Arbetsplatsoptometri för optiker Optisk strålning & strålskydd



Relevanta dokument
Växelverkan ljus materia. Biologiska effekter i huden Radiometri. Beräkningsexempel

Arbetsplatsoptometri för optiker

Kvantfysik - introduktion

SSMFS 2012:5. Bilaga 1 Ansökan om tillstånd

Strömning och varmetransport/ varmeoverføring

Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material?

LÄRAN OM LJUSET OPTIK

BILAGA I. Icke-koherent optisk strålning. λ (H eff är endast relevant i området nm) (L B är endast relevant i området nm)

Strålsäkerhetsmyndighetens författningssamling

Manual Loctite Innehåll: Innan du använder din Loctite bör du läsa denna manual noggrant. Framsidespanel Baksidespanel.

Observera att uppgifterna inte är ordnade efter svårighetsgrad!

12 Elektromagnetisk strålning

Vårda väl Riksantikvarieämbetet april 2014

Denna våg är. A. Longitudinell. B. Transversell. C. Något annat

Två typer av strålning. Vad är strålning. Två typer av strålning. James Clerk Maxwell. Två typer av vågrörelse

ARBETARSKYDDSSTYRELSENS FÖRFATTNINGSSAMLING. AFS 1994:8 Utkom från trycket den 29 juli 1994 LASER

Infravärme. BASTU 40 41

En artikel från - varuhus för en naturlig & hälsosam livsstil

OUTDOOR & SPORT. Avspänt seende Höjd prestation

PLANCKS KONSTANT.

Tentamen i Fotonik , kl

Experimentell fysik 2: Kvantfysiklaboration

BANDGAP Inledning

Innehåll. Kvantfysik. Kvantfysik. Optisk spektroskopi Absorption. Optisk spektroskopi Spridning. Spektroskopi & Kvantfysik Uppgifter

Vågrörelselära och optik

Tentamen i FysikB IF0402 TEN2:

Diffraktion och interferens Kapitel 35-36

Uppsala Universitet Institutionen för fotokemi och molekylärvetenskap EG FH Konjugerade molekyler

Gränsvärden och åtgärdsnivåer för exponering för elektromagnetiska fält. Gränsvärdet för exponering fastställs som extern magnetisk flödestäthet.

KTH Tillämpad Fysik. Tentamen i. SK1140, Fotografi för medieteknik. SK2380, Teknisk fotografi , 8-13, FA32

HINDERBELSYNING. Anna Lund WSP Ljusdesign

KTH Tillämpad Fysik. Tentamen i Teknisk Fotografi, SK2380, , 9-13, FB51

Solarietillsyn i. Landskrona 2008

Vågfysik. Ljus: våg- och partikelbeteende

Lösningsförslag - Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111

ARBETARSKYDDSSTYRELSENS FÖRFATTNINGSSAMLING. AFS 1985:8 Utkom från trycket den 12 juli 1985 KONTAKTLINSER I ARBETSLIVET

VARDAG & ARBETE. Var rädd om dina ögon

Ljuskällor. För att vi ska kunna se något måste det finnas en ljuskälla

ML Filter Filterglasögon

Miljöfysik. Föreläsning 2. Växthuseffekten Ozonhålet Värmekraftverk Verkningsgrad


Hur påverkas vi av belysningen i vår omgivning?

2.6.2 Diskret spektrum (=linjespektrum)

Vågrörelselära och optik

Tentamen: Atom och Kärnfysik (1FY801)

KTH Tillämpad Fysik. Tentamen i Teknisk Fotografi, SK2380, , 9-13, FB52

OPTIK läran om ljuset

Hur förebygger man malignt melanom? Amy Ahlgren Hudkliniken Malmö

ANDREAS REJBRAND NV1A Fysik Elektromagnetisk strålning

TENTAMEN I TILLÄMPAD VÅGLÄRA FÖR M

Instuderingsfrågor för godkänt i fysik år 9

Tentamen i SK1111 Elektricitets- och vågrörelselära för K, Bio fr den 13 jan 2012 kl 9-14

If you think you understand quantum theory, you don t understand quantum theory. Quantum mechanics makes absolutely no sense.

Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 19, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik

4. Allmänt Elektromagnetiska vågor

Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 12, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik

Tentamen i Optik för F2 (FFY091)

FyU02 Fysik med didaktisk inriktning 2 - kvantfysik

Ljus Härdning (UV) Hur fungerar det? EB-Härdning.

