SynCity Syntetisk data för träning av djupa neuronnät Publik rapport

Relevanta dokument
Kundfokus Kunden och kundens behov är centrala i alla våra projekt

Goals for third cycle studies according to the Higher Education Ordinance of Sweden (Sw. "Högskoleförordningen")

Kristina Säfsten. Kristina Säfsten JTH

Isometries of the plane

Stiftelsen Allmänna Barnhuset KARLSTADS UNIVERSITET

Adding active and blended learning to an introductory mechanics course

Stad + Data = Makt. Kart/GIS-dag SamGIS Skåne 6 december 2017

SweLL & legal aspects. Elena Volodina

Preschool Kindergarten

FORSKNINGSKOMMUNIKATION OCH PUBLICERINGS- MÖNSTER INOM UTBILDNINGSVETENSKAP

Bridging the gap - state-of-the-art testing research, Explanea, and why you should care

Självkörande bilar. Alvin Karlsson TE14A 9/3-2015

Mapping sequence reads & Calling variants

Om oss DET PERFEKTA KOMPLEMENTET THE PERFECT COMPLETION 04 EN BINZ ÄR PRECIS SÅ BRA SOM DU FÖRVÄNTAR DIG A BINZ IS JUST AS GOOD AS YOU THINK 05

Perception och Maskininärning i Interaktiva Autonoma System. Michael Felsberg Institutionen för systemteknik Linköpings universitet

Strategic Research Area 1

Klicka här för att ändra format

Flervariabel Analys för Civilingenjörsutbildning i datateknik

Urban Runoff in Denser Environments. Tom Richman, ASLA, AICP

Module 6: Integrals and applications

Biblioteket.se. A library project, not a web project. Daniel Andersson. Biblioteket.se. New Communication Channels in Libraries Budapest Nov 19, 2007

Health café. Self help groups. Learning café. Focus on support to people with chronic diseases and their families

Det här kan vi och detta vill vi göra

Custom-made software solutions for increased transport quality and creation of cargo specific lashing protocols.

Syns du, finns du? Examensarbete 15 hp kandidatnivå Medie- och kommunikationsvetenskap

Senaste trenderna från testforskningen: Passar de industrin? Robert Feldt,

Methods to increase work-related activities within the curricula. S Nyberg and Pr U Edlund KTH SoTL 2017

Resultat av den utökade första planeringsövningen inför RRC september 2005

SOLAR LIGHT SOLUTION. Giving you the advantages of sunshine. Ningbo Green Light Energy Technology Co., Ltd.

ERS (Electrical Road System) Slide-in project within FFI program

Swedish adaptation of ISO TC 211 Quality principles. Erik Stenborg

Examensarbete Introduk)on - Slutsatser Anne Håkansson annehak@kth.se Studierektor Examensarbeten ICT-skolan, KTH

The present situation on the application of ICT in precision agriculture in Sweden

Mönster. Ulf Cederling Växjö University Slide 1

Thesis work at McNeil AB Evaluation/remediation of psychosocial risks and hazards.

Rastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM

Datasäkerhet och integritet

5G SOM DIGITAL INFRASTRUKTUR FÖR TRANSPORTSEKTORN

Innovation in the health sector through public procurement and regulation

Strategic Research Areas

DE TRE UTMANINGARNA..

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

Rosetta. Ido Peled. A Digital Preservation System. December Rosetta Product Manager

Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:

A study of the performance

EXPERT SURVEY OF THE NEWS MEDIA

Ämnesområden. Examensarbete inom datavetenskap (1DV41E) Martin Fredriksson

Projektmodell med kunskapshantering anpassad för Svenska Mässan Koncernen

TRENDERNA SOM FORMAR DIN VERKLIGHET 2014 ÅRETS IT AVDELNING

Kursplan. EN1088 Engelsk språkdidaktik. 7,5 högskolepoäng, Grundnivå 1. English Language Learning and Teaching

Collaborative Product Development:

Measuring child participation in immunization registries: two national surveys, 2001

EXTERNAL ASSESSMENT SAMPLE TASKS SWEDISH BREAKTHROUGH LSPSWEB/0Y09

Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm

Halvtidsuppdatering cykelsäkerhetsforskning

EASA Standardiseringsrapport 2014

Module 1: Functions, Limits, Continuity

EU:s ministerkonferens för e-förvaltning under det svenska ordförandeskapet

Ett hållbart boende A sustainable living. Mikael Hassel. Handledare/ Supervisor. Examiner. Katarina Lundeberg/Fredric Benesch

