Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas.

Relevanta dokument
Avd. Matematisk statistik

cx 5 om 2 x 8 f X (x) = 0 annars Uppgift 4

faderns blodgrupp sannolikheten att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Avd. Matematisk statistik

(a) Avgör om A och B är beroende händelser. (5 p) (b) Bestäm sannolikheten att A inträffat givet att någon av händelserna A och B inträffat.

Individ nr Första testet Sista testet

Avd. Matematisk statistik

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

Avd. Matematisk statistik

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)

Uppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p)

Avd. Matematisk statistik

Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p)

Lufttorkat trä Ugnstorkat trä

Uppgift 1. f(x) = 2x om 0 x 1

Avd. Matematisk statistik

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:...

Avd. Matematisk statistik

Avd. Matematisk statistik

Avd. Matematisk statistik

Avd. Matematisk statistik

(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs.

Avd. Matematisk statistik

Avd. Matematisk statistik

Avd. Matematisk statistik

b) Beräkna sannolikheten för att en person med språkcentrum i vänster hjärnhalva är vänsterhänt. (5 p)

Matematisk statistik KTH. Formelsamling i matematisk statistik

Del I. Uppgift 1 Låt A och B vara två oberoende händelser. Det gäller att P (A) = 0.4 och att P (B) = 0.3. Bestäm P (B A ). Svar:...

Avd. Matematisk statistik

Del I. Uppgift 1 Låt X och Y vara stokastiska variabler med följande simultana sannolikhetsfunktion: p X,Y ( 2, 1) = 1

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Föreläsning 11: Mer om jämförelser och inferens

b) Om vi antar att eleven är aktiv i en eller flera studentföreningar vad är sannolikheten att det är en kille? (5 p)

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka.

b) Förekommer A- och B-fel oberoende av varandra? (Motivering krävs naturligtvis!) (5 p)

TENTAMEN I SF2950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 2010 KL

Avd. Matematisk statistik

Lycka till!

SF1922/SF1923: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 14 maj 2018

0 om x < 0, F X (x) = c x. 1 om x 2.

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12

1 e (λx)β, för x 0, F X (x) = 0, annars.

FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data

Faderns blodgrupp Sannolikheten att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

a) Beräkna sannolikheten att en följd avkodas fel, det vill säga en ursprungliga 1:a tolkas som en 0:a eller omvänt, i fallet N = 3.

FACIT: Tentamen L9MA30, LGMA30

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015

Föreläsning 4: Konfidensintervall (forts.)

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1

b) Beräkna väntevärde och varians för produkten X 1 X 2 X 10 där alla X i :na är oberoende och R(0,2). (5 p)

b) Beräkna sannolikheten att en mottagen nolla har sänts som en nolla. (7 p)

Tentamen i Matematisk statistik Kurskod S0001M

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 4 oktober 2016

Matematisk statistik TMS064/TMS063 Tentamen

Avd. Matematisk statistik

FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

Föreläsning 12, FMSF45 Hypotesprövning

f(x) = 2 x2, 1 < x < 2.

Formel- och tabellsamling i matematisk statistik

(a) på hur många sätt kan man permutera ordet OSANNOLIK? (b) hur många unika 3-bokstavskombinationer kan man bilda av OSANNO-

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski

Tentamen i Matematisk statistik Kurskod S0001M

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

F14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva

Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion

Föreläsningsanteckningar till kapitel 8, del 2

Avd. Matematisk statistik

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski

Tentamen i Matematisk statistik Kurskod S0001M

Statistik 1 för biologer, logopeder och psykologer

FACIT: Tentamen L9MA30, LGMA30

Tentamen i Matematisk statistik Kurskod S0001M

SF1915 Sannolikhetsteori och statistik 6 hp. χ 2 -test

Tentamen i matematisk statistik (92MA31, STN2) kl 08 12

b) Teknologen Osquarulda känner inte till ML-metoden, men kom på intuitiva grunder fram till att p borde skattas med p = x 1 + 2x 2

LINKÖPINGS UNIVERSITET TENTA 92MA31, 92MA37, 93MA31, 93MA37 / STN 2 9GMA05 / STN 1

Stockholms Universitet Statistiska institutionen Termeh Shafie

Tentamen i Matematisk statistik Kurskod S0001M

SF1922/SF1923: SANNOLIKHETSTEORI OCH INTERVALLSKATTNING. STATISTIK. Tatjana Pavlenko. 24 april 2018

FACIT för Förberedelseuppgifter: SF1911 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 2016 KL Examinator: Timo Koski

Matematiska Institutionen Silvelyn Zwanzig 13 mar, 2006

Avd. Matematisk statistik

F22, Icke-parametriska metoder.

