Intelligent liv i Universum Är vi ensamma? Föreläsning 9: Supercivilisationer och superteknologi
|
|
- Ulf Mattsson
- för 8 år sedan
- Visningar:
Transkript
1 Intelligent liv i Universum Är vi ensamma? Föreläsning 9: Supercivilisationer och superteknologi
2 Kardashev-skalan Upplägg Post-biologisk och artificiell intelligens Teknologisk singularitet Superteknologi Metoder för att söka efter supercivilisationer Davies: kapitel 7-8
3 Kardashev-skalan Mäter en civilisations nivå av teknologisk utveckling Baserad på den mängd energi civilisationen förfogar över Kardashev (1964): Typ I, II & III Nicolai Kardashev (1932-)
4 Kardashev typ I Olika definitioner förekommer: Kardashev : Civilisation med energiförbrukning motsvarande mänskligheten (ca W år 1964) Davies: Använder alla energitillgångar på sin hemplanet Vanligast (tror jag): Utnyttjar energi av samma storleksordning som solinstrålningen (insolationen) till hemplaneten ( W i jordens fall)
5 Kardashev typ II Civilisation som utnyttjar den totala strålningsenergin från sin moderstjärna Ca W i solens fall Observera att det finns stjärnor som kan alstra 10 6 mer än vår sol (under miljontals år) Moderstjärnan kanske inte bästa energikällan
6 Kardashev typ III Civilisation som förfogar över den energi som utstrålas från sin hemgalax Ca W i Vintergatans fall
7 Carl Sagans version K log 10 MW 10 K: Civilisationens Kardashev-grad MW: Civilisationens energiförbrukning i megawatt För mänskligheten: megawatt K 0.7 Enligt denna definition är vi alltså en Kardashev typ 0.7-civilisation
8 Utvidgad Kardashev-skala Olika definitioner av Kardashev typ IV: Utnyttjar ljusenergin hos hela det observerbara universumet Utnyttjar ljusenergin hos den lokala superhopen av galaxer (största gravitationellt bundna strukturen i Universum idag) Utnyttjar energi utanför hemgalaxen, ex. mörk energi
9 Alternativa skalor Inte uppenbart att totala energiförbrukningen är det bästa måttet. Alternativa skalor baseras på: Den informationsmängden civilisationen förfogar över (Carl Sagans skala A-Z) Hur utspridd civilisationen är (Zubrins skala) Typ I: Spridd över hemplaneten Typ II: Koloniserat sitt solsystem Typ III: Koloniserat hemgalaxen Hur små föremål civilisationen kan manipulera (Barrows skala)
10 Utomjordingar avbildas ofta som humanoider med stora huvuden (hjärnor), men är det verkligen dit utvecklingen leder?
11 Postbiologisk intelligens Utveckling inom bioteknologi, nanoteknologi och informationsteknologi Undviker (nuvarande) biologiska systems begränsningar Högre intelligens? Längre livstid? Inga sjukdomar? Biologiska fasen i civilisationers utveckling kortvarig?
12 Trolig form Den postbiologiska formen behöver naturligtvis inte efterlikna den ursprungliga, biologiska livsformen Kan dock inledningsvis kännas lättare att interagera med en mänsklig robot än en med helt främmande utseende Notera: Om robotar är alltför människolika, men ändå uppenbart inte människor, så upplever vi dem som kusliga ( uncanny valley ) Borg (Star Trek)
13 Uncanny valley I Harmlös
14 Uncanny Valley II Söt
15 Uncanny Valley III Läskig!
16 Artificiell intelligens Mänskliga hjärnan: operationer/s (omtvistat) Världens snabbaste dator (2013): Tianhe-2, operationer/s Moores lag: Datorkapaciteten fördubblas vartannat år Datorer når hjärnans beräkningskapacitet inom ca 20 år HAL från 2001 Ett rymdäventyr Obs! Beräkningskapacitet Intelligens eller medvetande Inte säkert att vi kommer att kunna skapa en AI med mänsklig intelligens under överskådlig tid
17 Tianhe-2
18 Den teknologiska singulariteten Framtida tidpunkt då utvecklingen plötsligt börjar gå extremt snabbt ( mot oändligheten ) till följd av exempelvis skapandet av en AI med förmåga att göra sig själv smartare Anses ofta omöjligt att förutspå vad som händer efter singulariteten (om vi alls överlever den)
19 Den teknologiska singulariteten
20 Transcendens? Har föreslagits att avancerade civilisationer kan vilja driva sin teknologi mot inre rymden istället för den yttre Ökad miniatyrisering och täthet tills tillstånd som liknar neutronstjärna eller svart hål uppnås Transcendens: Lämnar yttre rymden och kryper in i sitt svarta hål (och möjligen ut i ett nytt universum)
21 Barrow-skalan Skala som beskriver civilisations förmåga att manipulera småskaliga föremål: Typ I minus: Manipulering på ungefär samma längdskala som varelserna själva Typ II minus: Manipulering av gener Typ III minus: Manipulering av molekyler Typ IV minus: Manipulering av atomer Typ V minus: Manipulering av atomkärnor Typ VI minus: Manipulering av kvarkar och leptoner Typ Omega minus: Manipulera rum- och tidsstruktur Allt högre teknologitäthet Svart hål och transcendens till annat universum?