ISO STATUS. Prof. dr Vidosav D. MAJSTOROVIĆ 1/14. Mašinski fakultet u Beogradu - PM. Tuesday, December 09,

Registerforskning Oktober 2018, Stockholm City Conference Centre. Möjligheter med Artificiell Intelligens inom registerforskningen

Grafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions:

Programvaruintensiva system

RADIATION TEST REPORT. GAMMA: 30.45k, 59.05k, 118.8k/TM1019 Condition D

12.6 Heat equation, Wave equation

Sara Skärhem Martin Jansson Dalarna Science Park

Taking Flight! Migrating to SAS 9.2!

Läkemedelsverkets Farmakovigilansdag

Materialplanering och styrning på grundnivå. 7,5 högskolepoäng

Kursplan. AB1029 Introduktion till Professionell kommunikation - mer än bara samtal. 7,5 högskolepoäng, Grundnivå 1

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

PFC and EMI filtering

Skill-mix innovation in the Netherlands. dr. Marieke Kroezen Erasmus University Medical Centre, the Netherlands

Beijer Electronics AB 2000, MA00336A,

The annual evaluation of the Individual Study Plan for PhD students at the Department of Biochemistry and Biophysics

Grafisk teknik. Sasan Gooran (HT 2006)

Nationellt stöd för finansiering av mjukvaruberoende innovation ANDREAS ALLSTRÖM

Teenage Brain Development

COPENHAGEN Environmentally Committed Accountants

Isolda Purchase - EDI

Information technology Open Document Format for Office Applications (OpenDocument) v1.0 (ISO/IEC 26300:2006, IDT) SWEDISH STANDARDS INSTITUTE

DEN SMARTA STADEN NU OCH I FRAMTIDEN. Björn Lahti, Helsingborg stad & Jenny Carlstedt, Sweco

Semantic and Physical Modeling and Simulation of Multi-Domain Energy Systems: Gas Turbines and Electrical Power Networks

Accelererad provning i

Att använda data och digitala kanaler för att fatta smarta beslut och nå nya kunder.

SVENSK STANDARD SS

Sri Lanka Association for Artificial Intelligence

Kursplan. MT1051 3D CAD Grundläggande. 7,5 högskolepoäng, Grundnivå 1. 3D-CAD Basic Course

Flytta din affär till molnet

Kursplan. NA3009 Ekonomi och ledarskap. 7,5 högskolepoäng, Avancerad nivå 1. Economics of Leadership

SWESIAQ Swedish Chapter of International Society of Indoor Air Quality and Climate

Svensk presentation Anita Lennerstad 1

KPMG Stockholm, 2 juni 2016

SVENSK STANDARD SS-EN ISO 19108:2005/AC:2015

Transkript:

SynCity Syntetisk data för träning av djupa neuronnät Publik rapport Författare: Jonas Unger Datum: 2018-07-30 Projekt inom Maskininlärning för fordonsindustri - FFI

Table of contents 1 Sammanfattning... 3 2 Executive summary in English... 4 3 Background... 5 4 Purpose, research questions and method... 6 5 Goal... 6 6 Results... 7 7 Knowledge transfer and publication... 9 7.1 Transfer of knowledge and results... 9 7.2 Publications... 9 8 Conclusion and continued research... 9 9 Project partners and contact persons... 9 Kort om FFI FFI är ett samarbete mellan staten och fordonsindustrin om att gemensamt finansiera forsknings- och innovationsaktviteter med fokus på områdena Klimat & Miljö samt Trafiksäkerhet. Satsningen innebär verksamhet för ca 1 miljard kr per år varav de offentliga medlen utgör drygt 400 Mkr. För närvarande finns fem delprogram; Energi & Miljö, Trafiksäkerhet och automatiserade fordon, Elektronik, mjukvara och kommunikation, Hållbar produktion och Effektiva och uppkopplade transportsystem. Läs mer på www.vinnova.se/ffi. FFI Fordonsstrategisk Forskning och Innovation www.vinnova.se/ffi 2