TMS136: Dataanalys och statistik Tentamen

Tentamen i Matematisk statistik Kurskod S0001M

Föreläsningsanteckningar till kapitel 9, del 2

Tentamen i Matematisk statistik Kurskod S0001M

TENTAMEN I STATISTIKENS GRUNDER 2

AMatematiska institutionen avd matematisk statistik

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.

Tentamen i Matematisk statistik Kurskod S0001M

Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall

Föreläsning 5. Kapitel 6, sid Inferens om en population

Transkript:

Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel: miniräknare, lathund till statistikfunktioner på Texas Instruments-räknare (TI-82 Stats och högre) utan egna tillägg, läroboken av Blom m.fl. utan egna tillägg, institutionens formelsamling utan egna tillägg samt formelsamlingen BETA utan egna tillägg. Resonemang och uträkningar skall vara så utförliga och väl motiverade att de är lätta att följa. Numeriska svar skall anges med minst två siffrors noggrannhet. Observera att en eventuellt godkänd kontrollskrivning ej tillgodoräknas på denna tentamen. Uppgift 1 En bostadsrättsförening som har 24 stammar skall avgöra om man ska genomföra ett stambyte eller ej. För att avgöra detta bestämmer man sig för att slumpvis välja ut 8 stammar och genomföra stambytet om minst 3 av dessa stammar klassificeras som dåliga. Anta att det finns 9 stammar som skulle klassificeras som dåliga. Vad är då sannolikheten att stambytet kommer att ske? Uppgift 2 I ett bostadsområde är 10% av lägenheterna ettor, 30% tvåor, 45% treor och 15% fyror. Antag att sannolikheten för att en etta skall drabbas av elfel under året är 7%, och att motsvarande sannolikheter för tvåor är 9%, för treor 12% och för fyror 13%. Vad är då sannolikheten att en i området slumpvis vald lägenhet skall drabbas av elfel under året? Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas.. Beräkna P (Y > 585). 1200 Y = i=1 X i

forts Tentamen i SF1902 2015-08-17 2 Uppgift 4 Två förskolor, Bullerbyn och Skogsgläntan, finns i samma stad men är belägna nära en trafikled respektive i kanten av ett skogsområde. Kommunens miljöenhet tror att Bullerbyns läge kan göra att barnen där får förhöjda halter av bly i blodet. Miljöenheten valde slumpmässigt ut fem barn från vardera förskola och mätte deras halter av bly i blodet. Resultat: Blykoncentration (ng/ml) Bullerbyn 0.93 0.63 1.21 1.30 0.58 Skogsgläntan 0.96 0.43 0.93 0.85 0.48 Undersök på lämpligast sätt om om miljöenhetens misstanke kan styrkas,när vi kan anta att variationen i blyhalt mellan barn på respektive förskola är normalfördelad med en varians som är densamma för de båda förskolorna.välj signifikansnivån 5%.Ange tydligt vilka de uppställda hypoteserna är och vad slutsatsen är. Uppgift 5 En elfirma har ansvaret att åtgärda elfelen i fyra områden:a, B,C, och D. Vi antar att µ är väntevärdet för sammanlagda antalet elfel som inträffar i alla fyra områdena under en månad. Under en slumpvis vald månad inträffar 7 elfel i område A, 2 elfel i område B, 3 elfel i område C, och 9 elfel i område D. Bestäm utifrån dessa data ett konfidensintervall för µ med en konfidensgrad på approximativt 95 %. Ange vilka statistiska modellantaganden du gör samt motivera varför du får göra detta approximativa konfidensintervall. Uppgift 6 För att undersöka kvaliteten på avgasreningen på nya bilar av tre olika märken, valde en motortidning ut 100 bilar av vardera märke och testade dem. Resultatet var att för bilmärkena A, B och C hade 19, 15 respektive 26 bilar ett mindre eller större fel på avgasreningen. Undersök med ett lämpligt statistiskt test, på nivån 5%, om det kan vara så att bilmärkena har samma felfrekvens vad gäller avgasreningen. Ange tydligt vilka de uppställda hypoteserna och slutsatsen är. Uppgift 7 För att undersöka effektiviteten i ett nytt motionsprogram väljer man ut en grupp om 10 personer vilka slumpmässigt delas i två grupper om 5 personer vardera. Personerna i den ena gruppen får träna efter det nya programmet medan de andra tränar efter ett äldre program med kända egenskaper. Som mått på konditionsförändringen väljer man kvoten mellan syreupptagningsförmågan efter motionsprogrammet och innan motionsprogrammet och får följande resultat: Kvot mellan syreupptagningsförmågan efter och innan motionsprogrammet. Nytt program 1.03 1.19 1.22 1.26 1.29 Gammalt program 0.98 1.01 1.02 1.10 1.17 Dessa kvoter kan inte antagas komma från någon Normalfördelning.Avgör på signifikansnivån 5% om motionsprogrammen kan anses skilja sig åt vad gäller förbättringen av syreupptagningsförmågan. Ange tydligt vilka de uppställda hypoteserna är och vad slutsatsen är.

