Kapitel 23: Praktiska exempel 23 1: Analysera problemet med en påle som ska runt ett hörn... 362 2: Härledning av formeln för andragradsekvationens rötter... 364 3: Utforska en matris... 366 4: Utforska cos(x) = sin(x)... 367 5: Hitta den minsta ytarean på en parallellepiped... 368 6: Köra ett självstudieskript med Text Editor... 370 7: Dela upp en rationell funktion... 372 8: Studera statistik: Filtrera data med kategorier... 374 9: Ett CBLéprogram för TI-89... 377 10: Analysera färden för en ivägslagen boll... 378 11: Visualisera komplexa rötter till ett tredjegradspolynom... 380 12: Lösa ett allmänt annuitetsproblem... 382 13: Beräkna betalning... 383 14: Hitta rationella, reella och komplexa faktorer... 384 15: Simulering av dragning utan återläggning... 385 I det här kapitlet beskrivs metoder som du kan använda för att lösa, analysera och visualisera verkliga matematiska problem. Kapitel 23: Praktiska exempel 361
1: Analysera problemet med en påle som ska runt ett hörn En tio meter bred hall möter en fem meter bred hall i hörnet av en byggnad. Hitta den maximala längden på en påle som kan flyttas runt hörnet utan att pålen lutas. Maximala längden på pålen i hallen Maxlängden på en påle, c, är det kortaste linjesegment som vidrör det inre hörnet och samtidigt de motstående väggarna, så som visas i bilden nedan. Tips! Använd proportionella sidor och Pythagoras sats för att räkna ut längden c med avseende på w. Hitta sedan nollställena för förstaderivatan av c(w). Det minsta värdet av c(w) är pålens maximala längd. w a 10 c a = w+5 b = 10a w 5 b Tips: När du vill definiera en funktion använder du namn med flera tecken då du skapar definitionen. 1. Skriv uttrycket för sidan a uttryckt i w och spara det i a(w). 2. Skriv uttrycket för sidan b uttryckt i w och spara det i b(w). 3. Definiera uttrycket för sidan c i termer av w och lagra det i c(w) Mata in: Define c(w)= (a(w)^2+b(w)^2) Obs! Maxlängden på pålen är minimivärdet för c(w). 4. Använd kommandot zeros() för att beräkna nollställena av förstaderivatan av c(w) för att hitta det minsta värdet av c(w). 362 Kapitel 23: Praktiska exempel
5. Beräkna den exakta maxlängden av pålen. Skriv: c(2±) Tips! Klipp ut och klistra in resultatet från steg 4 till inmatningsraden inom parentes för c( ) och tryck på. 6. Beräkna den ungefärliga maxlängden för pålen. Resultat: Ca 20,8097 meter. Kapitel 23: Praktiska exempel 363
2: Härledning av formeln för andragradsekvationens rötter Detta exempel visar hur du symboliskt härleder formeln för andragradsekvationens rötter: ë b bñ -4ac x = 2a I kapitel 3: Algebra, finns detaljerad information om hur du använder kommandona i det här exemplet. Utföra beräkningar för att härleda formeln för andragradsekvationens rötter Obs! I detta exempel används resultatet av det senaste svaret för att utföra beräkningarna. Med denna funktion behöver du inte trycka på så många tangenter, vilket minskar risken för fel. Tips! Fortsätt att använda det senaste svaret (2 ±) på samma sätt som i steg 3 i steg 4 till och med 9. Följ stegen nedan för att härleda formeln för andragradsekvationens rötter genom kvadratkomplettering av den generella andragradsekvationen. 1. Rensa alla variabler med en bokstav i namnet i den aktuella mappen genom att trycka på 2ˆ1 Clear a-z. 2. Skriv följande generella andragradsekvationen i grundfönstret: axñ+bx+c=0. 3. Subtrahera c från båda sidor av ekvationen. Ange: 2 ± ì j c 4. Dividera båda sidor av ekvationen med koefficienten a. 5. Använd funktion expand() för att utveckla det senaste svaret. 6. Kvadratkomplettera genom att lägga till ((b/a)/2) 2 till båda sidor av ekvationen. 364 Kapitel 23: Praktiska exempel