1 Sammanfattning på svenska Det här projektet är en konceptstuide som har haft som mål att utveckla nya metoder för att generera syntetiska data för träning av djupa neuronnät för tillämpningar inom datorseende för autonoma fordon, samt att göra tillgängligt ett state-of-the-art dataset för träning av djupa neuronnät under open-source-licens. Det dataset som har utvecklats innehåller foto-realistiskt simulerade kamerabilder (simulerar fordonets bild-sensorer) samt tillhörande "ground truth" annoteringar vilka möjliggör träning av djupa neuron-nät för tillämpningar såsom semantisk segmentering och objekt-detektion. Figur 1 visar ett exempel på: (a) en simulerad bild från en kamerasensor, (b) per pixel-annoteringar där bilden kategoriseras som olika objektklasser för semantisk segmentering, (c) per-pixel annoteringar där bilden kategoriseras som olika objektklasser och instanser inom varje enskild klass, (d) avståndsinformation, (e) ytnormaler, och (f) bounding box i 3D för objektdetektion. Sensor-simuleringen (a) används i kombination med en eller flera av referns-annoteringarna (b) (f) för att träning, validering och/eller test av djupa neuronnät. Figur 1: visar ett exempel på (a) en simulerad sensor-bild, (b) (f), ground truth annoteringar som används för träning, validering och eller testning av djupa neuronnät. Projektet drivs av forskare vid Linköpings Universitet och 7DLabs Inc. (USA) och har i diskussion med våra industriella partners tagit fram riktlinjer för vilka tillämpningar inom datorseende som är av störst vikt för autonoma fordon samt vilka aspekter av syntetiska data som är centrala för dessa. Baserat på detta har vi i en iterativ process förfinat våra metoder för automatisk generering av syntetiska världar och annoteringar för semantisk segmentering och objektdetektion Arbetet med analys och utvärdering av syntetiska data träning har lett till en fördjupad förståelse om både hur data kan syntetiseras så effektivt som möjligt och hur strategier för träning bör utformas för att nå bästa prestanda vid träning av djupa neuronnät för datorseendetillämpningar. Projektet har utforskat hur beräkningskomplexitet och realism hos simulerad/syntetiska data påverkar resultatet vid träning av djupa neuronnät. Figur 2 visar ett exempel på detta där bilder av samma miljöer och med samma innehåll genereras med hjälp av olika typer av bildsyntes från FFI Fordonsstrategisk Forskning och Innovation www.vinnova.se/ffi 3

Figur 2: visar exempel på data genererad med olika metoder med varierande beräknings -komplexitet. Våra studier visar att noggrann, fotorealistisk simulering av bildsensorn är en mycket viktig komponent vid generering av syntetisk data. vad som är möjligt att göra i realtid med t.ex. en motor för dataspel till noggrann simulering av sensorer, optik, geometriska objekt, materialegenskaper och ljustransport utförs med hjälp av s.k. path tracing, vilket är en modern metod för noggrann och realistisk bildsyntes. Projektet har också undersökt hur domänskiftet mellan syntetiska och verkliga data kan överbryggas. Resultaten av analyserna visar att domänskiftet mellan den syntetiska data till verklig data som fångats in med en kamera och annoterats för hand är lika stort som domänskiftet mellan två verkliga dataset som fångats in med olika kameror under olika förhållanden. Våra studier och utvärderingar visar att noggrannheten i resultaten från datorseende-arkitekturer baserad på djupa neuronnät kan förbättras avsevärt om ett mindre verkligt dataset kompletteras med syntetiska data. Projektet har med tydlighet visat att syntetiska data är en möjliggörande faktor för utveckling och utvärdering av nya algoritmer för autonoma fordon. Det publika datasetet kommer att presenteras vid konferensen ACM SIGGRAPH 2018 - Driving Simulation and Visualization, Vancouver Convention Centre den 14 augusti 2018 och kommer sedan att göras tillgängligt genom URL: http://vcl.itn.liu.se och https://7dlabs.com/. 2 Executive summary in English This project is a proof-of-concept project and has had two goals. The first goal is to develop and evaluate new methods for generation of synthetic data for training of deep neural nets for applications in computer vision for autonomous vehicles. The second goal is to make available a state-of-the-art data set for training of deep neural networks. The data set, which has been developed within the project, consists of photo realistic simulations of camera images (simulating a vehicles image sensor(s)) and the corresponding ground truth annotations which enables training, validation and testing of deep neural networks designed for semantic segmentation and object detection. Figure 1 shows: (a) an example of a synthesized camera sensor image, (b) per-pixel annotations in which the image is segmented into a set of classes, (c) per-pixel annotations in which the image is segmented into classes and instances within each class, (d) depth information, (e) surface normal information, and (f) 3D bounding boxes around each object. The imaging sensor simulation (a) is used in combination with one or more of the ground truth annotations in (b) - (f) as training or validation data for deep neural networks for computer vision tasks. The goals of this project can be summarized in three main items: 1. Build a state-of-the-art synthetic training data set designed for automotive applications and release this to industry and academia under open source licenses. 2. Understand how the level of realism (accuracy) in the image synthesis and sensor simulation training and performance of deep neural networks for computer vision tasks. 3. Investigate how the domain shift between synthetic training data and data from physical sensors can be minimized or even bridged with accurate simulation in the data synthesis. The project is driven by researchers at Linköping University and 7DLabs Inc. (USA). We have, through discussion with our industrial partners, analyzed which computer vision applications are FFI Fordonsstrategisk Forskning och Innovation www.vinnova.se/ffi 4