Avd. Matematisk statistik LÖSNINGSFÖRSLAG TENTAMEN I SF1902 MATEMATISK STATISTIK. MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00 Uppgift 1 Vi inför den stokastiska variabeln X, där X Hyp(N, n, p) = Hyp(24, 8, 9 ). 24 Vi söker P (X 3) = 1 [p X (0) p X (1) p X (2)] = 9 15 ) ( 9 )( 15 ) ( 9 )( 15 ) = 1 [( 0)( 8 1 7 2 6 ( 24 ) ( 24 ) ( 24 ) ] = 0.6675 8 8 8 Uppgift 2 Här har vi lagen om total sannolikhet.låt A,B,C,D beteckna händelserna att den slumpvis valda lägenheten är en etta,tvåa,trea,respektive fyra. Låt E beteckna händelsen att lägenheten drabbas av elfel under året. P (E) = P (E A)P (A) P (E B)P (B) P (E C)P (C) P (E D)P (D) = = 0.07 0.10 0.09 0.30 0.12 0.45 0.13 0.15 = 0.1075 Uppgift 3 Slumptalen är många,oberoende och har alla samma fördelning. Då kan vi använda Centrala gränsvärdessatsen enligt 5 i formelsamlingen och ser då att Y N(nµ, σ n). Där n=1200 och där vi får fram µ och σ m.h.a. 4 eftersom X i :na är likformigt fördelade. X i U(0, 1) Då blir µ = E(X i ) = 0 1 = 0.5 2 och σ = D(X i ) = 1 0 12 = 1 12 Nu har vi att Y N(1200 0.5, 1 12 1200) = N(600, 10) P (Y > 585) = P ( Y 600 10 > 585 600 585 600 ) = [p.g.a.c.g.s.] = 1 Φ( ) = 10 10 =1 Φ( 1.50) = 1 [1 Φ(1.50)] = Φ(1.50) = 0.9332

