1997:45 CIV EXAMENSARBETE Pressure and Flow Control of a Pulverized Coal Injection Vessel WOLFGANG BIRK CIVILINGENJÖRSPROGRAMMET Institutionen för Systemteknik Avdelningen för Reglerteknik 1997:45 ISSN: 142-1617 ISRN: LTU - EX - - 1997/45 - - SE
p p t m m t N 2 Air
A B C D E F G
Ç6 4?
1 pressure/kpa 8 6 4 2 5 1 15 2 25 3 35 4 45 time/s 5 4 mass/kg 3 2 1 5 1 15 2 25 3 35 4 45 time/s 1 pressure/kpa 8 6 4 2 A B C D E 5 1 15 2 time/s 5 4 mass/kg 3 2 1 A B C D E 5 1 15 2 time/s
1.9.8.7 normalized flow.6.5.4.3.2.1.1.2.3.4.5.6.7.8.9 1 valve opening
flexible ring seal low pressure high pressure moving direction of the piston slide pipe hole moving direction of the slide
p ref [ kpa] 1 ta t p [ kpa] - PI u N u N,min u N,max
ta 8 controller output valve opening/% 6 4 2 pressure deviation/kpa 1 2 3 4 5 6 7 8 9 1 time/s 2 2 control result 4 1 2 3 4 5 6 7 8 9 1 time/s m C [ kg] q 1 - m C kg 4s 9. t h 1 1 5. q 1 - PI 1 t u C m C, ref, comp r Cref, g Nm 3 1 3 1 Nm V h blowerair 1 kg t Nm 3 h 1 kg 4s 1 [ kg] α y = a u+ b 9. 1 q 1 m Cref,
8 controller output valve opening/% 75 7 65 mass flow deviation/(t/h) 6 1 2 3 4 5 6 7 8 9 1 time/s 15 1 5 5 control result 1 1 2 3 4 5 6 7 8 9 1 time/s 1 mass deviation/kg 5 5 1 15 1 2 3 4 5 6 7 8 9 1 time/s
p m V N T m C p N u N u C p T Ç Ç Ç TR Ç TÄ Ç 8TR A 8TÄ TR Ç TÄ Ç 8TR A 8TÄ
Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç Ç TR Ç TÄ Ç 8TR A 8TÄ A A Ç A TR TÄ 8TR 8TÄ Ç
U
8 PCV 8 FCV valve opening/v 6 4 2 valve opening/v 7.5 7 6.5 5 1 time/s 6 5 1 time/s 6 pressure in the vessel 1 mass of the vessel 8 pressure/v 5.9 5.8 mass/v 6 4 2 5.7 5 1 time/s 5 1 time/s
T r Å c8 T c8 T c8 T 3 c8 T c8 T T r
3 3 32 Ç
.1.5 pressure deviation/v.5.1.15 5 1 15 2 25 3 35 4 45 time/s.1 Autocorrelation of residuals for pressure.5.5.1 1 8 6 4 2 2 4 6 8 1.2 Cross correlation for PCV and pressure residuals.1.1.2 1 8 6 4 2 2 4 6 8 1 Samples
.5 1 mass/v 1.5 2 2.5 3 5 1 15 2 25 3 35 4 45 time/s 3 3
1 Autocorrelation of mass residuals.5.5 1 1 8 6 4 2 2 4 6 8 1.5 Cross correlation of mass residuals and FCV.5 1 8 6 4 2 2 4 6 8 1 Samples Ç 2 3 3
3 3 3 3?@ 3?@ 2 3 2?@ 3?@ 2 3 2?@ 3?@ 22 3 22?@ 3?@ 3?K 3?K 2 3 2?K 3?K 2 3 2?K 3?K 2 3 2?K 3?K 3 3 A A A A A A 2 2?@ 2 2?K 2 22 2 22?@ 2 22 2 22?K Ç 3 Ç A ' Ç ' Ç ' 2 U
.6.4.2 pressure deviation/v.2.4.6.8.1 5 1 15 2 25 3 35 4 45 time/s 3 3 3 32 3 32 3 32 3 32 3 32 3 32 3 32 3 32
.5 1 mass/v 1.5 2 2.5 3 5 1 15 2 25 3 35 4 45 time/s U Å Å 2 e
e U o o o o o o o o
3 3 o o o o
1 Autocorrelation of the estimation error in the pressure.8.6.4.2 1 8 6 4 2 2 4 6 8 1 1 Autocorrelation of the estimation error in the mass.8.6.4.2 1 8 6 4 2 2 4 6 8 1 Samples e e e e U
2 2 2 2 2 2 2 2 2 2 2 o s o s o s o s
o s 2 o s o s 3S o_ SÅeK 3 3 32 3 3 32 3
2 Estimated coal mass flow mass flow/(t/h) 15 1 5 2 4 6 8 1 12 Error in the integral of the estimate 1 error/kg 5 2 4 6 8 1 12 time/s
blast furnace raceway pulverised coal injection lance
(a) (b) 3 2 1.5 1 (c) (d)