22 Superteknologi Von Neumann-sonder Dysonsfärer Matrioshka/Jupiter brains
23 Von Neumann-sonder Självreplikerande robotsonder som skickas ut för att utforska/kolonisera rymden Tar material de hittar längs vägen och bygger nya sonder En Bracewell-sond (se föreläsning 7) kan även vara en von Neumann-sond John von Neumann ( )
24 Små sonder Lättare att accelerera ett föremål med låg massa till hastigheter nära ljusets Strategi: Skicka ut i stora svärmar av mikroeller nanorobotar för att säkra överlevnad för ett fåtal
25 Dyson-sfär I Hypotetisk, artificiell struktur av satelliter (eller fast skal) kring stjärna som fångar upp andel av stjärnans utstrålade energi Värmeenergi måste strålas bort för att inte smälta sfären Sfären kan inte långsiktigt göra stjärnan helt osynlig, bara ändra dess spektrum Sfär med temperatur av några hundra grader (eller lägre) infraröd glöd Freeman Dyson, 1923-
26 Dyson-sfär II: Varianter på temat Dyson-ring Dyson-svärm Dyson-bubbla
27 Dyson-sfär III: Dyson-skal Dyson-skal av fast material från nedmonterade planeter
28 Tänkbara signaturer från Kardashev typ II Stjärna där bara andel av strålningen fångas in uppvisar troligen ett spektrum som är en blandning av en vanlig stjärnas och ett dominerat av infraröd strålning
29 Luminositet Hertzsprung-Russel-diagrammet Stjärna helt omsluten av Dyson-sfär förväntas dyka upp ungefär här (hög luminositet, men extremt låg temperatur) Hög yttemperatur Låg yttemperatur
30 Dyson-sfärer och Kardashev typ II-III Civilisation som kapslar in stjärnor i sin närhet i Dysonsfärer Bubblor av låg UV/optisk ljusstyrka jämfört med omgivningen Bubblorna kan dock ha högre infraröd ljusstyrka än omgivnignen Dyson-signaturer
31 Rotationskurvor hos skivgalaxer v rot v max Radie
32 Vätets emissionslinjeprofil Linjebredd v sys v max Ljusstyrka Våglängd eller hastighet Halva linjebredden ger mått på maxhastigheten, vilket också säger något om galaxens totalmassa
33 Ljusstyrka Dyson-sfärer och Kardashev typ III Tully-Fisher-relationen: Empirisk relation mellan skivgalaxers luminositet och vätets linjebredd (mått på massan) Relationen har mycket låg spridning Stort antal skivgalaxer Linjebredd (massa)
34 Ljusstyrka Dyson-sfärer och Kardashev typ III Galax med Kardashev typ III-civilisation som klär in stjärnor i Dyson-sfärer Oförändrad massa men sänkt UV/optisk luminositet Linjebredd (massa) Ytterst få skivgalaxer avviker kraftigt från Tully-Fisher Kardashev typ III måste vara mycket sällsynta (förutsatt att de använder Dyson-sfärer)
35 Ljusstyrka Första svenska SETI-projektet: Sökning efter Kardashev typ IIIcivilisationer bland ca 3000 skivgalaxer Linjebredd (massa) Kandidatuppsats av Per Calissendorff, våren 2013
36 Simulering av hur skivgalax koloniseras med Dyson-sfärer Sondernas hastighet: 10% av ljushastigheten Koloniseringsstrategi: Riktad
37 Simulering av hur skivgalax koloniseras med Dyson-sfärer Sondernas hastighet: 10 km/s (som dagens rymdsonder) Koloniseringsstrategi: Sfärisk våg
38 Shkadov thruster Mekanism för att förflytta en hel stjärna (och tillhörande planetsystem) Gigantiskt solsegel hålls i jämvikt av gravitation mot stjärnan och strålningstryck bort från stjärnan Seglet bryter isotropin i stjärnans strålningstryck och driver stjärnan i riktning mot seglet Långsam förflyttning tar 1 miljon år att komma upp i 20 m/s och 1 miljard år att flytta stjärnan en betydande del av Vintergatans radie
39 Aktiva galaxkärnor som energikälla Jet Supermassivt svart hål Ackretionsskiva (ungefär solsystemets storlek) Galaxer med aktiv kärna producerar extremt hög ljusstyrka i liten region i centrum Bättre att kapsla in den aktiva kärnan istället för stjärnor?
40 Exempel på aktiva galaxkärnor Kvasarer Seyfert-galax
41 Den nya skolans SETI Davies: Sök efter de effekter som en utomjordisk civilisations teknologi har på den omgivande rymden!
42 Svarta hål som energikälla I princip möjligt att utvinna stora mängder energi från roterande svarta hål Davies: Hissmekanism där avfall dumpas i det svarta hålet och containern återvänder i hög hastighet Inga sökningar ännu baserade på detta p.g.a. oklar signatur och svårigheten med att lokalisera svarta hål Fig 11 (sid 143) i Davies
43 Matrioshka-hjärna Hypotetisk dator (ev. AI) som drivs av koncentriska Dyson-skal kring stjärna Olika skal verkar vid olika temperaturer Skulle kunna driva trovärdig simulering av vår verklighet?
44 Jupiter-hjärna Hypotetisk dator av planets storlek Lägre beräkningskapacitet än Matrioshka-hjärna, men snabbare förmedling av signaler mellan datorns delar
45 Boltzmann-hjärna Hypotetisk, självmedveten hjärna som uppstår spontant mitt ute i rymden p.g.a. slumpmässiga partikelsammansättningar Mycket osannolik sammansättning men rymden är stor, kanske oändlig
46 Boltzmann brain paradox I vissa kosmologiska modeller blir Boltzmann brains mer sannolika än hjärnor av vår typ Problem: Är jag verkligen en människa i ett kollektiv bland sju miljarder andra, eller bara en ensam Boltzmann-hjärna i tomma rymden som inbillar mig? Fiktiva minnen av mångårigt liv, trots faktisk livstid på några få sekunder