Astrofysikaliska räkneövningar

Kommunstyrelsens Ledningsutskott (34)

KTH Tillämpad Fysik. Tentamen i Teknisk Fotografi, SK2380, , 9-13, FB53

Säkerheten vid mikrovågstorkning

FYSA15 Laboration 3: Belysning, färger och spektra

Glödlamporna är urfasade

Av: Kalle och Victoria

Fotodynamisk behandling med dagsljus

Michelson-interferometern och diffraktionsmönster

Optik. Läran om ljuset

Elektromagnetisk strålning. Lektion 5

Spektroskopi med optiska frekvenskammar

FINLANDS FÖRFATTNINGSSAMLING

Installationsanvisning. UV-filter Sterilight

Solarietillsyn i Haninge, Nynäshamn och Tyresö kommuner

Multi-wave Diodlaser 3 In 1. Smärtfri Hårborttagning

Upp gifter. är elektronbanans omkrets lika med en hel de Broglie-våglängd. a. Beräkna våglängden. b. Vilken energi motsvarar våglängden?

E. Göran Salerud Department Biomedical Engineering. Strålskyddslagen. Strålskyddslag SFS 1988:220 med ändringar t.o.m.

LUFT, VATTEN, MARK, SYROR OCH BASER

Bygg- och miljökontoret Hälsoskydd

Barns Hälsa och Livsmiljö-med fokus på Jönköpings län

Tentamen i Optik för F2 (FFY091)

Vad skall vi gå igenom under denna period?

solenergi Tim Holmström EE1B, el och energi kaplanskolan, skellefteå

Vågrörelselära & Kvantfysik, FK januari 2012

Mansoor Ashrati 9B

m a d e b y SOLGLASÖGON

Lasersäkerhet Linköpings universitet 1. Regulatoriska krav. Användning av ljus inom medicinen. Diagnostisk användning av ljus

GUIDE TILL FARLIGT AVFALL

Kamerateknik. Uppdelning av ljuset i en 3CCD kamera

brightening ideas THE ORIGINAL

Tenta Elektrisk mätteknik och vågfysik (FFY616)

Klimatsmart belysning - med bibehållen ljuskvalitet

Strömning och varmetransport/ varmeoverføring

Laboration: Optokomponenter

SWOT ULTRAPULSE KIRURGISK CO 2. -LASER Modell ML015-CA (upp till 15 W) Irradia

Radon hur upptäcker vi det? Och varför är det viktigt?

SNABB RENGÖRINGSKONTROLL MED ATP

Transkript:

Arbetsplatsoptometri för optiker Optisk strålning & strålskydd Peter Unsbo KTH Biomedical and x-ray physics Visual Optics

Del I: Optisk strålning Elektromagnetisk och optisk strålning Växelverkan ljus materia Biologiska effekter i ögat Biologiska effekter i huden Radiometri Gränsvärden Beräkningsexempel

Vad är optisk strålning? Optisk strålning Strålningen från solen mot jorden Ljus är en del av den optiska strålningen Optikens lagar gäller Optisk strålning tränger inte in i kroppen (förutom i ögat)

Elektromagnetisk vågrörelse Ljushastighet c = 300 000 km/s = våglängd [m] (1 nm = 10-9 m, 1 m = 10-6 m) v = frekvens [Hz] c = v [m/s]

Elektromagnetiskt spektrum Våglängd Frekvens 1,0E-16 [nm] 3,0E+33 [Hz] Fotonenergi 1,2E+19 [ev] Strålningstyp Gammastrålning 0,01 [nm] 3,0E+19 [Hz] 1,2E+05 [ev] Röntgenstrålning 10 [nm] 3,0E+16 [Hz] 1,2E+02 [ev] 100 [nm] 3,0E+15 [Hz] 1,2E+01 [ev] Extrem UV Optisk strålning 1 [mm] 3,0E+11 [Hz] 1,2E-03 [ev] Mikrovågor 30 [cm] 1,0E+09 [Hz] 4,1E-06 [ev] Radiovågor 10 [km] 3,0E+04 [Hz] 1,2E-10 [ev]