forts Tentamen i SF1902 2015-08-17 2 Uppgift 4 Vi har standardsituationen två oberoende stickprov från normalfördelningar med gemensam varians, dvs avsnitt 11.2 i formelsamlingen. Låt x 1,..., x 5 och y 1,..., y 5 vara de uppmätta blyhalterna hos barnen från Bullerbyn respektive Skogsgläntan. Dessa är observationer av stokastiska variabler X 1,..., X 5 respektive Y 1,..., Y 5 (alla oberoende), med fördelningar N(µ X, σ) respektive N(µ Y, σ). Detta är hypotesprövning med två oberoende stickprov. Vi ställer upp hypoteserna H 0 och H 1 H 0 : µ X = µ Y Vi bildar konfidensintervallet där I µx µ Y = H 1 : µ X µ Y ( 1 x ȳ ± t α/2 (n X n Y 2) s 1 ) n X n Y s 2 = (n X 1)s 2 X (n Y 1)s 2 Y n X n Y 2 Med n X = n Y = 5, x = 0.93, ȳ = 0.73, s X = 0.3270, s Y = 0.2549, t 0.025 (8) = 2.31 får vi I µy µ X = (0.2 ± 0.428). Eftersom 0 ingår i konfidensintervallet kan man inte förkasta H 0 på signifikansnivån 5%. Detta innebär att man med 5% felrisk inte kan påstå att det föreligger systematisk skillnad mellan de två förskolorna vad gäller blyhalterna i blodet hos barnen. Miljöenhetens misstanke kan inte styrkas på risknivån 5 %. Uppgift 5 Vi antar att antalet elfel som inträffar i område A,B,C respektive D under månaden är X A, X B, X C respektive X D, och att X A P o(µ A ),X B P o(µ B ),X C P o(µ C ) och X D P o(µ D ). Dessutom antar vi att X A, X B, X C och X D är oberoende. Då gäller att totala antalet elfel som vi kallar Y = X A X B X C X D P o(µ A µ B µ C µ D ) = P o(µ). Villkoret för att få göra ett konfidensintervall för µ är att Poissonfördelningen kan approximeras till en Normalfördelning.Villkoret för detta är att µ 15 enligt 6 i Formelsamlingen. Vi har inte µ. Men eftersom E(Y ) = µ så skattar vi µ med µ obs = x A x B x C x D = 3 2 7 9 = 21 > 15, vilket gör att vilkoret är uppfyllt. Sedan bildar vi konfidensintervallet enligt(12.9) i Bloms bok. I µ = ( ) y ± λ α/2 y = (21 ± 1.96 ) 21 = (12.02, 29.88).

forts Tentamen i SF1902 2015-08-17 3 Uppgift 6 Vi gör ett homogenitetstest (avsnitt 14.3 i formelsamlingen), och noterar att vi då för varje försöksserie (här: bilmärke) måste ha med utfall som täcker alla möjligheter. Inför alltså utfallen j = 1 och j = 2 svarande mot felfri avgasrening och defekt avgasrening. Nollhypotesen H 0 är då att sannolikheten för utfall j, för en slumpvis vald bil, är densamma för alla tre bilmärkena A, B och C. Mothypotesen H 1 är att H 0 inte gäller, dvs att åtminstone två av märkena har olika sannolikheter för utfallen. Vi gör en tabell med observerade antal enligt Teststorheten blir Q = (81 ) 2 (19 )2 (19 20) 2 20 (85 ) 2 (15 )2 (15 20)2 20 Observerade antal Felfria Defekta Märke A 81 19 100 Märke B 85 15 100 Märke C 74 26 100 240 60 (26 20)2 20 (74 ) 2 (26 )2 = = 31 8 = 3.875. (81 80) 2 80 (85 80)2 80 (74 80)2 80 Om H 0 är sann så är 3.875 ett utfall från en stokastisk variabel som approximativt har en χ 2 - fördelning med (3 1)(2 1) = 2 frihetsgrader. Eftersom χ 2 0.05(2) = 5.99 > 3.875 så kan H 0 inte förkastas på nivån 5%. Alternativt kan vi beräkna sannolikheten att en χ 2 (2)-variabel är större än eller lika med 3.875 (X2cdf på en TI-räknare). Denna sannolikhet, dvs p-värdet för testet, är 0.14. Detta p-värde är inte så lågt att vi förkastar H 0. Både teststorheten och p-värdet fås direkt med funktionen X2-Test på en TI-räknare. Data ger alltså inte belägg för att bilmärkena skiljer sig åt i det undersökta avseendet. Detta innebär inte att man visat att bilmärkena är likvärdiga.

forts Tentamen i SF1902 2015-08-17 4 Uppgift 7 Här använder vi Wilcoxons rangsummetest. Låt N vara det nya programmet och G det gamla programmet. Vi har hypoteserna H 0 : Förbättringen av syreupptagningsförmågan är densamma i de två grupperna. H 1 : Förbättringen av syreupptagningsförmågan är olika i de två grupperna. Vi får följande ranger Nytt program 4 7 8 9 10 Gammalt program 1 2 3 5 6 Vi har då att rangsummorna blir W N = 38, W G = 17, n N = 5 och n G = 5. Detta ger oss att U N = 23 och U G = 2. Vi ska testa på nivån 5% och det kritiska värdet blir då U 0.05 = 2. Eftersom U G är mindre än U N jämförs U G med det kritiska värdet. Eftersom U G = 2 U 0.05 = 2 förkastas H 0 på nivån 5%. Vi drar slutsatsen att det nya programmet förbättrar syreupptagningsförmågan mer än det gamla.