47 Nästa föreläsning: Vad händer om vi får kontakt? Hur bör vi agera? Inverkan på vetenskap och religion?
Intelligent liv i Universum Är vi ensamma? Föreläsning 9: Supercivilisationer och superteknologi
Intelligent liv i Universum Är vi ensamma? Föreläsning 9: Supercivilisationer och superteknologi Kardashev-skalan Upplägg Post-biologisk och artificiell intelligens Teknologisk singularitet Superteknologi
Kardashev typ I. Upplägg. Kardashev typ II. Davies: kapitel 7-8. Kardashev-skalan. Kardashev typ III 2013-07-25
Intelligent liv i Universum Är vi ensamma? Föreläsning 9: Supercivilisationer och superteknologi Kardashev typ I Olika definitioner förekommer: Kardashev:Civilisation med energiförbrukning motsvarande
Intelligent liv i Universum Är vi ensamma? Föreläsning 9: Supercivilisationer och superteknologi
Intelligent liv i Universum Är vi ensamma? Föreläsning 9: Supercivilisationer och superteknologi Rättelse från förra föreläsningen Voyager 1 och 2 (uppskjutna 1977) är de rymdsonder som nått längst från
Rättelse från förra föreläsningen. Kardashev-skalan. Upplägg. Davies: kapitel 7-8. Kardashev typ I. Kardashev typ II
Intelligent liv i Universum Är vi ensamma? Föreläsning 9: Supercivilisationer och superteknologi Rättelse från förra föreläsningen Voyager 1 och 2 (uppskjutna 1977) är de rymdsonder som nått längst från
Sökandet efter intelligent liv i rymden Föreläsning 9: Supercivilisationer och superteknologi
Sökandet efter intelligent liv i rymden Föreläsning 9: Supercivilisationer och superteknologi Kardashev skalan Upplägg Post biologisk och artificiell intelligens Teknologisk singularitet Superteknologi
Upplägg. Davies: kapitel 7 8. Kardashev typ III. Kardashev skalan
Sökandet efter intelligent liv i rymden Föreläsning 9: Supercivilisationer och superteknologi Upplägg Kardashev skalan Post biologisk och artificiell intelligens Teknologisk singularitet Superteknologi
Upplägg. Davies: kapitel 7 8. Kardashev typ III. Kardashev skalan
Sökandet efter intelligent liv i rymden Föreläsning 9: Supercivilisationer och superteknologi Upplägg Kardashev skalan Post biologisk och artificiell intelligens Teknologisk singularitet Superteknologi
Universums tidskalor - från stjärnor till galaxer
Universums tidskalor - från stjärnor till galaxer Fysik och Kemidagarna 2017 Prof. Peter Johansson Institutionen för Fysik, Helsingfors Universitet Matematisk-naturvetenskapliga fakulteten/ Peter Johansson/
Astronomi. Vetenskapen om himlakropparna och universum
Astronomi Vetenskapen om himlakropparna och universum Solsystemet Vi lever på planeten jorden (Tellus) och rör sig i en omloppsbana runt en stjärna som vi kallar solen. Vårt solsystem består av solen och
Sökandet efter intelligent liv i rymden 5 hp, hösten Upplägg. Vad den här kursen handlar om. Kursinfo I. Allmän kursinfo. Vår plats i Universum
Sökandet efter intelligent liv i rymden 5 hp, hösten 2017 Allmän kursinfo Upplägg Vår plats i Universum Snabbvandring genom kursen Vad den här kursen handlar om Det naturvetenskapliga sökandet efter intelligent,
Livsbetingelser i Universum Föreläsning 8 Liv i andra stjärnsystem
Livsbetingelser i Universum Föreläsning 8 Liv i andra stjärnsystem Schema Se också det detaljerade schema som finns på Studentportalen. Där finns även för varje föreläsning referenser till kurslitteraturen.
BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 10 Relativitetsteori den 26 april 2012.
Föreläsning 10 Relativa mätningar Allting är relativt är ett välbekant begrepp. I synnerhet gäller detta när vi gör mätningar av olika slag. Många mätningar består ju i att man jämför med någonting. Temperatur
Intelligent liv i Universum Är vi ensamma? 7.5 hp, hösten 2012
Intelligent liv i Universum Är vi ensamma? 7.5 hp, hösten 2012 Upplägg Allmän kursinfo Vår plats i Universum Snabbvandring genom kursen Vad den här kursen handlar om Det naturvetenskapliga sökandet efter
Intelligent liv i Universum Är vi ensamma? 7.5 hp, sommaren 2013
Intelligent liv i Universum Är vi ensamma? 7.5 hp, sommaren 2013 Allmän kursinfo Upplägg Vår plats i Universum Snabbvandring genom kursen Vad den här kursen handlar om Det naturvetenskapliga sökandet efter
Intelligent liv i Universum Är vi ensamma? Föreläsning 8: Interstellära resor
Intelligent liv i Universum Är vi ensamma? Föreläsning 8: Interstellära resor Viktig schemaändring: Kurstillfället 21 november ställs in! Schemat för föreläsningarna 9-11 förskjuts en vecka Extratillfället
Ufologi. Upplägg. Vad den här kursen handlar om Intelligent liv i Universum Är vi ensamma? 7.5 hp, hösten 2012.
Intelligent liv i Universum Är vi ensamma? 7.5 hp, hösten 2012 Allmän kursinfo Upplägg Vår plats i Universum Snabbvandring genom kursen Vad den här kursen handlar om Vad kursen intehandlar så mycket om
Astronomi. Hästhuvudnebulosan. Neil Armstrong rymdresenär.
