LHC Vad händer? Christophe Clément Elementarpartikelfysik Stockholms universitet Fysikdagarna i Karlstad, 2010-10-09
Periodiska systemet 1869 Standardmodellen 1995 Kvarkar Minsta beståndsdelar 1932 Leptoner 2
Färdigställa standardmodellen Varför har partiklarna massa? Kräver en ny partikel "Higgs-partikeln" Vad standardmodellen inte kan förklara Gravitation och kvantmekanik passar inte ihop Vad består mörk materia av? Nya fenomen vid hög energi? Varför 3 familjer av elementära partiklar?... Vi förstår endast ca 5% av universums innehåll! Kan vi tillverka mörkmateriepartiklar i labbet? 3
Large Hadron Collider (LHC) vid CERN Kolliderar protoner med 7 TeV 14 TeV i energi tillgänglig vid kollisionerna 27 km omkrets LHC- B CMS Eller hur kan man producera Higgs-partikeln och mörk materia i labbet..? ATLAS ALICE 4
Universums utveckling Vad är "14 TeV energi"? Big Bang LHC energi Första ljuset Nutiden Universum blir genomskinlig 2.7 K kosmisk bakgrundstrålning 5
Universums utveckling Vad är "14 TeV energi"? Big Bang LHC energi Första ljuset Nutiden Reproducera dessa förhållanden i labbet mha LHC Hög energi = liten skala 6
Universums utveckling Vad är "14 TeV energi"? Big Bang LHC energi Första ljuset Nutiden En enda kraft? Sträng teori? 7
Några Ord om Enheter _ Partikelfysik använder s.k. naturliga enheter h=c=1 Energi, massa och temperatur mäts i elektron Volt (ev) Längd och tid är i ev -1 1 ev = kinetisk energi hos en elektron som accelereras med 1 Volt potentialskillnad. 1 GeV = 10 9 ev ~ samma energi som viloenergin (E=mc 2 = mycket) för en proton som väger 0.938 GeV ~ 1 GeV. 1 TeV = 1000 GeV Toppkvarken väger ca. 172 GeV, dvs. lika tungt som ca 172 protoner 7 TeV protoner betyder att deras kinetisk energi är 7000 ggr viloenergin hos en proton eller 40 ggr massan hos en toppkvark 8
27 km omkrets 1732 dipoler (8.3T) och quadrupole magneter, 15m långa m.m. 9
Läget med LHC Acceleratorn September 2008: första strålarna, inga kollisioner, problem med LHC November 2009: första kollisioner vid 900 GeV December 2009: kollisioner vid 2.36 TeV (världsrekord) April 2010: kollisioner vid 7 TeV (3.5+3.5 TeV) ny världsrekord Oktober 2010: Geneve står kvar. Insamlat 13pb -1 av data (400 10 9 pp collisions) Sedan april är målet att öka Luminositen = ett mått på hur många p-p kollisioner man åstadkommer per sekund Ökad luminositet fortare att nå Antalet kollisioner = K x Integrerad luminositet statistiken som behövs för att studera sällsynta fenomen. 6 månader LHC data redan slår Fermilabs Tevatron (10 år datatagning) i många avseenden 10
11
Christophe Clement Fysikdagarna I Karldstad - 2010 12
13
14
15
ATLAS och CMS Ska kunna detektera och studera ett brett spektrum av nya fenomen. LHCb specialiserad för studie av B-fysik och CP brott (asymetri mellan materia och anti-materia) ALICE specialiserad för att studera Kvark-Gluon-Plasma Detektorernas huvuduppgift: Identifiera olika typer av partiklar Elektroner, fotoner, myoner, tau-leptoner, pioner, andra starkväxelverkande partiklar (p, n, hadroner ), b-hadroner Mäta deras 4-vektorer Göra detta med 40 miljoner kollisioner i sekunden 16
ATLAS Experimentet 17
Standardmodellen Materiepartiklar (fermioner) = kvarkar, leptoner, neutriner Kraftförmeddlare (bosoner) = foton, gluon, W och Z bosoner Fermioner och bosoner har olika egenskaper Hundratals instabila hadroner 18
Naturens krafter och kraftförmedlare Typ Starka kärnkraften EM kraften Svaga kärnkraften Gravitationskraften 19
Förening av Naturens Krafter Kraftens styrka Energi 20
Mörkmateria Redan 1933 kunde man observera astronomiska system som är gravitationellt bunda, men den synliga massan räcker inte för att förklara dem observerade rörelserna. Christophe Clement Fysikdagarna I Karldstad - 2010 21
Mörkmateria (2) Galaxernas rotationskurvor tyder på att mycket mer materia finns men inte syns 22
Mörkmateria (3) Gravitatonella linser tillåter att beräkna massorna hos galaxklustrar. Den synliga massan ~1% av gravitationella massan. 23
Composition of the cosmos 24
Fysik Bortom Standardmodellen Varför? Standardmodellen Väldigt nogranna numeriska förutsägelser Förklarar ett väldigt brett spektrum av naturliga fenomen Men Partiklarna är masslösa utan Higgs bosonen Hierarki problemet: varför är partiklarna så lätta jämfört med GUT? >20 fundamentala parametrar (tex 1 för Newtons gravitations teori) Ingen gravitation Matematiska divergenser vid 1 TeV Ingen partikel som kan förklara mörkmateria Varför 3 fermion familjer? Varför finns det betydligt mer materia är antimateria? Icke slutlig teori Väntar på nya fenomen vid LHC energin 25