Sannolikhetsteori. Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik,
|
|
- Britt Martinsson
- för 8 år sedan
- Visningar:
Transkript
1 Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, 5p. Tid: Torsdagen den 22 december, 2006 kl i M-huset. Examinator: Olle Nerman, tel Jour: Alexandra Jauhiainen, tel , Erik Kristiansson, tel Hjälpmedel: kalkylator, egen handskriven formelsamling (fyra A4 sidor) samt med skrivningen utdelade formel- och tabellsidor. Maxpoäng: 32. För godkänt krävs minst 15 poäng totalt och minst 4 poäng på sannolikhetsteori- och statistik-delen vardera samt minst 3 poäng på bioinformatikdelen. Sannolikhetsteori 1 Kumaraswamy-fördelningen, ursprungligen skapad av den indiska hydrologen Poond Kumaraswamy, har följande täthetsfunktion, f X (x) = abx a 1 (1 x a ) b 1, 0 x 1. Låt X vara Kumaraswamy-fördelad med a = 2 och b = 2. (a) Beräkna E[X]. (1p) (b) Beräkna Var[X]. (2p) (c) Med moden för en kontinuerlig stokastisk variabel menas det x där täthetsfunktionen f(x) har det största värdet. Beräkna moden för en Kumaraswamy-fördelad stokastisk variabel med parametrarna a = 2 och b = 2. (1p) 2 Antalet fel på en slumpmässigt vald sida i den 6:e upplagan av Probability and Statitsics av J. L. Devore antas vara Poisson-fördelat med väntevärde λ. Boken har totalt 796 sidor och felen på de olika sidorna antas vara oberoende. Låt X vara det totala antalet fel i boken. (a) Om λ = 2, beräkna den approximativa sannolikheten att det totala antalet fel överstiger (2p) (b) På förlaget där boken ges ut (Thomson) är man noga med kvalitén. Beräkna därför det största tillåtna värdet på λ (approximativt) om sannolikheten för att det ska nnas max 1000 fel ska vara mindre än (2p) 1
2 3 Låt A vara en händelse som inträar med sannolikheten 0.5 och låt X vara en stokastisk variabel. Den betingade fördelningen för X om A inträar är Bin(10, 0.8) och den betingade fördelningen för X om A inte inträar är Bin(10, 0.3). Statistik (a) Beräkna sannolikheten för A givet X = 8. (2p) (b) Beräkna E[X]. (2p) 4 En industri destillerar luft som frusits till vätskeform för att producera syre, kväve och argon. Renheten hos det producerade syret tros vara linjärt avtagande av mängden orenheter i luften (föroreningstalet i ppm). Följande data insamlades under ett testförsök. föroreningstal i ppm (x) renhet % (y) Vi tänker oss att y j är en observation av en stokastisk variabel Y j där Y j = β 0 + β 1 x j + ɛ j En regressionanalys gjordes på materialet med följande resultat: 2
3 Residuals: Estimate Std. Error (Intercept) x Residual standard error: on 13 degrees of freedom Multiple R-Squared: , Adjusted R-squared: Analysis of Variance Table Response: y Df Sum Sq Mean Sq x Residuals (a) Undersök på nivån 0.01 hur föroreningstalet påverkar renheten hos syret. (2p) (b) Vad betyder resultatet i (a)? (1p) (c) Ett företag har jämfört efterfrågan på sitt nya hälsopreparat i tolv olika försäljningsdistrikt. I fem av distrikten såldes preparatet endast i hälsokostbutiker, medan det i de övriga distrikten även såldes i vanliga mataärer. Försäljningsvolymen per invånare (y) registrerades och samtidigt togs tre förklarande variabler fram. 3