7. Faktorisera resultatet med funktionen factor(). 8. Multiplicera båda sidor av ekvationen med 4añ. 9. Dra roten ur båda sidor av ekvationen med följande begränsningar: a>0 och b>0 och x>0. 10. Lös ut x genom att subtrahera b från båda sidor och sedan dividera med 2a. Obs! Detta är bara en av de två lösningarna på den generella andragradsekvationen beroende på begränsningarna i steg 9. Kapitel 23: Praktiska exempel 365
3: Utforska en matris I detta exempel visas hur du utför flera matrisoperationer. Utforska en 3x3-matris Tips! Använd markören i historiklistan för att rulla resultatet. Tips! Använd markören i historiklistan för att rulla resultatet. Utför följande steg för att generera en slumpmatris, utvidga den med enhetsmatrisen och lös sedan matrisen för hitta ett ogiltigt värde på inversen. 1. Använd RandSeed i grundfönstret för att ställa in slumptalsgeneratorn till standard och använd därefter randmat() för att skapa en 3x3-slumpmatris och spara den i a. 2. Byt ut matriselementet [2,3] med variabeln x och använd sedan funktion augment() för att utvidga a med en enhetsmatris av ordning 3. Spara resultatet i b. 3. Använd rref() för att radreducera matrisen b: Resultatet kommer att ha enhetsmatrisen i de tre första kolumnerna och a^ë1 i de tre sista kolumnerna. 4. Lös för det värde på x som gör så att inversen på matrisen blir ogiltig. Skriv: solve(getdenom( 2 ±[1,4] )=0,x) Resultat: x=ë70/17 366 Kapitel 23: Praktiska exempel
4: Utforska cos(x) = sin(x) I detta exempel använder du två metoder för att hitta var cos(x) = sin(x) då x ligger mellan 0 och 3p. Metod 1: Grafplottning Tips! Tryck på och välj 5:Intersection. Svara på meddelandena för att välja de två kurvorna och den övre och undre gränsen för skärningspunkt A. Följ stegen nedan för att se var graferna av funktionerna y1(x)=cos(x) och y2(x)=sin(x) korsar varandra. 1. Mata in y1(x)=cos(x) och y2(x)=sin(x) i Y= Editor. 2. I Window Editor ställer du in xmin=0 och xmax=3p. 3. Tryck på och välj A:ZoomFit. 4. Hitta skärningspunkterna för de två funktionerna. 5. Lägg märke till x- och y-koordinaterna. (Upprepa steg 4 och 5 för att hitta de andra skärningspunkterna.) Metod 2: Algebra Tips! Flytta markören till historiklistan för att markera det sista resultatet. Tryck på för att kopiera resultatet av den generella lösningen. Tips!: Tryck på Í för att få operatorn "with". Följ stegen nedan för att lösa ekvationen sin(x)=cos(x) med avseende på f(x). 1. Mata in solve(sin(x)= cos(x),x) i grundfönstret. Lösningen för x är där @n1 är ett heltal. 2. Använd kommandona ceiling() och floor() för att hitta det största respektive det minsta värdet på @n1 för skärningspunkterna enligt bilden. 3 Mata in den generella lösningen för x och ange begränsningen för @n1 enligt bilden. Jämför resultatet med metod 1. Kapitel 23: Praktiska exempel 367
5: Hitta den minsta ytarean på en parallellepiped I detta exempel visas hur du kan hitta den minsta ytarean på en parallellepiped med en konstant volym V. I kapitel 3: Algebra och kapitel 10: 3D-plottning finns detaljerad information om de steg som används i detta exempel. Utforska en 3D-graf av ytarean av en parallellepiped Följ stegen nedan för att definiera en funktion för ytarea av en parallellepiped, plotta en 3D-graf och använda verktyget Trace för att hitta en punkt nära den minsta ytarean. 1. Definiera funktionen sa(x,y,v) för ytarean av en parallellepiped, i grundfönstret. Skriv: define sa(x,y,v)=2ùxùy+ 2ùv/x+2ùv/y 2. Välj grafläget 3D. Mata därefter in funktionen för z1(x,y), så som visas i detta exempel med volymen v=300. 3. Ställ in Windowvariablerna till: eye= [60,90,0] x= [0,15,15] y= [0,15,15] z= [260,300] ncontour= [5] 4. Plotta funktionen och använd Trace för att gå till den punkt som är närmast minimivärdet för funktionen. Spårningsmarkören 368 Kapitel 23: Praktiska exempel