Fotoner kvantisering av ljuset Energin i vågen kommer i klumpar, fotoner, med energin E = hv (h = 6,6 10-34 Js, Planck s konstant) Våg partikel dualism (Hög energi kort våglängd partiklar Låg energi lång våglängd vågor) Fotonenergin avgör vilken skada strålningen kan göra på biologisk vävnad

Optiska spektrat

Optiska spektrat VUV UVC UVB UVA Synligt IRA IRB IRC [nm] 180 280 315 400 780 1400 2600 10 6 180 nm Gräns mot VUV 280 nm Kortaste våglängden som når jordytan 315 nm Kortaste våglängden som kan tränga in i ögat 400 nm Kortaste våglängden som når näthinnan 780 nm Längsta våglängden näthinnan kan detektera 1400 nm Längsta våglängden som når näthinnan 2600 nm Längsta våglängden som kan tränga in i ögat 1 mm Gränsen mot mikrovågor

Växelverkan fotoner materia E = hv Absorbtion E Absorbtion sker endast mellan diskreta energinivåer i materian (kvantisering)

Växelverkan fotoner materia Emission hv E Emission sker endast mellan diskreta energinivåer i materian (kvantisering)

Våglängd 180 [nm] 280 [nm] 315 [nm] 400 [nm] 780 [nm] Fotonenergi 6,9 [ev] 4,4 [ev] 3,9 [ev] 3,1 [ev] Optiskt spektrum 1,6 [ev] Strålningstyp UVC UVB UVA Synligt Inre och yttre elektroner DNA Yttre elektroner Kovalenta bindningar Jonbindningar IRA 1400 [nm] 0,9 [ev] IRB 2600 [nm] 0,5 [ev] Molekylvibrationer och rotationer Svaga bindningar IRC 1 [mm] 0,001 [ev]

Biologiska effekter i ögat inträngning UVC + UVB (UVB) + UVA Synligt + IRA IRB IRC UVC och kortvågig UVB (<295 nm) absorberas i korneas epitelceller UVA absorberas i ögats främre delar Synligt och IRA bryts i ögats optik och når näthinnan (långvågig IRA absorberas i glaskroppen) IRB absorberas i ögats främre delar IRC absorberas i kornea

Biologiska effekter i ögat påverkan UVC och UVB Dödar epitelcellerna, cellerna avstöts Fotokeratit Långvågig UVB kan ge katarakt Cancer Pulsad strålning med hög intensitet Ablation UVA Inga akuta skador Kan eventuellt orsaka katarakt långsiktigt

Biologiska effekter i ögat påverkan Synligt ljus Absorbtion i näthinnan Synintryck

Biologiska effekter i ögat påverkan Synligt ljus brännskada på näthinnan Parallellt ljus från avlägsen punktkälla eller laserstråle fokuseras till punkt på näthinnan Lokal överhettning lokal blind fläck Kraftig laserpuls plasmabildning gasblåsa explosion tryckvåg fotodisruption Tröskelskada: Skada eller ingen påverkan alls (Händer på några sekunder eller inte alls)

Biologiska effekter i ögat påverkan Synligt ljus fotokemisk skada (blåljusskada) Det blå ljuset skapar fria radikaler (ex väteperoxid H 2 O 2 ) genom att slå sönder bindningar Dessa är starkt oxiderande skador på DNA i näthinnans epitelceller (RPE) Kan eventuellt leda till makuladegeneration

Biologiska effekter i ögat påverkan IRA Brännskador på näthinnan som för synlig strålning Krympning av glaskroppen vid längre våglängder IRB Absorberas i kornea, kammarvätskan och linsen Långvarig exponering kan ge katarakt IRC Absorberas i kornea Skador ovanliga eftersom exponering är mycket smärtsamt

UVB (UVA) Biologiska effekter i huden Solsveda erytem Fotonerna slår sönder DNA i cellkärnorna cellen skadas reparation av DNA UVB ökar mängden pigment och gör huden tjockare UVA gör pigmentet mörkare Hudcancer Felaktig reparation av DNA cancercell Både UVB och UVA gör att huden åldras och kan orsaka hudcancer

D-vitamin Biologiska effekter i huden UVB bidrar till D-vitaminproduktionen Ljus hud behöver ca 15 min sol/dag under sommaren Vintertid är solen för svag D-vitamin tillsätts därför i livsmedel (lätt- och mellanmjölk). D-vitamin finns även naturligt i fet fisk, torskleverolja och ägg. Extra D-vitamin tillskott för barn upp till ca 5 års ålder (beror på hudfärg och kost)