Hästhuvudnebulosan Astronomi Neil Armstrong rymdresenär. Illustration av vår galax Vintergatan. Av naturliga själ har vi aldrig sett vår galax ur detta perspektiv. Vilka är vi jordbor egentligen? Var i
Solsystemet samt planeter och liv i universum
Solsystemet samt planeter och liv i universum Kap. 7-8, Solsystemet idag och igår Kap. 9.2, Jordens inre Kap. 10, Månen Kap 17, asteroider, kometer Kap 30, Liv i universum Jordens inre Medeltäthet ca 5500
Upplägg. Repetiton: Vad är Fermis paradox? Repetition: Lösningskategorier
Intelligent liv i Universum Är vi ensamma? Föreläsning 6: Fermis paradox II Upplägg Fermis paradox: They do not exist Antropiska resonemang Det kosmiska filtret ( great filter ) Webb: Kapitel 5-6 Davies:
Sökandet efter intelligent liv i rymden 5 hp, hösten 2015
Sökandet efter intelligent liv i rymden 5 hp, hösten 2015 Upplägg Allmän kursinfo Vår plats i Universum Snabbvandring genom kursen Vad den här kursen handlar om Det naturvetenskapliga sökandet efter intelligent,
Vi ser Vintergatan som ett dimmaktigt bälte över himmelen.
6 Galaxer Galaxerna är de synliga "byggstenarna" av universum. Man räknar med att det finns 170 miljarder galaxer i den observerbara delen av universum, dvs. inom ca 14 miljarder ljusår. Galaxernas storlek
Inspirationsdag i astronomi. Innehåll. Centret för livslångt lärande vid Åbo Akademi Vasa, 24 mars 2011
Inspirationsdag i astronomi Centret för livslångt lärande vid Åbo Akademi Vasa, 24 mars 2011 Länkar m.m.: www.astronomi.nu/vasa110324 Magnus Näslund Stockholms observatorium Institutionen för astronomi
Sökandet efter intelligent liv i rymden 5 hp, hösten 2015. Upplägg. Vad den här kursen handlar om. Allmän kursinfo. Vår plats i Universum
Sökandet efter intelligent liv i rymden 5 hp, hösten 2015 Allmän kursinfo Upplägg Vår plats i Universum Snabbvandring genom kursen Vad den här kursen handlar om Vad kursen inte handlar så mycket om Det
Översiktskurs i astronomi Lektion 7: Solens och stjärnornas energiproduktion samt utveckling
Översiktskurs i astronomi Lektion 7: Solens och stjärnornas energiproduktion samt utveckling Upplägg Energiprocesser i stjärnor Energitransport i stjärnor Solens uppbyggnad Solfläckar Solliknande stjärnors
Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 8,5 poäng och
Institutionen för Fysik Göteborgs Universitet LÖSNINGAR TILL TENTAMEN I FYSIK A: MODERN FYSIK MED ASTROFYSIK Tid: Lördag 3 augusti 008, kl 8 30 13 30 Plats: V Examinator: Ulf Torkelsson, tel. 031-77 3136
Solen i dag.
Solen i dag http://www.spaceweather.com/ The Regimes of Stellar Death for core remnants of different masses Core mass < 1.4 solar masses, Star core shrinks down to a white dwarf the size of the Earth.
Är vi ensamma i Universum?
ASTA02 - Lennart Lindegren - 9 nov 2011 Är vi ensamma i Universum? Vad är liv? Livets uppkomst på Jorden Liv på Mars? Europa? Intelligent liv? Drakes ekvation SETI - Search for Extraterrestrial Intelligence
Sökandet efter intelligent liv i rymden Föreläsning 5: Fermis paradox I
Sökandet efter intelligent liv i rymden Föreläsning 5: Fermis paradox I Upplägg Fermis paradox Lösningar av typen: Dom är här Dom är här men har inte tagit kontakt med oss The doomsday argument Webb: Kapitel
Intelligent liv i Universum Är vi ensamma? Föreläsning 3: Exoplaneter & beboeliga zoner
Intelligent liv i Universum Är vi ensamma? Föreläsning 3: Exoplaneter & beboeliga zoner Upplägg Exoplaneter Beboeliga zoner Faror för vår typ av liv Davies: Kapitel 1 & 2 + Kapitel 3 översiktligt Exoplaneter
Ufologi. Upplägg. Vad den här kursen handlar om 2013-06-10. Intelligent liv i Universum Är vi ensamma? 7.5 hp, sommaren 2013.