most critical for autonomous vehicles and which aspects of the synthetic data are most central to these. Based on this analysis, we have, in an iterative process, improved and developed new tools for automatic generation of virtual worlds, synthetic data, and annotations, and integrated them into our systems pipeline for generation and analysis of synthetic data for training and validation of machine learning algorithms. This includes a so called procedural engine for efficient generation and population of virtual worlds and an image synthesis pipeline for accurate simulation of sensors, optics, geometries, lighting environments, material properties and geometries. To address item 2 above, we have conducted a series of experiments where we systematically vary the accuracy and by that the computational complexity in the image synthesis. An example of this is shown in Figure 2, where the simulation of the image sensor is based on different methods ranging from simplistic simulation suitable for real-time rendering to highly accurate simulation of the light transport in the scene using so called path tracing, which is a modern method for photo-realistic image synthesis and simulation of sensors and optics. The results from our studies show that accuracy and realism indeed play key roles in the generation of synthetic data for training and validation. To address item 3 above focused on better understanding the domain shift between synthetic and real data, as well as strategies for efficient training of deep neural networks using synthetic data, we have conducted a series of studies where we compare the performance of a set of representative state-of-the-art deep learning architectures trained using synthetic data to those trained using real data using cross-validations. By real data we refer to training data captured using cameras with ground truth annotations created by hand. From these studies one can conclude that the domain shift between the synthetic data generated using our methods and real data is at the same level as that which occurs between two different real data sets generated using different camera systems. From our studies, we have also seen that mixing of only small real data sets with our synthetically generated data leads to significant improvements in the performance of deep learning architectures for semantic segmentation and object detection. The evaluations show that synthetic data is an enabling factor in the development of new machine learning algorithms for autonomous vehicles. The state-of-the-art synthetic data set generated within the scope of the project consists of 25,000 synthesized images with a range of corresponding ground annotations. The data set will be presented at the ACM SIGGRAPH conference in Vancouver in August 2018, and will after presentation be made available under an open source license for research and development through our web-pages at URLs: http://vcl.itn.liu.se and https://7dlabs.com/. 3 Background Artificial Intelligence (AI) is currently developing at unprecedented speed and has a predicted impact in essentially all aspects of modern society. Behind the recent successes of AI lies the data driven approach of neural networks, what is known as deep learning based on layers of interconnected networks. One of the key components in learning approaches is the access to data used in the training phases. This data is in most applications and practical cases be hard to obtain. For instance, a self-driving car needs to be trained with enormous amounts of image sequences representing relevant traffic scenarios and environments. For over a decade, we have developed a large set of algorithms and methods that allows us to accurately simulate how light interacts with surfaces in the scene to form an image as illustrated in Figure 1, and the machinery required to automatically build entire digital worlds in which the appearance of each element, e.g. houses, cars, the road, Using these technologies we are now, within Vinnova FFI and other research initiatives such as the Wallenberg Autonomous Systems and Software Program (WASP) directed towards the development technology for AI and machine learning, developing new algorithms and tools where we are using sensor modelling and photo realistic image synthesis algorithms to improve the performance of AI and deep learning systems. This allows us to use image and sensor data synthesis to automatically FFI Fordonsstrategisk Forskning och Innovation www.vinnova.se/ffi 5