4 y x 1 x 2 x Här är x 1 är en indikator för om distributionen skedde endast via hälskokostbutiker, x 2 är urbaniseringsgraden och x 3 är relativ inkomst. Nedan följer analyser för varje föklaringsvariabel mot y. Vilken förklarande variabel skulle du välja om du endast ck ta med en? (1p) Modell med x 1 : Call: lm(formula = y ~ x1) Residuals: Estimate Std. Error t value Pr(> t ) (Intercept) e-12 *** x * Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 10 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: on 1 and 10 DF, p-value:
5 Modell med x 2 : Call: lm(formula = y ~ x2) Residuals: Estimate Std. Error t value Pr(> t ) (Intercept) * x ** Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 10 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: on 1 and 10 DF, p-value: Modell med x 3 : Call: lm(formula = y ~ x3) Residuals: Estimate Std. Error t value Pr(> t ) (Intercept) *** x Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 10 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: on 1 and 10 DF, p-value:
6 5 I ett ertal forskningsartiklar inom det medicinska området har det rapporterats att patienter med kardiovaskulära sjukdomar eller cancer har hög närvaro av endotelceller eller rester därav i blodet. En metod som bland annat innefattar centrifugering följt av immunouorescensinfärgning är användbar för att detektera endotelceller i blodet. Venöst blod har provtagits från 7 patienter i en kontrollgrupp och mängden endotelceller (mg/ml) bestämts med metoden ovan. På samma sätt har blod från 18 patienter med ischemisk hjärtsjukdom (IHD) provtagits och mängden endotelceller bestämts. medelvärde stickprovsstandardav. Kontroll IHD Antag att data följer en normalfördelning. (a) Undersök om varianserna kan anses vara lika i kontrollgruppen och gruppen med IHD-patienter. Nivå 0.1 (2p) (b) Baserat på din slutsats i (a), undersök med lämplig metod om IHD-gruppen kan anses ha högre innehåll av endotelceller i sitt blod än kontrollgruppen. Nivå (2p) 6 I skidskytte ska man i varje skjutning träa med fem skott. Tänk att man följer en skidskytt under 250 skjutningar både på träning och tävling och registrerar antalet träar i varje skjutning. Man arbetar enligt modellen att skidskytten träar varje skott med sannolikheten p oberoende av andra skott. I en skjutning blir alltså X=antalet träade skott binomialfördelad med parametrarna n = 5 och p. (a) Härled maximum-likelihoodskattningen av p. Beräkna ett värde för ˆp från observationerna nedan. (2p) (b) Vi har fått följande observationer från de 250 skjutningarna: Träar Antal obs Undersök med ett test på nivån 0.05 om vårt antagande om binomialfördelning är korrekt. Tips: Använd uttrycket för skattningen från uppgift (a) på den okända parametern p (om du gör det, hur blir då frihetsgraderna?). (2p) 6
7 Bioinformatik 7 Sekvensbioinformatik (a) För att utföra parvis sekvensjämförelse används en substitutionsmatris, till exempel en PAM120-matris. Vilka egenskaper är önskvärda hos en substitutionsmatris? (1p) (b) Vad är anledningen till att man använder olika substitutionsmatriser, exempelvis PAM40 och PAM120, vid parvis sekvensjämförelse? (1p) (c) Kan man generalisera Needleman-Wunsch algoritm för global parvis sekvensjämförelse till global multipel sekvensjämförelse? Vilka praktiska begränsningar nns isåfall? (2 p) 8 Strukturbioinformatik (a) What is the purpose of the DSSP program? Describe how main chain hydrogen bonds are calculated by DSSP. (2p) (b) In protein modelling, what is a side chain rotamer? How are side chain rotamers used in protein modelling? (2p) God Jul och lycka till! 7
(a) Beräkna sannolikhetsfunktionen p X (x). (2p) (b) Beräkna väntevärdet för X. (1p) (c) Beräkna standardavvikelsen för X. (1p)
Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, 5p. Tid: Lördag den 14 april, 2007 kl 14.00-18.00 i V-huset. Examinator: Olle Nerman, tel 7723565. Jour: Alexandra Jauhiainen,
Sannolikhetsteori. Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik,
Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, 5p. Tid: Lördag den 29 mars, 2008 kl 14.00-18.00 i V-huset. Examinator: Olle Nerman, tel 7723565. Jour: Alexandra Jauhiainen,
Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik,
Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, 7,5 hp. Tid: Lördag den 18 april 2009, kl 14:00-18:00 Väg och vatten Examinator: Olle Nerman, tel 7723565. Jour: Frank Eriksson,
Tentamen TMS145 Grundkurs i matematisk statistik och bioinformatik, 7,5 hp, kl
Tentamen TMS145 Grundkurs i matematisk statistik och bioinformatik, 7,5 hp, 21-12-14 kl 8.3-12.3. Examinator: Olle Nerman, tel 772 35 65. Jour: Malin Östensson, tel 78347877 Hjälpmedel: valfri miniräknare,
Sannolikhetsteori. Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik,
Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, 7,5p. Tid: Tisdag den 15 december, 2009 kl 8.30-12.30, Hörsalsvägen. Examinator: Olle Nerman, tel 7723565. Jour: Frank Eriksson,
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2018-05-31 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri
Matematiska Institutionen Silvelyn Zwanzig 13 mar, 2006
UPPSALA UNIVERSITET Sannolikhetslära och Statistik Matematiska Institutionen F Silvelyn Zwanzig 3 mar, 006 Tillåtna hjälpmedel: Miniräknare, Formel- och Tabellsamling med egna handskrivna tillägg Skrivtid:5-0.
Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2017-06-01 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri
Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion
Avd. Matematisk statistik TENTAMEN I 5B57 MATEMATISK STATISTIK FÖR T och M ONSDAGEN DEN 9 OKTOBER 25 KL 8. 3.. Examinator: Jan Enger, tel. 79 734. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk
Tentamen i Tillämpad statistisk analys, GN, 7.5 hp 23 maj 2013 kl. 9 14
STOCKHOLMS UNIVERSITET MT4003 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 23 maj 2013 Tentamen i Tillämpad statistisk analys, GN, 7.5 hp 23 maj 2013 kl. 9 14 Examinator: Gudrun Brattström,
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2018-10-12 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri
FACIT: Tentamen L9MA30, LGMA30
Göteborgs Universitetet GU Lärarprogrammet 20 FACIT: Tentamen L9MA0, LGMA0 Matematik för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik för gymnasielärare, Sannolikhetslära och statistik 20-0-2
Tentamen MVE300 Sannolikhet, statistik och risk
Tentamen MVE300 Sannolikhet, statistik och risk 205-08-8 kl. 8.30-3.30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Johan Jonasson, telefon: 0706-985223 03-7723546 Hjälpmedel:
1. a Vad menas med medianen för en kontinuerligt fördelad stokastisk variabel?
Tentamenskrvnng: TMS45 - Grundkurs matematsk statstk och bonformatk, 7,5 hp. Td: Onsdag den 9 august 2009, kl 08:30-2:30 Väg och vatten Tesen korrgerad enlgt anvsngar under tentamenstllfället. Examnator:
Tentamen i Linjära statistiska modeller 13 januari 2013, kl. 9-14
STOCKHOLMS UNIVERSITET MT 5001 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 13 januari 2014 Tentamen i Linjära statistiska modeller 13 januari 2013, kl. 9-14 Examinator: Martin Sköld, tel.