Intelligent liv i Universum Är vi ensamma? 7.5 hp, sommaren 2013 Allmän kursinfo Upplägg Vår plats i Universum Snabbvandring genom kursen Vad den här kursen handlar om Vad kursen intehandlar så mycket
Intelligent liv i Universum Är vi ensamma? Föreläsning 3: Exoplaneter & beboeliga zoner
Intelligent liv i Universum Är vi ensamma? Föreläsning 3: Exoplaneter & beboeliga zoner Upplägg Exoplaneter Beboeliga zoner Faror för vår typ av liv Davies: Kapitel 1 & 2 + Kapitel 3 översiktligt Exoplaneter
Exoplaneter. Direkt observation. Detektionsmetoder. Upplägg. Formalhaut b
Intelligent liv i Universum Är vi ensamma? Föreläsning 3: Exoplaneter & beboeliga zoner Upplägg Exoplaneter Beboeliga zoner Faror för vår typ av liv Davies: Kapitel 1 & 2 + Kapitel 3 översiktligt Exoplaneter
Från nebulosor till svarta hål stjärnors födelse, liv och död
Från nebulosor till svarta hål stjärnors födelse, liv och död Stjärnor Stjärnor är enorma glödande gasklot. Vår sol är en typisk stjärna. Dess diameter är 1 400 000 km och dess massa är 2. 10 30 kg. Temperaturen
Vår galax Vintergatan sedd från sidan. Vår galax Vintergatan sedd uppifrån
Livet. Detta ord berör hela jorden oavsett religion. I första hand hänvisar jag läsaren till följande länkar: Svarta hålets hemlighet, Vad händer i ett svart hål?, Resan genom det svarta hålet, Livet och
Intelligent liv i Universum Är vi ensamma? Föreläsning 4: Drakes ekvation
Intelligent liv i Universum Är vi ensamma? Föreläsning 4: Drakes ekvation Upplägg Introduktion till inlämningsuppgifterna Drakes ekvation och dess betydelse Ekvationens parametrar Några räkneexempel Kända
Relativitetsteorins grunder, våren 2016 Räkneövning 6 Lösningar
elativitetsteorins grunder, våren 2016 äkneövning 6 Lösningar 1. Gör en Newtonsk beräkning av den kritiska densiteten i vårt universum. Tänk dig en stor sfär som innehåller många galaxer med den sammanlagda
Edwin Hubbles stora upptäckt 1929
Edwin Hubbles stora upptäckt 1929 Edwin Hubble Edwin Hubbles observationer av avlägsna galaxer från 1929. Moderna observationer av avlägsna galaxer. Bild: Riess, Press and Kirshner (1996) Galaxerna rör
att båda rör sig ett varv runt masscentrum på samma tid. Planet
Tema: Exoplaneter (Del III, banhastighet och massa) Det vi hittills tittat på är hur man beräknar radien och avståndet till stjärnan för en exoplanet. Omloppstiden kunde vi exempelvis få fram genom att
Vilken av dessa nivåer i väte har lägst energi?
Vilken av dessa nivåer i väte har lägst energi? A. n = 10 B. n = 2 C. n = 1 ⱱ Varför sänds ljus av vissa färger ut från upphettad natriumånga? A. Det beror på att ångan är mättad. B. Det beror på att bara
Stjärnors död samt neutronstjärnor. Planetära nebulosan NGC (New General Catalogue) Kattöganebulosan
Stjärnors död samt neutronstjärnor Planetära nebulosan NGC (New General Catalogue) 65 43 Kattöganebulosan Introduktion En stjärna lever huvuddelen av sitt liv i huvudserien. Förutsättningen för detta är
Upplägg. Övergripande problem. Hur lång tid tar det? Sökandet efter intelligent liv i rymden Föreläsning 8: Interstellära resor och tidsresor
Sökandet efter intelligent liv i rymden Föreläsning 8: Interstellära resor och tidsresor Upplägg Hur lång tid tar en interstellär resa? Relativistiska effekter Tänkbar teknologi Tidsresor Davies: kapitel
Exoplaneter. Direkt observation. Detektionsmetoder. Upplägg. Fomalhaut b
Intelligent liv i Universum Är vi ensamma? Föreläsning 3: Exoplaneter & beboeliga zoner Upplägg Exoplaneter Beboeliga zoner Faror för vår typ av liv Davies: Kapitel 1 & 2 + Kapitel 3 översiktligt Exoplaneter
Introduktion. Stjärnor bildas, producerar energi, upphör producera energi = stjärnor föds, lever och dör.
Stjärnors födelse Introduktion Stjärnor består av gas i jämvikt: Balans mellan gravitation och tryck (skapat av mikroskopisk rörelse). Olika källor till tryck i olika utvecklingsskeden. Stjärnor bildas,
Kvasarer och aktiva galaxer
Kvasarer och aktiva galaxer Radioastronomins födelse: 1931 - Grote Reber (1911 2002) Karl Guthe Jansky (1905 1950) Reber Radio Telescope in Wheaton, Illinois, 1937 Upptäckten av kvasarer Radioemission
Orienteringskurs i astronomi Föreläsning 1, Bengt Edvardsson
Orienteringskurs i astronomi Föreläsning 1, 2014-09-01 Bengt Edvardsson Innehåll: Korta frågor och svar Anteckningarna är en hjälp vid läsningen av boken men definierar inte kursen. Första föreläsningen
Sökandet efter intelligent liv i rymden Föreläsning 4: Drakes ekvation
Sökandet efter intelligent liv i rymden Föreläsning 4: Drakes ekvation Upplägg Introduktion till inlämningsuppgifterna Drakes ekvation och dess betydelse Ekvationens parametrar Några räkneexempel Kända
Sökandet efter intelligent liv i rymden Föreläsning 4: Drakes ekvation. Upplägg
Sökandet efter intelligent liv i rymden Föreläsning 4: Drakes ekvation Upplägg Introduktion till inlämningsuppgifterna Drakes ekvation och dess betydelse Ekvationens parametrar Några räkneexempel Kända
Solens energi alstras genom fusionsreaktioner
Solen Lektion 7 Solens energi alstras genom fusionsreaktioner i dess inre När solen skickar ut ljus förlorar den också energi. Det måste finnas en mekanism som alstrar denna energi annars skulle solen
Upplägg. Översiktskurs i astronomi Lektion 11: Galaxer och kosmologi. Vår lokala galaxgrupp. Virgohopen. Kannibalgalaxer i galaxhopars centrum
Översiktskurs i astronomi Lektion 11: Galaxer och kosmologi Upplä Upplägg Storskalig struktur Galaxgrupper Filament och galaxhopar och tomrum Aktiva galaxkä galaxkärnor Kvasarer, Kvasarer, blazarer, blazarer,