generate vast amounts of training data and develop new tools for introspection of machine learning and AI algorithms. 4 Purpose, research questions and method Robust semantic segmentation, [1], of and object detection in images are two key challenges in a range of important applications such as autonomous driving, active safety systems and robot navigation. The goal of semantic segmentation is to identify which part of an image, Figure 1(a), corresponds to specific classes, 1(b), such as cars, trucks, trees, buildings etc. and as in 1(c) even distinguish between instances within the different classes. Recently, it has been shown that solutions based on deep neural networks, [1], can solve the related to computer vision tasks with high accuracy and performance. Although deep neural networks in many cases have proven to outperform traditional algorithms, their performance is limited by the training data used in the learning process. A fundamental problem, [2,3], is that there is a lack of both: the availability of training data with accurate per-pixel ground truth annotations, and robust methods for generating such data. The difficulty is that the training data needs to consist of both the sensor input, i.e. Figure 1(a) and the reference, or ground truth response that the algorithm should learn represented by Figure 1(b-f). If real, captured image/video or other sensor data is used the ground truth annotations need to be created manually by hand, [4,5]. Hand annotation is a difficult, time consuming and unreliable task that does not scale to large data volumes with a typical size of hundreds of thousands or even millions of images. The problem of generating accurate training data with high quality ground truth annotations has over the last 2-3 years led to the development of methods for creating synthetic data, [5,7], which have proven to increase the performance of deep learning algorithms for certain tasks. It is thus highly important to better understand what are the possibilities and limitations of using synthetic data, as well as what are the trade-offs between the computational complexity in the image synthesis and neural network performance. Previous approaches based on computer game engines have been limited in a way such that this type of analysis cannot easily be performed in a systematic and complete way. 5 Goal Efficient solutions for generating accurate training data is a pertinent challenge that has the potential to accelerate the development of both: new deep learning algorithms, as well as tools that allows us to analyze their convergence, error bounds, and performance. The goals of this project can be summarized in three main items: 1. Build a state-of-the-art synthetic training data set designed for automotive applications and release this to industry and academia under open source licenses. 2. Understand how the level of realism (accuracy) in the image synthesis and sensor simulation affects the training and performance of deep neural networks for computer vision tasks. Using our image synthesis engine, we can systematically vary virtually all parameters controlling the complexity in the image synthesis and generate data ranging from cartoonish images to images where we can vary and investigate the impact of subtle effects such as the sensor noise model or the way complex lighting effects are simulated. 3. Investigate how the domain shift between synthetic training data and data from physical sensors can be minimized or even bridged with accurate simulation in the data synthesis. FFI Fordonsstrategisk Forskning och Innovation www.vinnova.se/ffi 6

In this project, [6], we use the extensive battery of computer graphics and computer vision libraries and techniques developed within our research to enable the use of state-of-the-art image synthesis designed for photo-realistic simulation of sensor characteristics, optics, detailed geometries, and scattering at surfaces to synthesize training data with pixel-perfect ground truth annotations and labelling. The image synthesis engine combines automatic world generation with accurate light transport simulation and scalable, cloud based computations capable of producing and handling hundreds of thousands or millions of photo-realistic images with known class distributions. Access to large amounts of high quality data has the potential to accelerate the development of both new machine learning algorithms as well as tools for analyzing their convergence, error bounds, and overall performance. 6 Results This project has extended state-of-the-art in generation of synthetic data and the analysis of how synthetic data can be used to improve the performance of deep neural networks for computer vision. We have developed new tools for automatic generation of virtual worlds, synthetic data, and annotations, and integrated them into our systems pipeline for generation and analysis of synthetic data for training and validation of machine learning algorithms. This includes a so called procedural engine for efficient generation and population of virtual worlds and an image synthesis pipeline based on path tracing for accurate simulation of sensors, optics, geometries, lighting environments, material properties and geometries. Using this image production pipeline designed for generation of synthetic training data, we have developed a state-of-the-art data set for training, validation and testing of machine learning algorithms. The data set will be made publically available for research and development. To address the research challenges described above, we have conducted a series of experiments where we systematically vary the accuracy and by that the computational complexity in the image synthesis. An example of this is shown in Figure 2, where the simulation of the image sensor is based on different methods ranging from simplistic simulation suitable for real-time rendering to highly accurate simulation of the light transport in the scene using so called path tracing, which is a modern method for photo-realistic image synthesis and simulation of sensors and optics. The results from our studies show that accuracy and realism indeed play key roles in the generation of synthetic data for training and validation. The project has also investigated the domain shift between synthetic and real data, as well as strategies for efficient training of deep neural networks using synthetic data. We have conducted a series of studies where we compare the performance of a set of representative state-of-the-art deep learning architectures trained using synthetic data to those trained using real data using cross-validations. By real data we refer to training data captured using cameras with ground truth annotations created by hand. From these studies one can conclude that the domain shift between the synthetic data generated using our methods and real data is at the same level as that which occurs between two different real data sets generated using different camera systems. From our studies, we have also seen that mixing of only small real data sets with our synthetically generated data leads to significant improvements in the performance of deep learning architectures for semantic segmentation and object detection. The evaluations show that synthetic data is an enabling factor in the development of new machine learning algorithms for autonomous vehicles. The state-of-the-art synthetic data set generated within the scope of the project consists of 25,000 synthesized images with a range of corresponding ground annotations. The data set will be presented at the ACM SIGGRAPH conference in Vancouver in August 2018, and will after presentation be made available under an open source license for research and development through our web-pages at URLs: http://vcl.itn.liu.se and https://7dlabs.com/. FFI Fordonsstrategisk Forskning och Innovation www.vinnova.se/ffi 7