Hitta den minsta ytarean analytiskt Tips! Tryck på för att visa det exakta resultatet. Tryck på för att visa det ungefärliga resultatet i decimalform. Följ stegen nedan för att lösa problemet analytiskt i grundfönstret. 1. Lös ut x och y uttryckt i v. Skriv: solve(d(sa(x,y,v),x)=0 and (d(sa(x,y,v),y)=0, {x,y}) 2. Hitta den minsta ytarean då v = 300. Skriv: 300!v Skriv: sa(v^(1/3), v^(1/3),v) Kapitel 23: Praktiska exempel 369
6: Köra ett självstudieskript med Text Editor I det här exemplet visas hur du använder Text Editor för att köra ett självstudieskript. I kapitel 18: Text Editor finns detaljerad information om textfunktioner. Köra ett självstudieskript Följ stegen nedan för att skriva ett skript med hjälp av Text Editor, testa varje rad och observera resultaten i historiklistan i grundfönstret. 1. Öppna Text Editor och skapa en ny variabel med namnet demo1. Obs! Kommandomärket "C" är tillgängligt på menyn 1:Command. 2. Skriv följande rader i Text Editor. : Beräkna maxvärde för f i intervallet [a,b : anta att f är en differential för [a,b] C : define f(x)=x^3ì 2x^2+xì 7 C: 1!a:3.22! b C: d(f(x),x)! df(x) C : zeros(df(x),x) C : f(ans(1)) C : f({a,b}) : Det högsta värdet från de två föregående kommandona är funktionens maxvärde. Det lägsta värdet är dess minimivärde. 3. Tryck på och välj 1:Script view för att visa Text Editor och grundfönstret i ett delat fönster. Flytta markören till den första raden i Text Editor. 370 Kapitel 23: Praktiska exempel
Obs! Tryck på och välj 2:Clear split för att återgå till Text Editor i full storlek. 4. Tryck på upprepade gånger för att köra varje rad i skriptet, en åt gången. Tips! Tryck på 2Ktvå gånger för att visa grundfönstret. 5. Om du vill visa resultatet av skriptet i ett fönster i full storlek går du till grundfönstret. Kapitel 23: Praktiska exempel 371
7: Dela upp en rationell funktion I detta exempel undersöker vi vad som händer när en rationell funktion delas upp i en kvot och en rest. I kapitel 6: Grundläggande funktionsplottning och kapitel 3: Algebra finns detaljerad information om stegen som används i detta exempel. Dela upp en rationell funktion Obs! Verkliga inmatningar visas mot svart bakgrund i exempelfönstren. Så här undersöker du uppdelningen av den rationella funktionen f(x)=(xòì10xñìx+50)/(xì2) på en graf: 1. Ange den rationella funktionen i grundfönstret så som visas på inmatningsraden och spara den i funktionen f(x). Skriv: (x^3ì 10x^2ì x+50)/ (xì 2)! f(x) 2. Använd funktion propfrac för att dela upp funktionen i en kvot och en rest. Tips! Flytta markören till historiklistan för att markera det senaste resultatet. Tryck på för att kopiera det till inmatningsraden. 3. Kopiera det senaste resultatet till inmatningsraden. eller Skriv: 16/(xì2)+x^2ì 8ùxì17 4. Redigera det senaste resultatet på inmatningsraden. Spara resten i y1(x) och kvoten i y2(x), så som visas i bilden. Skriv: 16/(xì2)!y1(x): x^2ì8ùxì17!y2(x) 5. Välj det tjocka grafformatet för y2(x) i Y= Editor. 372 Kapitel 23: Praktiska exempel