Biologiska effekter i huden Solarium jämfört med solljus Upptill 4 ggr mer UVA ungefär samma UVB Tydligt samband mellan solariesolande i unga år och hudcancer Solarium ger inget tillskott av D-vitamin WHO 2009: Strålning i solarium klassat som cancerframkallande (klass 1) Vad tycker ni? Obligatoriskt solskydd Endast vinteröppna solarier 18-årsgräns på solarium Inga solarier i kommunal regi

Radiometri att mäta strålning Strålkälla r Bestrålad yta Area A Viktiga storheter e I e Strålningsflöde som träffar S [W] e A Strålningsstyrka [W/sr] e 2 L e Radians [W/m sr] Area S S Rymdvinkel [sr] 2 r e 2 Ee Irradians mot S [W/m ] S

Radiometri att mäta strålning Strålkälla r Bestrålad yta Area A Exponering under viss tid t: Area S Ee t 2 Stråldos [J/m ]

Radiometri att mäta strålning Strålkälla r Bestrålad yta Area A Area S Strålning som innehåller flera våglängder: Ee ( ) Irradians per våglängdsintervall Spektral irradians [W/m L e 2 nm] 2 ( ) Spektral radians [W/m sr nm]

Gränsvärden Exponeringsgräns UV (Erytem, keratit) t E e S 30 J/m 2 per 24-timmarsperiod Exponeringsgränser synligt och IRA Krångligare (www.av.se AFS 2009:07 Artificiell optisk strålning) Exponeringsgränser IRB Inga gränsvärden satta Exponeringsgränser Lasrar Strålsäkerhetsmyndigheten www.ssm.se

Mätteknik Spektroradiometrar Mäter E e ( ) [W/m 2 nm] Viktade radiometrar Mäter E e [W/m 2 ], (känsligheten följer aktionskurvan)

Exempel Lysrör, = 254 nm, S = 0,5 0,5 m Irradians E e = 2,7 W/m 2 Stråldos: t E e S 30 J/m 2 t max = 22 s

Exempel Laserpekare 1000 mw, 452 nm Maximalt Tillåten Exponering (MTE) Termisk skada näthinna: gränsvärdet överskrids 1000x vid blinkreflex på 0,1 s Termisk skada hud: säker exponering 0,2 s

Del II: Strålningskällor och Strålskydd Solstrålning UV-källor Ljuskällor IR-källor Lasrar Laserskydd Skyddsglasögon

Svartkroppsstrålare Om man värmer upp en svart kropp så börjar den avge elektromagnetisk strålning. Ju varmare kroppen är desto mer förskjuts strålningen mot kortare våglängder. Den lyser!

Solspektrum utanför atmosfären 6000 K

Solspektrum vid jordytan

Solspektrum vid jordytan UVC absorberas högt upp i atmosfären Det mesta av UVB absorberas i ozonlagret Strålslag Andel UVB 0,4% UVA 5% Synligt 56% IR(A) 38,6% Ozonlagret Jorden

Ozonlagret 3 O 2 + UV foton = 2 O 2 + O + O = 2 O 3 (En kloratom (från freon) kan katalysera 10 000 100 000 ozonmolekyler)

Skala 0 16+ Från aktionsspektrum för UV-skada. (UV-index 1 25 mw/m 2 ) Beror på: Solhöjd, molnighet, ozonlagret, markytans reflektion, höjd över havet. UV styrka Minimal Låg Måttlig Hög Mkt hög UV-index 0 2 2 4 4 7 7 10 > 10 Säker soltid (hudtyp 2) 1 dag 1 2 tim 30 60 min 15 30 min 5 15 min Hudtyp 1: Alltid röd, aldrig brun Hudtyp 2: Alltid röd, ibland brun UV-index SMHI + Strålsäkerhetsmyndigheten (SSM) Hudtyp 3: Ibland röd, alltid brun Hudtyp 4: Aldrig röd, alltid brun

UV-index SMHI + Strålsäkerhetsmyndigheten (SSM) De flesta ytor (ex. vattenyta) reflekterar UV dåligt Snö reflekterar mycket UV (90%) UV tränger igenom vatten (50% vid 0,5 m) Mycket UV kommer från den blå himlen (50%) http://www.smhi.se/klimatdata/meteorologi/uvstralning/2.2577 http://sv.ilmatieteenlaitos.fi/uv-index

UV-källor Behandling av psoriasis (UVB) eller (UVA + psoralen) Vattenrening, desinficering (UVC, 254 nm) Härdning av plast och lim Radering av EPROM Fotografiska processer

UV-källor Svetsbåge (UVC, UVB, UVA, Synligt) 0,5 m avstånd

Ljuskällor Glödlampa Glödande wolframtråd Temperatur 2500 K Svartkroppsstrålare Matt lampa ofarlig Halogenlampor kan ge brännskador på näth.