Sökandet efter intelligent liv i rymden Föreläsning 8: Interstellära resor och tidsresor
Sökandet efter intelligent liv i rymden Föreläsning 8: Interstellära resor och tidsresor Upplägg Hur lång tid tar en interstellär resa? Relativistiska effekter Tänkbar teknologi Tidsresor Davies: kapitel
Intelligent liv i Universum Är vi ensamma? Föreläsning 6: Fermis paradox II
Intelligent liv i Universum Är vi ensamma? Föreläsning 6: Fermis paradox II Frågor från förra gången SETI: Searching for ExtraTerrestrial Intelligence SETA: Searching for ExtraTerrestrial Artefacts SETV:
Intelligent liv i Universum Är vi ensamma? Föreläsning 8: Interstellära resor
Intelligent liv i Universum Är vi ensamma? Föreläsning 8: Interstellära resor Upplägg Hur lång tid tar en interstellär resa? Relativistiska effekter Tänkbar teknologi Tidsresor Davies: kapitel 6 Webb:
Frågor från förra gången. Frågor från förra gången. Frågor från förra gången. Repetiton: Vad är Fermis paradox? Upplägg
Intelligent liv i Universum Är vi ensamma? Föreläsning 6: Fermis paradox II Frågor från förra gången SETI: Searching for ExtraTerrestrial Intelligence SETA: Searching for ExtraTerrestrial Artefacts SETV:
Sökandet efter intelligent liv i rymden Föreläsning 3: Exoplaneter & beboeliga zoner
Sökandet efter intelligent liv i rymden Föreläsning 3: Exoplaneter & beboeliga zoner Upplägg Exoplaneter Beboeliga zoner Faror för vår typ av liv Davies: Kapitel 1 & 2 + Kapitel 3 översiktligt Exoplaneter
Exoplaneter. Direkt observation. Detektionsmetoder. Upplägg. Fomalhaut b
Sökandet efter intelligent liv i rymden Föreläsning 3: Exoplaneter & beboeliga zoner Upplägg Exoplaneter Beboeliga zoner Faror för vår typ av liv Davies: Kapitel 1 & 2 + Kapitel 3 översiktligt Exoplaneter
Inspirationsdag i astronomi. Innehåll. Centret för livslångt lärande vid Åbo Akademi Vasa, 24 mars 2011
Inspirationsdag i astronomi Centret för livslångt lärande vid Åbo Akademi Vasa, 24 mars 2011 Länkar m.m.: www.astronomi.nu/vasa110324 Magnus Näslund Stockholms observatorium Institutionen för astronomi
ÖVNING: Träna läsförståelse!
ÖVNING: INNEHÅLL... Vårt solsystem... Vintergatan 7... Stjärnbilder 8 9... En spännande tävling 10 11... Ord i rutor 1... Lånade ord 1 1... Vandring på månen 1 17... Ett rymdäventyr 18 19... Tänk efter!
Exoplaneter. Direkt observation. Detektionsmetoder. Upplägg. Omstridd detektion: Formalhaut b
Intelligent liv i Universum Är vi ensamma? Föreläsning 3: Exoplaneter & beboeliga zoner Upplägg Exoplaneter Beboeliga zoner Faror för vår typ av liv Davies: Kapitel 1 & 2 + Kapitel 3 översiktligt Exoplaneter
Intelligent liv i Universum Är vi ensamma? Föreläsning 4: Drakes ekvation
Intelligent liv i Universum Är vi ensamma? Föreläsning 4: Drakes ekvation Fråga från Institutionen för Astronomi Hur fick ni reda på att den här kursen existerade? Skriv ned svaret på en lapp och lämna
Trappist-1-systemet Den bruna dvärgen och de sju kloten
Trappist--systemet Den bruna dvärgen och de sju kloten Trappist- är en sval dvärgstjärna, en brun dvärg, som man nyligen upptäckte flera planeter kring. För tillfället känner man till sju planeter i omloppsbana
Universums uppkomst: Big Bang teorin
Universums uppkomst: Big Bang teorin Universum expanderar (Hubbles lag) Kosmisk bakgrundsstrålning Fördelningen av grundämnen Några kosmologiska frågor 1. Har universum alltid expanderat som idag eller
Sökandet efter intelligent liv i rymden Föreläsning 6: Fermis paradox II
Sökandet efter intelligent liv i rymden Föreläsning 6: Fermis paradox II Uppföljning från tidigare föreläsning: Lever vi i en datorsimulering? Strängteori: Teoribygge inom fysiken som försöker beskriva
Sökandet efter intelligent liv i rymden Föreläsning 6: Fermis paradox II
Sökandet efter intelligent liv i rymden Föreläsning 6: Fermis paradox II Uppföljning från tidigare föreläsning: Lever vi i en datorsimulering? Strängteori: Teoribygge inom fysiken som försöker beskriva
Upplägg. Övergripande problem. Astronomisk enhet. Hur lång tid tar det? Hur lång tid tar det? 2013-07-21
Intelligent liv i Universum Är vi ensamma? Föreläsning 8: Interstellära resor Upplägg Hur lång tid tar en interstellär resa? Relativistiska effekter Tänkbar teknologi Tidsresor Davies: kapitel 6 Webb:
10. Relativitetsteori Tid och Längd
Relativa mätningar Allting är relativt är ett välbekant begrepp. I synnerhet gäller detta när vi gör mätningar av olika slag. Många mätningar består ju i att man jämför med någonting. Temperatur är en
Sökandet efter intelligent liv i rymden Föreläsning 4: Drakes ekvation
Sökandet efter intelligent liv i rymden Föreläsning 4: Drakes ekvation Fråga från förra gången Planeter som slungas fram och tillbaka mellan stjärnorna i ett dubbelstjärnesystem: Moeckel & Veras 2012,
Sökandet efter intelligent liv i rymden Föreläsning 4: Drakes ekvation. Fråga från förra gången. Upplägg
Sökandet efter intelligent liv i rymden Föreläsning 4: Drakes ekvation Fråga från förra gången Planeter som slungas fram och tillbaka mellan stjärnorna i ett dubbelstjärnesystem: Moeckel & Veras 2012,
En rundvandring i rymden
En rundvandring i rymden Solen Vår närmsta och därmed bäst studerade stjärna. Solytan är ca 5700 grader varm, men den tunna gasen som omger solen (koronan) är över en miljon grader. Ett av världens bästa
Ufologi. Upplägg. Vad den här kursen handlar om 2014-09-03. Intelligent liv i Universum Är vi ensamma? 7.5 hp, hösten 2014.