1 Cross correlation of mass deviation and light intensity.5.5 4 3 2 1 1 2 3 4 Samples Comparison of mass deviation and light intensity 16 17 18 19 2 21 22 23 24 25 26 27 time/5s
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6@ 6@ 6@ 6@
6e 6e 6@ 6@ 6S 6S 6S 6S o e o e
x(n+1)=ax(n)+bu(n) y(n)=cx(n)+du(n) Controller + Kalman filter for the pressure 1 z-1 Mux x(n+1)=ax(n)+bu(n) y(n)=cx(n)+du(n) Process modell - + Demux x(n+1)=ax(n)+bu(n) y(n)=cx(n)+du(n) Mux Controller + Kalman filter for the mass 1 z-1 1 z-1 -.1 Pressure set point -.68 Mass flow set point 1 z-1 Mux o S o S
Saturation x(n+1)=ax(n)+bu(n) y(n)=cx(n)+du(n) Process model x(n+1)=ax(n)+bu(n) y(n)=cx(n)+du(n) Mux Controller + Kalman filter mass 1 z-1 1 z-1 - + -.1 Pressure set point -.68 Mass flow set point 1 z-1 Mux o S o S
SJ? SJ? SJ? SJ? SJ? SJ? SJ? SJ? SJ? SJ? SJ? SJ? W SJ? SJ? W W SJ? SJ? W 6 W W 2 3
x(n+1)=ax(n)+bu(n) y(n)=cx(n)+du(n) 1 z-1 K Feed forward (PCV) K Feed forward (FCV) + + + + Mux Controller + Kalman filter for the pressure x(n+1)=ax(n)+bu(n) y(n)=cx(n)+du(n) Process modell - + Demux x(n+1)=ax(n)+bu(n) y(n)=cx(n)+du(n) Mux Controller + Kalman filter for the mass 1 z-1 1 z-1 -.1 Pressure set point -.68 Mass flow set point 1 z-1 Mux K Feed forward + + x(n+1)=ax(n)+bu(n) y(n)=cx(n)+du(n) Process model l x(n+1)=ax(n)+bu(n) y(n)=cx(n)+du(n) Mux Controler +Kalman filter mas s 1 z-1 1 z-1 - + -.1 Pressure set -.68 Mass flow set point point 1 z-1 Mux W W 2
.15.1.5 deviation/v.5.1.15 1 2 3 4 5 6 time/s Å
.2.2 deviation/v.4.6.8.1 1 2 3 4 5 6 time/s
.1.8.6.4 deviation/v.2.2.4.6.8.1 1 2 3 4 5 6 time/s.4.2 deviation/v.2.4.6.8.1 1 2 3 4 5 6 time/s
9 8 7 6 valve opening/v 5 4 3 2 1 1 2 3 4 5 6 time/s
SattCon Pressure Control Start! PC / Normal RegSim p m AlCont Mass flow control PCV FCV
5 Old PI controller 5 New PI controller mass deviation /kg -5-1 mass deviation /kg -5-1 -15 5 1 time/s 5 Combined controller -15 5 1 time/s 5 Model-based controller mass deviation /kg -5-1 mass deviation /kg -5-1 -15 5 1 time/s -15 5 1 time/s Å
Old PI controller New PI controller pressure deviation/kpa pressure deviation/kpa 1-1 -2-3 5 1 time/s Combined controller 1-1 -2-3 5 1 time/s pressure deviation/kpa pressure deviation/kpa 1-1 -2-3 5 1 time/s Model-based controller 1-1 -2-3 5 1 time/s mass flow deviation/( t/h ) mass flow deviation/( t/h ) 5-5 5-5 Old PI controller -1 5 1 time/s Combined controller -1 5 1 time/s mass flow deviation/( t/h ) mass flow deviation/( t/h ) 5-5 -1 5 1 time/s 5-5 New PI controller Model-based controller -1 5 1 time/s
& SJ? & SJ? SJ? SJ? 8TcÄ 8TcR TcÄ TcR 3 SÅeK Ç Ç
Ç A c8 T Ç W Ç W W Ç
1 Autocorrelation of pressure residuals.5.5 1 1 8 6 4 2 2 4 6 8 1 Samples.5 Cross correlation of PCV and pressure residuals.5 1 8 6 4 2 2 4 6 8 1 Samples.5 Cross correlation of FCV and pressure residuals.5 1 8 6 4 2 2 4 6 8 1 Samples
1 Autocorrelation of mass residuals.5.5 1 1 8 6 4 2 2 4 6 8 1 Samples.5 Cross correlation of FCV and mass residuals.5 1 8 6 4 2 2 4 6 8 1 Samples.5 Cross correlation of PCV and mass residuals.5 1 8 6 4 2 2 4 6 8 1 Samples