätt. I assembler får man strukturen genom omsorgsfull användning av subrutiner. Som exempel på en mer

Läs mer

Fler uppgifter på andragradsfunktioner

Fler uppgifter på andragradsfunktioner Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har

Läs mer

Datastrukturer. föreläsning 3. Stacks 1

Datastrukturer. föreläsning 3. Stacks 1 Datastrukturer föreläsning 3 Stacks 1 Abstrakta datatyper Stackar - stacks Köer - queues Dubbeländade köer - deques Vektorer vectors (array lists) All är listor men ger tillgång till olika operationer

Läs mer

TDIU01 - Programmering i C++, grundkurs

TDIU01 - Programmering i C++, grundkurs TDIU01 - Programmering i C++, grundkurs Pekare och Listor Eric Elfving Institutionen för datavetenskap 31 oktober 2014 Översikt 2/41 Internminne Pekare Dynamiska datastrukturer (Enkellänkade) listor Arbeta

Läs mer

Föreläsning 8 SLUMPTAL, SIMULERING + INTRODUKTION TILL VEKTORER

Föreläsning 8 SLUMPTAL, SIMULERING + INTRODUKTION TILL VEKTORER Föreläsning 8 SLUMPTAL, SIMULERING + INTRODUKTION TILL VEKTORER Från laboration 3 till 4 I laboration 3 har du implementerat klasser implementerat metoder i klasserna I laboration 4 kommer du att implementera

Läs mer

Programexempel: tärningsspel. Programexempel: tärningsspel Kasta tärning tills etta. Klassen Die Specifikation. Slumptalsgenerator Klassen Random

Programexempel: tärningsspel. Programexempel: tärningsspel Kasta tärning tills etta. Klassen Die Specifikation. Slumptalsgenerator Klassen Random Kasta tärning tills etta Skriv ett program som låter en användare spela detta tärningsspel: Spelaren gör första tärningsslaget och får samma poäng som tärningen visar. Sedan fortsätter spelet enligt följande

Läs mer

Linjära system av differentialekvationer

Linjära system av differentialekvationer CTH/GU STUDIO TMV036c - 0/03 Matematiska vetenskaper Linjära system av differentialekvationer Analys och Linjär Algebra, del C, K/Kf/Bt Inledning Vi har i tidigare studioövningar sett på allmäna system

Läs mer

17.1 Kontinuerliga fördelningar

17.1 Kontinuerliga fördelningar 7. Kontinuerliga fördelningar En SV X är kontinuerlig om F X (x) är kontinuerlig för alla x F X (x) är deriverbar med kontinuerlig derivata för alla x utom eventuellt för ändligt många värden Som vi tidigare

Läs mer

Föreläsning 2 Datastrukturer (DAT037)

Föreläsning 2 Datastrukturer (DAT037) Föreläsning 2 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-02 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Tidskomplexitet

Läs mer

Matlabövning 1 Funktioner och grafer i Matlab

Matlabövning 1 Funktioner och grafer i Matlab Matlabövning 1 Funktioner och grafer i Matlab I den här övningen ska vi titta på hur man konstruerar funktioner i Matlab och hur man kan rita funktionsgrafer. Läs först igenom hela PM:et. Gå sedan igenom

Läs mer

F11 - Rekursion. ID1004 Objektorienterad programmering Fredrik Kilander

F11 - Rekursion. ID1004 Objektorienterad programmering Fredrik Kilander F11 - Rekursion ID1004 Objektorienterad programmering Fredrik Kilander fki@kth.se Rekursion Rekursion är en programmeringsteknik En metod anropar sig själv public String reverse (String s) { if (s.length()

Läs mer

Föreläsning 3: Booleans, if, switch

Föreläsning 3: Booleans, if, switch TDA 545: Objektorienterad programmering Föreläsning 3: Booleans, if, switch Magnus Myréen Chalmers, läsperiod 1, 2015-2016 Påminnelse om klasser och objekt Boll boll1 = new Boll(5,12); skapar ett nytt

Läs mer

Föreläsning 13. Rekursion

Föreläsning 13. Rekursion Föreläsning 13 Rekursion Rekursion En rekursiv metod är en metod som anropar sig själv. Rekursion används som alternativ till iteration. Det finns programspråk som stödjer - enbart iteration (FORTRAN)

Läs mer

Arrayer. results

Arrayer. results Arrayer 85 Arrayer Deklarerar utrymme för många variabler i en enda deklaration Array (fält) Varje värde har ett numeriskt index i Java indexeras en array med N element med indexen till N-1 Exempel: 1

Läs mer

Tekniska Högskolan i Linköping Institutionen för Datavetenskap (IDA) Torbjörn Jonsson Plot och rekursion

Tekniska Högskolan i Linköping Institutionen för Datavetenskap (IDA) Torbjörn Jonsson Plot och rekursion Tekniska Högskolan i Linköping Institutionen för Datavetenskap (IDA) Torbjörn Jonsson 2010-11-19 Plot och rekursion I denna laboration skall du lära dig lite om hur plot i MatLab fungerar samt använda