6. Lägg till den ursprungliga funktionen f(x) till y3(x) och välj grafstilen Square. 7. Ställ in Windowvariablerna i Window Editor till: x= [ë 10,15,10] y= [ë 100,100,10] Obs! Kontrollera att grafläget är inställt till Function. 8. Rita grafen. Observera att det globala uppförandet av funktionen f(x) i stora drag motsvaras av andragradsekvationen y2(x). Det rationella uttrycket är i stort sett en andragradsekvation då x går mot stora värden, både positiva och negativa. Den undre grafen är y3(x)=f(x) plottad separat med en tunn linje. Kapitel 23: Praktiska exempel 373
8: Studera statistik: Filtrera data med kategorier I detta exempel gör vi en statistisk analys av universitetsstuderandes vikt och använder kategorier för att filtrera informationen. I kapitel 15: Data/Matrix Editor och kapitel 16: Plotta statistiska data finns detaljerad information om hur du använder kommandona i detta exempel. Filtrera data med kategorier Varje student placeras i en av åtta kategorier, beroende på kön och vilken årskurs de går i (förstaårsstudent, andraårsstudent, tredjeårsstudent eller sistaårsstudent). Informationen (vikt i pund) och respektive kategorier matas in i Data/Matrix Editor. Tabell 1: Kategori kontra beskrivning Kategori (C2) 1 2 3 4 5 6 7 8 Årskurs och kön Förstaårsstudent pojkar Förstaårsstudent flickor Andraårsstudent pojkar Andraårsstudent flickor Tredjeårsstudent pojkar Tredjeårsstudent flickor Sistaårsstudent pojkar Sistaårsstudent flickor Tabell 2: C1 (vikten hos varje student i pund) kontra C2 (kategori) C1 C2 C1 C2 C1 C2 C1 C2 110 125 105 120 140 85 80 90 80 95 1 1 1 1 1 2 2 2 2 2 115 135 110 130 150 90 95 85 100 95 3 3 3 3 3 4 4 4 4 4 130 145 140 145 165 100 105 115 110 120 5 5 5 5 5 6 6 6 6 6 145 160 165 170 190 110 115 125 120 125 7 7 7 7 7 8 8 8 8 8 374 Kapitel 23: Praktiska exempel
Följ stegen nedan för att jämföra studenternas vikt med deras årskurs. 1. Starta Data/Matrix Editor och skapa en ny datavariabel med namnet students. 2. Mata in informationen och kategorierna från tabell 2 till kolumnerna c1 och c2. Obs! Ställ in flera lådagram för att jämföra olika delar av hela informationsmängden. 3. Öppna menyn Plot Setup. 4. Definiera plottningsoch filterparametrarna för Plot 1, som visas i exemplet. 5. Kopiera Plot 1 till Plot 2. 6. Upprepa steg 5 och kopiera Plot 1 till Plot 3, Plot 4 och Plot 5. Kapitel 23: Praktiska exempel 375
7. Tryck på ƒ och ändra alternativet Include Categories för Plot 2 till och med Plot 5 till följande: Obs! Du bör endast markera Plot 1 till och med Plot 5. Plot 2: {1,2} (förstaårsstudent pojkar och flickor) Plot 3: {7,8} (sistaårsstudent pojkar och flickor) Plot 4: {1,3,5,7} (alla pojkar) Plot 5: {2,4,6,8} (alla flickor) 8. Avmarkera i Y= Editor eventuella funktioner som kan väljas från föregående program. 9. Visa plottningarna genom att trycka på och välja 9:Zoomdata. 10. Använd verktyget Trace för att jämföra medianvikt för olika kategorier av studenter. alla studenter alla förstaårsstudenter alla sistaårsstudenter alla pojkar alla flickor median, alla studenter 376 Kapitel 23: Praktiska exempel
9: Ett CBLéprogram för TI-89 Detta exempelprogram kan bara användas om TI-89-räknaren är ansluten till en CBLenhet (CBL = Calculator-Based Laboratoryé). Programmet fungerar med experimentet "Newton s Law of Cooling" och, med vissa mindre ändringar, experimentet "Coffee To Go" i CBL System Experiment Workbook. Du kan använda din dator när du vill skriva in längre texter och sedan använda TI-GRAPH LINK för att skicka den till din TI-89. Fler TI-89 CBL-program hittar du på TI:s hemsidor: http://www.ti.com/calc/docs/89.htm Programinstruktion :cooltemp() :Prgm :Local i : :setmode("graph","function") :PlotsOff :FnOff :ClrDraw :ClrGraph :ClrIO :-10üxmin:99üxmax:10üxscl :ú20üymin:100üymax:10üyscl :{0}üdata :{0}ütime :Send{1,0} :Send{1,2,1} : :Disp "Tryck ENTER för att starta plottningen" :Disp "Temperatur." :Pause :PtText "TEMP(C)",2,99 :PtText "T(S)",80,-5 :Send{3,1,-1,0} : :For i,1,99 : :Get data[i] :PtOn i,data[i] :EndFor :seq(i,i,1,99,1)ütime : :NewPlot 1,1,time,data,,,,4 :DispG :PtText "TEMP(C)",2,99 :PtText "T(S)",80,-5 :EndPrgm Beskrivning Programnamn Deklarerar en lokal variabel; existerar endast då programmet körs. Ställer in räknaren för funktionsplottning. Stänger av eventuella tidigare plottningar. Stänger av eventuella tidigare funktioner Tar bort föregående ritobjekt från graffönstret. Tar bort föregående grafer. Rensar Program I/O-fönstret. Ställer in Window-variabler. Skapar och/eller tar bort en lista med namnet data. Skapar och/eller tar bort en lista med namnet time. Skickar ett kommando som rensar CBL-enheten. Ställer in kanal 2 i CBL:n till AutoID för att avläsa och spara temperatur. Uppmanar användaren att trycka på. Väntar tills användaren är klar att börja. Etiketterar grafens y-axel. Etiketterar grafens x-axel. Skickar kommandot Trigger till CBL:n; samla in data i realtid. Upprepar nästa två instruktioner för 99 temperaturavläsningar. Hämtar en temperatur från CBL:n och spara den i en lista. Plottar temperaturdata som en graf. Skapar en lista som ska innehålla time- eller dataavläsningsnummer. Plottar time och data med hjälp av NewPlot och verktyget Trace. Visar grafen. Visar åter namn (etikett) på axlarna. Stoppar programmet. Du kan även använda Calculator-Based Ranger (CBR ) när du vill utforska de matematiska och vetenskapliga förhållandena mellan sträcka, hastighet, acceleration och tid med data insamlade från dina aktiviteter. Du måste dock först hämta ett CBR-program för din TI-89 på TI:s hemsidor: http://www.ti.com/calc/docs/89.htm. Kapitel 23: Praktiska exempel 377
10: Analysera färden för en ivägslagen boll I det här exemplet används inställningen för delat fönster för att visa en parametergraf och en tabell på samma gång, så att du kan analysera färden för en ivägslagen boll. Ställa in en parametergraf och tabell Följ stegen nedan för att granska färden för en ivägskickad boll som har en utgångshastighet på 95 fot/sek och en utgångsvinkel på 32 grader. 1. Ställ in lägena för Page 1, som i bilden. 2. Ställ in lägena för Page 2, som i bilden. Tips! Tryck på 2 för att skriva en gradsymbol. 3. På vänstra sidan i Y= Editor matar du in ekvationen xt1(t) som avståndet till bollen vid en tidpunkt t. xt1(t)=95*t*cos(32 ) 4. Mata in ekvationen yt1(t) som bollens höjd vid en tidpunkt t. yt1(t)=m16*t^2+95*t* sin(32 ) 378 Kapitel 23: Praktiska exempel
5. Ställ in Windowvariablerna till: t values= [0,4,.1] x values= [0,300,50] y values= [0,100,10] Tips! Tryck på 2a. 6. Växla till den högra sidan och visa grafen. Tips! Tryck på &. 7. Visa dialogrutan TABLE SETUP och ändra tblstart till 0 och @tbl till 0,1. Tips! Tryck på '. 8. Visa tabellen på vänstra sidan och tryck på D för att markera t=2. Obs! När du flyttar spårningsmarkören från tc=0,0 till tc=3,1 visas bollens position vid tiden tc. 9. Växla till den högra sidan. Tryck på och spåra grafen för att visa värdena för xc och yc när tc=2. Valfri övning Anta samma begynnelsehastighet på 95 fot/sek, hitta den utgångsvinkel vid vilken bollen färdas den längsta sträckan innan den faller till marken. Kapitel 23: Praktiska exempel 379