Intelligent liv i Universum Är vi ensamma? 7.5 hp, hösten 2014 Allmän kursinfo Upplägg Vår plats i Universum Snabbvandring genom kursen Vad den här kursen handlar om Vad kursen intehandlar så mycket om
6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105)
6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105) Termodynamikens nollte huvudsats säger att temperaturskillnader utjämnas i isolerade system. Med andra ord strävar system efter termisk jämvikt
Vanlig materia (atomer, molekyler etc.) c:a 4%
Universum som vi ser det idag: Vanlig materia (atomer, molekyler etc.) c:a 4% Mörk materia (exotiska partiklar, WIMPs??) c:a 23% Mörk energi (kosmologisk konstant??) c:a 73% Ålder c:a 13,7 miljarder år
Allt börjar... Big Bang. Population III-stjärnor. Supernova-explosioner. Stjärnor bildas
Allt börjar... 200 miljoner år Big Bang Population III-stjärnor Universum består av H, He och Li, och är fortfarande helt mörkt pga absorption av ljus. I rekombinationsfasen bildas de första molekylerna,
Stjärnors födslar och död
Stjärnors födslar och död Stjärnors egenskaper Uppkomst Avstånd Rörelse Skenbar ljusstyrka Färg temperatur Energiproduktion Verklig ljusstyrka Utveckling Ovanliga stjärnor Slutstadier Rymden är inte bara
Upplägg. Övergripande problem. Hur lång tid tar det? Hur lång tid tar det?
Intelligent liv i Universum Är vi ensamma? Föreläsning 8: Interstellära resor och tidsresor Upplägg Hur lång tid tar en interstellär resa? Relativistiska effekter Tänkbar teknologi Tidsresor Davies: kapitel
Kumla Solsystemsmodell. Skalenlig modell av solsystemet
Kumla Solsystemsmodell Skalenlig modell av solsystemet Kumla Astronomiklubb har i samarbete med Kumla kommun iordningställt en skalenlig modell av solsystemet runt om i Kumla. Placeringen av samtliga tio
Sökandet efter intelligent liv i rymden Föreläsning 3: Exoplaneter & beboeliga zoner
Sökandet efter intelligent liv i rymden Föreläsning 3: Exoplaneter & beboeliga zoner Upplägg Exoplaneter Beboeliga zoner Faror för vår typ av liv Davies: Kapitel 1 & 2 + Kapitel 3 översiktligt Exoplaneter
Intelligent liv i Universum Är vi ensamma? Föreläsning 8: Interstellära resor. Viktig schemaändring: Kurstillfället 21 november ställs in!
Intelligent liv i Universum Är vi ensamma? Föreläsning 8: Interstellära resor Viktig schemaändring: Kurstillfället 21 november ställs in! Schemat för föreläsningarna 9-11 förskjuts en vecka Extratillfället
Tentamen Relativitetsteori , 27/7 2019
KOD: Tentamen Relativitetsteori 9.00 14.00, 27/7 2019 Hjälpmedel: Miniräknare, linjal och bifogad formelsamling. Observera: Samtliga svar ska lämnas på dessa frågepapper. Det framgår ur respektive uppgift
Exoplaneter. Direkt observation. Detektionsmetoder. Upplägg. Fomalhaut b
Sökandet efter intelligent liv i rymden Föreläsning 3: Exoplaneter & beboeliga zoner Upplägg Exoplaneter Beboeliga zoner Faror för vår typ av liv Davies: Kapitel 1 & 2 + Kapitel 3 översiktligt Exoplaneter
Kosmologi. Universums utveckling. MN Institutionen för astronomi. Av rättighetsskäl är de flesta bilder från Wikipedia, om inte annat anges
Kosmologi Universums utveckling MN Institutionen för astronomi Av rättighetsskäl är de flesta bilder från Wikipedia, om inte annat anges Upplägg Inledning vad ser vi på himlen? Galaxer och galaxhopar Metoder
LÖSNING TILL TENTAMEN I STJÄRNORNA OCH VINTERGATAN, ASF010
Teoretisk fysik och mekanik Institutionen för Fysik och teknisk fysik Chalmers &Göteborgs Universitet LÖSNING TILL TENTAMEN I STJÄRNORNA OCH VINTERGATAN, ASF010 Tid: 25 augusti 2010, kl 8 30 13 30 Plats:
Översiktskurs i astronomi Hösten 2009
Översiktskurs i astronomi Hösten 2009 Upplägg Formell information Vår r plats i Universum Grundläggande astronomiska begrepp Formell information I Lärare (idag): Erik Zackrisson Lärare påp resten av kursen:
Kosmologi efter elektrosvagt symmetribrott
Kosmologi efter elektrosvagt symmetribrott Den teoretiska grunden för modern kosmologi Einsteins allmänna relativitetsteori 1907 inser Einstein att man kan lokalt göra sig kvitt med gravitation genom att
Atomens historia. Slutet av 1800-talet trodde man att man hade en fullständig bild av alla fysikaliska fenomen.