Läs mer

Static vs Dynamic binding Polymorfism. Objekt-orienterad programmering och design (DIT953) Niklas Broberg, 2018

Static vs Dynamic binding Polymorfism. Objekt-orienterad programmering och design (DIT953) Niklas Broberg, 2018 Static vs Dynamic binding Polymorfism Objekt-orienterad programmering och design (DIT95) Niklas Broberg, 2018 Diagnostiskt prov Shape + overlaps(shape): int return 1; Shape shape = new Shape(); Polygon

Läs mer

Datalogi, grundkurs 1. Lösningsförslag till tentamen

Datalogi, grundkurs 1. Lösningsförslag till tentamen Datalogi, grundkurs 1 Lösningsförslag till tentamen 10 december 2008 1. a. Man testar med typiska värden, gränsvärden och värden utanför specificerad indatavärdemängd. Helst med alla permutationer av

Läs mer

Övning 0. Python för den som kan MATLAB. Lättare att läsa färdig kod än att skriva själv Det krävs övning för att automatiskt få detaljerna rätt:

Övning 0. Python för den som kan MATLAB. Lättare att läsa färdig kod än att skriva själv Det krävs övning för att automatiskt få detaljerna rätt: Per Sedholm DD1320 (tilda11) 2011-08-31 Övning 0 Python för den som kan MATLAB Lättare att läsa färdig kod än att skriva själv Det krävs övning för att automatiskt få detaljerna rätt: print "a", "b", "c"

Läs mer

Universitetet i Linköping Institutionen för datavetenskap Anders Haraldsson 2

Universitetet i Linköping Institutionen för datavetenskap Anders Haraldsson 2 Anders Haraldsson 1 Anders Haraldsson 2 Dagens föreläsning Programmering i Lisp Fö 5 - Funktioner - lambda-uttryck (avs 7.1) - funcall och function (avs 7.2) - Högre ordningens funktioner (avs 7.) - Iteratorer

Läs mer

Rekursion. Att tänka rekursivt Att programmera rekursivt i Java Exempel. Programmeringsmetodik -Java 254

Rekursion. Att tänka rekursivt Att programmera rekursivt i Java Exempel. Programmeringsmetodik -Java 254 Rekursion Rekursion är en grundläggande programmeringsteknik M h a rekursion kan vissa problem lösas på ett mycket elegant sätt Avsnitt 11 i kursboken: Att tänka rekursivt Att programmera rekursivt i Java

Läs mer

samma sätt. Spara varje uppgift som separat Excelfil. För att starta Excel med Resampling-pluginet, välj Resampling Stats for Excel i Start-menyn.

samma sätt. Spara varje uppgift som separat Excelfil. För att starta Excel med Resampling-pluginet, välj Resampling Stats for Excel i Start-menyn. LABORATION 1: SANNOLIKHETER Lös Uppgift 1-8 nedan. Första uppgiften har ledning steg för steg, resterande uppgifter löser du på samma sätt. Spara varje uppgift som separat Excelfil. För att starta Excel

Läs mer

Linjär algebra med tillämpningar, lab 1

Linjär algebra med tillämpningar, lab 1 Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt

Läs mer

MATLAB Laboration problem med lokala extremvärden

MATLAB Laboration problem med lokala extremvärden MATLAB Laboration problem med lokala extremvärden Sonja Hiltunen, sohnya@gmail.com Sanna Eskelinen, eskelinen.sanna@gmail.com Handledare: Karim Daho Flervariabelanalys 5B1148 Innehållsförteckning Problem

Läs mer

Tentamen. 2D4135 vt 2004 Objektorienterad programmering, design och analys med Java Torsdagen den 3 juni 2004 kl 9.00 14.

Tentamen. 2D4135 vt 2004 Objektorienterad programmering, design och analys med Java Torsdagen den 3 juni 2004 kl 9.00 14. Tentamen 2D4135 vt 2004 Objektorienterad programmering, design och analys med Java Torsdagen den 3 juni 2004 kl 9.00 14.00, sal D31 Tentan har en teoridel och en problemdel. På teoridelen är inga hjälpmedel

Läs mer

Beräkningsvetenskap och Matlab. Vad är MATLAB? Vad är MATLAB? Användningsområden. Vad är MATLAB? Grunderna i Matlab. Beräkningsvetenskap == Matlab?

Beräkningsvetenskap och Matlab. Vad är MATLAB? Vad är MATLAB? Användningsområden. Vad är MATLAB? Grunderna i Matlab. Beräkningsvetenskap == Matlab? Beräkningsvetenskap och Matlab Beräkningsvetenskap == Matlab? Grunderna i Matlab Beräkningsvetenskap I Institutionen för, Uppsala Universitet 1 november, 2011 Nej, Matlab är ett verktyg som används inom

Läs mer

Problemlösning 2 Stokastisk simulering., Problemlösning 2 Stokastisk simulering 1/13

Problemlösning 2 Stokastisk simulering., Problemlösning 2 Stokastisk simulering 1/13 Problemlösning 2 Stokastisk simulering, Problemlösning 2 Stokastisk simulering 1/13 Strategier Flera lösningsmetoder är möjliga Deterministisk/kontinuerlig metod (ODE-lösare) Stokastisk/diskret (Continuous

Läs mer

4 Numerisk integration och av differentialekvationer

4 Numerisk integration och av differentialekvationer Matematik med Matlab M1 och TD1 1999/2000 sid. 27 av 47 4 Numerisk integration och av differentialekvationer Redovisning redovisas som tidigare med en utdatafil skapad med diary 4.1 Numerisk av ekvationer.