FFI Fordonsstrategisk Forskning och Innovation www.vinnova.se/ffi 8

7 Knowledge transfer and publication 7.1 Transfer of knowledge and results How have and will the results from the Mark Comment project be spread? with X Increased knowledge within the area x Through publications, the publicly available data set, and through presentations. Transfer to other advanced technology projects x The research conducted within the project are general, and we are already investigating extensions of the results to the medical domain and digital pathology. Transfer to product development projects x The company 7DLabs Inc. are already commercializing products and services around synthetic data for machine learning. Introduceras på marknaden x 7DLabs Inc. are working with commercial customers in different application domains, in which the results from this project will have an impact. Användas i utredningar/regelverk/ tillståndsärenden/ politiska beslut 7.2 Publications At the time of writing, the project has generated two scientific publications which currently are under review. We have held several presentations, e.g. through the Wallenberg Autonomous Systems and Software Program (WASP). The project has been covered by IVA Aktuellt Nr 1, 2018, published by Kungliga Ingenjörsvetenskapsakademien. The open source synthetic training data set will be presented at the ACM SIGGRAPH conference in Vancouver in August 2018, and will after presentation be made available under an open source license for research and development through our web-pages at URLs: http://vcl.itn.liu.se and https://7dlabs.com/. 8 Conclusion and continued research This project has contributed to the development of technology for generation of synthetic data for machine learning and computer vision in the application domain of autonomous vehicles and self-driving cars. We have shown that carefully constructed high accuracy simulation of image data has great potential to be a key part of the challenge of generating the training/validation data required in the development of future machine learning and AI systems for autonomous vehicles. Synthetic data created in the correct way not only lead to a significant boost in performance, but can also be used for systematic validation and testing of an architecture. Synthetic data is a versatile tool that can be adapted to virtually any application domain, and using the procedural approach used in this project it enables systematic coverage and investigation of the problem space. We see a range of future directions in which continued research is necessary, and will continue to pursue these in the future. A key component of this project and its continuation is to produce PhDs and industry experts with a skill set at the intersection of advanced image synthesis and machine. 9 Project partners and contact persons Linköping University 7DLabs Inc. Zenuity Dr. Jonas Unger M.Sc. Magnus Wrenninge Dr. Erik Rosén FFI Fordonsstrategisk Forskning och Innovation www.vinnova.se/ffi 9

References [1] A Krizhevsky, I Sutskever, GE Hinton: Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, 2012. [2] F. Yu, and V. Koltun, Multi-Scale Context Aggregation by Dilated Convolutions, International Conference on Learning Representations (ICLR), 2016. [3] E. Shelhamer, J. Long, and T. Darrel, Fully Convolutional Networks for Semantic Segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 39, No. 4, Pages 640-651, April 2017. [4] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele, "The Cityscapes Dataset for Semantic Urban Scene Understanding," in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. [5] S. R. Richter, V. Vineet, S. Roth, and V. Koltun: Playing for Data: Ground Truth from Computer Games. In proceedings of European Conference on Computer Vision (ECCV), 2016. [6] A. Tsirikoglou, J. Kronander, M. Wrenninge, and J. Unger. Procedural modeling and physically based rendering for synthetic data generation in automotive applications. In arxiv:1710.06270, 2017. [7] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. Lopez, The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes, in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. FFI Fordonsstrategisk Forskning och Innovation www.vinnova.se/ffi 10