11: Visualisera komplexa rötter till ett tredjegradspolynom I det här exemplet beskrivs hur du plottar komplexa rötter till ett tredjegradspolynom. I kapitel 3: Algebra och kapitel 10: 3D-plottning finns detaljerad information om stegen som används i detta exempel. Visualisera komplexa rötter Tips! Flytta markören till historiklistan för att markera det sista resultatet. Tryck på 6 för att kopiera och 7 för att klistra in. Obs! Absolutbeloppet av en funktion tvingar alla rötter att visuellt endast nudda, i stället för att korsa x-axeln. Likaledes kommer absolutbeloppet av en funktion med två variabler att tvinga alla rötter att visuellt bara nudda xyplanet. Obs! Grafen till z1(x,y) är ytan som definieras av absolutbeloppet av funktionen. Följ stegen nedan för att utveckla tredjegradspolynomet (xì1)(xìi)(x+i), hitta absolutvärdet av funktionen, plotta den yta som definieras av absolutbeloppet av funktionen och använda verktyget Trace för att utforska ytan. 1. Använd funktion expand() i grundfönstret för att utveckla tredjegradspolynomet (xì1)(xìi) (x+i) och visa förstagradspolynomet. 2. Kopiera och klistra in det senaste resultatet på inmatningsraden och spara det i funktionen f(x). 3. Använd funktion abs() för att hitta absolutbeloppet av f(x+yi). (Denna beräkning kan ta ca två minuter.) 4. Kopiera och klistra in det senaste resultatet på inmatningsraden och spara det i funktionen z1(x,y). 5. Ställ in räknaren till 3D-grafläge, visa koordinataxlarna och ställ in Windowvariablerna till: eye= [20,70,0] x= [ë 2,2,20] y= [ë 2,2,20] z= [ë 1,2] ncontour= [5] 380 Kapitel 23: Praktiska exempel
Obs! Det tar ca tre minuter för grafen att beräknas och ritas. 6. I Y=Editor, tryck på Í och ställ in variablerna för grafformatet till: Axes= ON Labels= ON Style= HIDDEN SURFACE 7. Plotta ytan. 3D-grafen används visuellt för att visa en bild av rötterna där ytan nuddar xy-planet. 8. Använd verktyget Trace för att utforska funktionsvärdena då x=1 och y=0. 9. Använd verktyget Trace för att utforska funktionsvärdena vid x=0 och y=1. 10. Använd verktyget Trace för att utforska funktionsvärdena vid x=0 och y=ë1. Sammanfattning Lägg märke till att zc är noll för varje funktionsvärde i punkt 7 till 9 ovan. På så sätt kan du visualisera rötterna 1,ëi, i till polynomet xòìxì+xì1 där de tre punkterna för grafen av ytan nuddar xy-planet. Kapitel 23: Praktiska exempel 381
12: Lösa ett allmänt sparproblem Du kan använda detta exempel för att hitta räntesatsen, startkapital, antal betalningsperioder och det framtida värdet av ett sparande. Hitta räntesatsen vid ett sparande Följ stegen nedan för att hitta räntesatsen (i) av ett sparande där startkapitalet (p) är 1 000 kr, antal ränteterminer (n) är 6 år och det slutliga värdet (s) är 2 000 kr. 1. Mata in ekvationen i exemplet och lös den med avseende på p i grundfönstret. 2. Mata in ekvationen i exemplet och lös den med avseende på n. Tips! Tryck på Í för att mata in operatorn "with" ( ). Tips! Tryck på för att få ett decimaltalsresultat. 3 Mata in ekvationen i exemplet och lös den med avseende på i med operatorn "with". solve(s=pù (1+i)^n,i) s=2000 and p=1000 and n=6 Resultat: Räntan är 12,246%. Hitta det framtida värdet av ett sparande Hitta det framtida värdet av ett sparande med värdena från föregående exempel och med en ränta på 14%. Mata in ekvationen i exemplet och lös den med avseende på s. solve(s=pù (1+i)^n,s) i=.14 and p=1000 and n=6 Resultat: Det framtida värdet är 2 194,97 kr vid en ränta på 14%. 382 Kapitel 23: Praktiska exempel