Läs mer

SF1901: Sannolikhetslära och statistik. Mer om Approximationer

SF1901: Sannolikhetslära och statistik. Mer om Approximationer SF1901: Sannolikhetslära och statistik Föreläsning 7.A Mer om Approximationer Jan Grandell & Timo Koski 10.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 10.02.2012 1 / 21 Repetition CGS Ofta

Läs mer

Support Manual HoistLocatel Electronic Locks

Support Manual HoistLocatel Electronic Locks Support Manual HoistLocatel Electronic Locks 1. S70, Create a Terminating Card for Cards Terminating Card 2. Select the card you want to block, look among Card No. Then click on the single arrow pointing

Läs mer

Dagens föreläsning Programmering i Lisp Fö 5

Dagens föreläsning Programmering i Lisp Fö 5 Anders Haraldsson 1 Dagens föreläsning Programmering i Lisp Fö 5 - Funktioner - lambda-uttryck (avs 7.1) - funcall och function (avs 7.2) - Högre ordningens funktioner (avs 7.3) - Iteratorer - Egenskaper

Läs mer

Abstrakt datatyp. -Algoritmer och Datastrukturer- För utveckling av verksamhet, produkter och livskvalitet.

Abstrakt datatyp. -Algoritmer och Datastrukturer- För utveckling av verksamhet, produkter och livskvalitet. -Algoritmer och Datastrukturer- Abstrakt datatyp Datatyp för en variabel Betecknar i ett programmeringsspråk den mängd värden variabeln får anta. T ex kan en variabel av typ boolean anta värdena true och

Läs mer

Numeriska metoder, grundkurs II. Dagens program. Hur skriver man en funktion? Administrativt. Hur var det man gjorde?

Numeriska metoder, grundkurs II. Dagens program. Hur skriver man en funktion? Administrativt. Hur var det man gjorde? Numeriska metoder, grundkurs II Övning 1 för I2 Dagens program Övningsgrupp 1 Johannes Hjorth hjorth@nada.kth.se Rum 163:006, Roslagstullsbacken 35 08-790 69 00 Kurshemsida: http://www.csc.kth.se/utbildning/kth/kurser/2d1240/numi07

Läs mer

DD1311 Programmeringsteknik för S1 Laborationer läsåret 2007-2008

DD1311 Programmeringsteknik för S1 Laborationer läsåret 2007-2008 DD1311 meringsteknik för S1 Laborationer läsåret 2007-2008 Fyll i ditt namn och personnummer med bläck eller motsvarande. Kursledare är Linda Kann, linda@nada.kth.se. Namn... Personnr... Laborationer Labb

Läs mer

Tentamen Datastrukturer (DAT036)

Tentamen Datastrukturer (DAT036) Tentamen Datastrukturer (DAT036) Det här är inte originaltesen. Uppgift 6 var felaktigt formulerad, och har rättats till. Datum och tid för tentamen: 2011-12-16, 8:30 12:30. Ansvarig: Nils Anders Danielsson.

Läs mer

Lite om felhantering och Exceptions Mer om variabler och parametrar Fält (eng array) och klassen ArrayList.

Lite om felhantering och Exceptions Mer om variabler och parametrar Fält (eng array) och klassen ArrayList. Institutionen för Datavetenskap Göteborgs universitet HT2009 DIT011 Objektorienterad programvaruutveckling GU (DIT011) Föreläsning 3 Innehåll Lite om felhantering och Exceptions Mer om variabler och parametrar

Läs mer

Programmering för språkteknologer II. OH-serie: Sökning och sortering. Algoritm

Programmering för språkteknologer II. OH-serie: Sökning och sortering. Algoritm Programmering för språkteknologer II OH-serie: Sökning och sortering Mats Dahllöf Sökning och sortering Sökning: lokalisera objekt i samlingar. Finns ett visst värde? I så fall: var? Sortering: placera

Läs mer

Föreläsning 6: Introduktion av listor

Föreläsning 6: Introduktion av listor Föreläsning 6: Introduktion av listor Med hjälp av pekare kan man bygga upp datastrukturer på olika sätt. Bland annat kan man bygga upp listor bestående av någon typ av data. Begreppet lista bör förklaras.

Läs mer

Laboration 2 M0039M, VT2016

Laboration 2 M0039M, VT2016 Laboration 2 M0039M, VT2016 Ove Edlund, Staffan Lundberg, TVM 24 februari 2016 1 Teoridel 1.1 Serielösningar till differentialekvationer Den grundläggande idén (se t.ex. utdelat material, Lektion 18) är

Läs mer