Lysrörslampor Ljuskällor Ström av elektroner genom kvicksilvergas med lågt tryck ger UV 254 nm (UVC) och synliga linjer. Fosforskikt ger ljus av UV

Ljuskällor Kvicksilverlampor Kvicksilver högt tryck ger UV 365 nm och betydande andel synligt ljus. Fosforskikt ger ljus av UV Hög radians. Kan ge brännskador på näthinnan. Trasig lampa kan ge UV strålning.

IR-källor Svartkroppstrålare Glasbruk Stålverk Valsverk Aktionskurva för IRA och katarakt saknas.

Absorbtion LASER

Spontanemission LASER

Stimulerad emission LASER

Halvgenomskinlig spegel LASER Spontanemission Ljusförstärkare Förstärker våglängden 0 Spegel Stimulerad emission Light Amplification by Stimulated Emission of Radiation Välbestämd riktning på ljuset Monokromatiskt ljus (en våglängd)

LASER Helium-Neon, 0 = 632.8 nm. Argonjonlaser, 0 = 488.0 nm, 514.5 nm Nd:YAG-laser, 0 = 1064 nm (IRA) Frekvensdubblad Nd:YAG-laser, 0 = 532 nm Excimerlaser 0 = 193 nm (UVC) Koldioxidlaser 0 = 10,6 m (IRC) Både kontinuerliga och pulsade lasrar

LASER - faror Parallell stråle fokuseras till näthinnan (hög radians). Kraftiga lasrar ger hög irradians. Pulsade lasrar kan ge extremt hög irradians. IR-Lasrar extra farliga eftersom man inte ser strålen.

Laserskydd MTE (Maximalt Tillåten Exponering) Skydd mot reflexer Avskärmning Laserskyddsglasögon Hög allmänbelysning? Regler för användning (www.ssm.se)

Laserklasser Klass 1 (ofarliga) Klass 1M (ofarliga för obeväpnat öga/hud) Klass 2 (Synliga. Blinkreflex skyddar) Klass 2M ( motsv. 2 för obeväpnat öga) Klass 3R (3A) (Ger i praktiken inga skador) Klass 3B (Reflex från matt yta ofarlig) Klass 4 http://www.stralsakerhetsmyndigheten.se

Skyddsglasögon UV Alla optiska material absorberar tillräckligt korta våglängder. Vanliga skyddsglas för mekaniskt skydd fungerar även som UV-skydd. Material Kronglas CR39 Polykarbonat Absorbtionskant < 300 nm < 350 nm < 380 nm

Skyddsglasögon blåljus Tillsatser av färgämnen till materialet kan flytta absorbtionskanten till valfri våglängd Gulfilter tar bort det blå ljuset. (Ex: < 500 nm gult) Exempel: tandläkare, AMD-patienter

Skyddsglasögon blåljus Gulfilterglas vid AMD, CR39 450 nm

Skyddsglasögon blåljus Gulfilterglas (orange) vid AMD, CR39 511 nm

Skyddsglasögon synligt ljus Tunt skikt av silver eller aluminium ger neutralt filter (reflektion). Neutrala infärgningar (absorbtion). Skydd mot specifika våglängder (Laser). Elektrooptiska filter med flytande kristaller (Svetsning).

Skyddsglasögon IR Betydligt svårare att blockera IR och samtidigt släppa igenom synligt. Guldskikt ger transmissionstopp i grönt och visst skydd mot IR (reflektion). KG3 (Schott) (absorbtion).

Solglasögon Princip: UV-skydd i materialet Gulfärgning för blåljusskydd (ej bilkörning) Neutralt filter eller polarisationsfilter för dämpning Standard föreskriver UV-skydd vilket är lätt att uppfylla även i billiga solglasögon UV-blockerande kontaktlinser