13: Beräkna betalning Med detta exempel kan du skapa en funktion som kan användas för att hitta kostnaden av att finansiera en bil. I kapitel 17: Programmering finns detaljerad information om stegen som används i detta exempel. Funktionen betalning Tips! Du kan använda din dator när du skriver in långa texter och sedan använda TI-GRAPH LINK för att skicka dessa till din TI-89. I Program Editor definierar du följande betalningsfunktion (Time- Value-of-Money) där temp1= antal inbetalningar, temp2= årlig ränta, temp3= aktuellt värde, temp4= månatlig avbetalning, temp5=framtida värde och temp6= start- eller slutperiod för betalning (1=i början av månaden, 0=i slutet av månaden). :tvm(temp1,temp2,temp3,temp4,temp5,temp6) :Func :Local tempi,tempfunc,tempstr1 :ë temp3+(1+temp2/1200ù temp6)ù temp4ù ((1ì (1+temp2/1200)^ (ë temp1))/(temp2/1200))ì temp5ù (1+temp2/1200)^(ë temp1)! tempfunc :For tempi,1,5,1 :"temp"&exact(string(tempi))! tempstr1 :If when(#tempstr1=0,false,false,true) Then :If tempi=2 :Return approx(nsolve(tempfunc=0,#tempstr1) #tempstr1>0 and #tempstr1<100) :Return approx(nsolve(tempfunc=0,#tempstr1)) :EndIf :EndFor :Return "parameter error" :EndFunc Hitta den månatliga avbetalningen Hittar den månatliga avbetalningen på en bil som kostar 10 000 kr om du gör 48 avbetalningar med en årlig ränta på 10%. Ange i grundfönstret tvmvärdena för att hitta pmt. Resultat: Månadsavbetalningen är 251,53 kr. Hitta antalet avbetalningar Hitta antalet avbetalningar som krävs för att betala bilen om du kan betala av 300 kr per månad Ange i grundfönstret tvmvärdena för att hitta n. Resultat: Antalet avbetalningar är 38,8308. Kapitel 23: Praktiska exempel 383
14: Hitta rationella, reella och komplexa faktorer I detta exempel visas hur du kan hitta rationella, reella och komplexa faktorer av uttryck. I kapitel 3: Algebra finns detaljerad information om stegen som används i detta kapitel. Hitta faktorer Mata in följande uttryck i grundfönstret. 1. factor(x^3ì5x) visar ett rationellt resultat. 2. factor(x^3+5x) visar ett rationellt resultat. 3. factor(x^3ì5x,x) visar ett reellt resultat. 4. cfactor(x^3+5x,x) visar ett komplext resultat. 384 Kapitel 23: Praktiska exempel
15: Simulering av dragning utan återläggning I det här exemplet simuleras dragning utan återläggning av olikfärgade bollar från en urna. I kapitel 17: Programmering finns detaljerad information om stegen som används i detta kapitel. Funktionen för dragning utan återläggning Definiera drawball() som en funktion i Program Editor som kan anropas med två parametrar. Den första parametern är en lista där varje element är antalet bollar i en viss färg. Den andra parametern är antalet bollar du kan dra. Denna funktion returnerar en lista där varje element är antalet bollar av varje färg som drogs. :drawball(urnlist,drawnum) :Func :Local templist,drawlist,colordim, numballs,i,pick,urncum,j :If drawnum>sum(urnlist) :Return too few balls :dim(urnlist)! colordim :urnlist! templist :newlist(colordim)! drawlist :For i,1,drawnum,1 :sum(templist)! numballs :rand(numballs)! pick :For j,1,colordim,1 :cumsum(templist)! urncum (fortsättning i nästa kolumn) :If pick urncum[j] Then :drawlist[j]+1! drawlist[j] :templist[j]ì 1! templist[j] :Exit :EndIf :EndFor :EndFor :Return drawlist :EndFunc Dragning utan återläggning Anta att en urna innehåller n1 bollar i en färg, n2 bollar i en andra färg, n3 bollar i en tredje färg osv. Dra bollar utan att lägga tillbaka dem. 1. Mata in ett slumptal med kommandot RandSeed för att initiera slumptalsgeneratorn. 2. Anta att en urna innehåller 10 röda och 25 vita bollar. Simulera att du drar fem bollar slumpmässigt från urnan utan återläggning. Skriv drawball({10,25},5). Resultat: 2 röda och 3 vita bollar. Kapitel 23: Praktiska exempel 385
386 Kapitel 23: Praktiska exempel