Atomfysik ht 2015 Atomens historia Atom = grekiskans a tomos som betyder odelbar Filosofen Demokritos, atomer. Stort motstånd, främst från Aristoteles Trodde på läran om de fyra elementen Alla ämnen bildas
Vår galax, Vintergatan
Vår galax, Vintergatan Vår plats i Vintergatan Ca 1785 (William Herschel) till ca 1920 (Jacobus Kapteyn): Solen i galaxens centrum, p.g.a. stjärnor jämt fördelade i Vintergatan i synligt ljus. Herschels
Universums expansion och storskaliga struktur Ulf Torkelsson
1 Hubbles lag Föreläsning 13/5 Universums expansion och storskaliga struktur Ulf Torkelsson Den amerikanske astronomen Vesto M. Slipher upptäckte redan på 1910-talet att ljuset från praktiskt taget alla
CYGNUS. Länktips! Kallelse: Årsmöte 13 mars 2014
CYGNUS Medlemsblad för Östergötlands Astronomiska Sällskap Nr 2, 2013 Innehåll Länktips! Kallelse till Årsmötet Sammanfattning av Peter Lindes föredrag under Höstmötet Jakten på liv i universum 1 2 Månfoto
Grundläggande fakta om stjärnor
Grundläggande fakta om stjärnor På ASAKs (Astronomiska Sällskapet Aquila i Kristianstads) hemsida på Internet finns en månadsguide till Kristianstadtraktens natthimmel (du hittar den genom att i den blå
Översiktskurs i astronomi Våren Formell information I. Formell information II. Formell information IV. Formell information III
Översiktskurs i astronomi Våren 2009 Upplägg Formell information Vår r plats i Universum Grundläggande astronomiska begrepp Formell information I Lärare: Erik Zackrisson ez@astro.su.se 08-5537 8556 Kurshemsida:
Räkneövning 5 hösten 2014
Termodynamiska Potentialer Räkneövning 5 hösten 214 Assistent: Christoffer Fridlund 1.12.214 1 1. Vad är skillnaden mellan partiklar som följer Bose-Einstein distributionen och Fermi-Dirac distributionen.
VARFÖR MÖRK ENERGI HAR EN ANMÄRKNINGSVÄRT LITET VÄRDE. Ahmad Sudirman
VARFÖR MÖRK ENERGI HAR EN ANMÄRKNINGSVÄRT LITET VÄRDE Ahmad Sudirman CAD, CAM och CNC Teknik Utbildning med kvalitet (3CTEQ) STOCKHOLM, 9 januari 2014 1 VARFÖR MÖRK ENERGI HAR EN ANMÄRKNINGSVÄRT LITET
Upptäckten av gravitationsvågor
Upptäckten av gravitationsvågor Peter Johansson Institutionen för Fysik Helsingfors Universitet Fysikersamfundet i Finland - Årsmöte Helsingfors, 16.03.2016 Gravitationsvågor som ett fenomen förutspåddes
Tentamen Relativitetsteori
KOD: Tentamen Relativitetsteori 9.00 14.00, 16/7 2011 Hjälpmedel: Miniräknare, linjal och bifogad formelsamling. Observera samtliga svar ska lämnas på dessa frågepapper. Det framgår ur respektive uppgift
DE SJU SYMMETRISKA UNIVERSUM. Ahmad Sudirman
DE SJU SYMMETRISKA UNIVERSUM Ahmad Sudirman CAD,CAM och CNC Teknik Utbildning med kvalitet (3CTEQ) STOCKHOLM, den 13 november 2011 1 DE SJU SYMMETRISKA UNIVERSUM Copyright 2011 Ahmad Sudirman* Stockholm
LHC Vad händer? Christophe Clément. Elementarpartikelfysik Stockholms universitet. Fysikdagarna i Karlstad, 2010-10-09
LHC Vad händer? Christophe Clément Elementarpartikelfysik Stockholms universitet Fysikdagarna i Karlstad, 2010-10-09 Periodiska systemet 1869 Standardmodellen 1995 Kvarkar Minsta beståndsdelar 1932 Leptoner
Solen och andra stjärnor 24 juli Stefan Larsson. Mer kap 3 Stjärnors egenskaper
Solen och andra stjärnor 24 juli 2006 Stefan Larsson Mer kap 3 Stjärnors egenskaper Spectralklasser Vilka spektrallinjer som finns i en stjärnas spektrum och hur starka de är beror i första hand på temperaturen
1.5 Våg partikeldualism
1.5 Våg partikeldualism 1.5.1 Elektromagnetisk strålning Ljus uppvisar vågegenskaper. Det är bland annat möjligt att åstadkomma interferensmönster med ljus det visades av Young redan 1803. Interferens
Gravitationens gåta Ett nytt förslag till lösning Av Josef Kemény, 2008
Gravitationens gåta Ett nytt förslag till lösning Av Josef Kemény, 2008 Detta är en gåta som lett till de värsta grälen inom vetenskapen. Att lösa gåtan är inte en lätt uppgift. Den rådande vetenskapen
Elins bok om Rymden. Börja läsa
Elins bok om Rymden Börja läsa Innehållsförteckning Tankar från förr Vårt solsystem Planeterna Månen Solen Människan och rymden Rymdraketer och satelliter Stjärnorna Stjärnbilderna Mer om rymden s. 3 s.
Fysik. Arbetslag: Gamma Klass: 8 C, D Veckor: 43-51, ht-2015 Akustik och optik (ljud och ljus) och astronomi Utdrag ur kursplanen i fysik:
Fysik Arbetslag: Gamma Klass: 8 C, D Veckor: 43-51, ht-2015 Akustik och optik (ljud och ljus) och astronomi Utdrag ur kursplanen i fysik: - Använda kunskaper i fysik för att granska information, kommunicera