b) Om vi antar att eleven är aktiv i en eller flera studentföreningar vad är sannolikheten att det är en kille? (5 p)
Avd. Matematisk statistik TENTAMEN I SF1920 och SF1921 SANNOLIKHETSTEORI OCH STATISTIK, FREDAGEN DEN 8:E JUNI 2018 KL 14.00 19.00. Examinator: Björn-Olof Skytt, 08 790 86 49. Tillåtna hjälpmedel: Formel-
Tentamen MVE300 Sannolikhet, statistik och risk
Tentamen MVE300 Sannolikhet, statistik och risk 2015-08-18 kl. 8.30-13.30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Johan Jonasson, telefon: 0706-985223 031-7723546 Hjälpmedel:
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2017-08-15 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri
1. Lära sig plotta en beroende variabel mot en oberoende variabel. 2. Lära sig skatta en enkel linjär regressionsmodell
Datorövning 1 Regressions- och tidsserieanalys Syfte 1. Lära sig plotta en beroende variabel mot en oberoende variabel 2. Lära sig skatta en enkel linjär regressionsmodell 3. Lära sig beräkna en skattning
Lufttorkat trä Ugnstorkat trä
Avd. Matematisk statistik TENTAMEN I SF1901 och SF1905 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 18:E OKTOBER 2012 KL 14.00 19.00. Examinator: Tatjana Pavlenko, tel 790 8466. Tillåtna hjälpmedel:
(a) på hur många sätt kan man permutera ordet OSANNOLIK? (b) hur många unika 3-bokstavskombinationer kan man bilda av OSANNO-
Tentamenskrivning för TMS6, Matematisk Statistik. Onsdag fm den 1 maj, 217. Examinator: Marina Axelson-Fisk. Tel: 1-7724996 Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte (bifogas).
f(x) = 2 x2, 1 < x < 2.
Avd. Matematisk statistik TENTAMEN I SF90,SF907,SF908,SF9 SANNOLIKHETSTEORI OCH STATISTIK TORSDAGEN DEN 7:E JUNI 0 KL 4.00 9.00. Examinator: Gunnar Englund, tel. 07 7 45 Tillåtna hjälpmedel: Formel- och
Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4.
Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student)
Tentamen MVE302 Sannolikhet och statistik
Tentamen MVE302 Sannolikhet och statistik 2019-06-05 kl. 8:30-12:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 031-7725325 Hjälpmedel: Valfri miniräknare.
Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola.
Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tid: Måndagen den 2015-06-01, 8.30-12.30. Examinator och Jour: Olle Nerman, tel. 7723565, rum 3056, MV, Chalmers. Hjälpmedel: Valfri
b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)
Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.
Multipel Regressionsmodellen
Multipel Regressionsmodellen Koefficienterna i multipel regression skattas från ett stickprov enligt: Multipel Regressionsmodell med k förklarande variabler: Skattad (predicerad) Värde på y y ˆ = b + b
Mälardalens Högskola. Formelsamling. Statistik, grundkurs
Mälardalens Högskola Formelsamling Statistik, grundkurs Höstterminen 2015 Deskriptiv statistik Populationens medelvärde (population mean): μ = X N Urvalets medelvärde (sample mean): X = X n Där N är storleken
MVE051/MSG Föreläsning 7
MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel
2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer
Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E JANUARI 2018 KL 14.00 19.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling
LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 augusti 218, klockan 8.-12. Examinator: Jörg-Uwe Löbus (Tel: 79-62827) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:
Föreläsning 2 (kap 3): Diskreta stokastiska variabler
Föreläsning 2 (kap 3): Diskreta stokastiska variabler Marina Axelson-Fisk 20 april, 2016 Idag: Diskreta stokastiska (random) variabler Frekvensfunktion och fördelningsfunktion Väntevärde Varians Några
Lycka till!
Avd. Matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR K OCH B MÅNDAGEN DEN 25 AUGUSTI 2003 KL 14.00 19.00. Examinator: Gunnar Englund, 790 7416. Tillåtna hjälpmedel: Formel- och
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I 5B508 MATEMATISK STATISTIK FÖR S TISDAGEN DEN 20 DECEMBER 2005 KL 08.00 3.00. Examinator: Gunnar Englund, tel. 790 746. Tillåtna hjälpmedel: Formel- och tabellsamling
4 Diskret stokastisk variabel
4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används
Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:...
Avd. Matematisk statistik TENTAMEN I SF9/SF94/SF95/SF96 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 4:E OKTOBER 08 KL 8.00 3.00. Examinator för SF94/SF96: Tatjana Pavlenko, 08-790 84 66 Examinator för
732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet
732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE31 Sannolikhet, statistik och risk 218-5-31 kl. 8:3-13:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.
Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p)
Avd. Matematisk statistik TENTAMEN I SF1901, SF1905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel-
Uppgift a b c d e Vet inte Poäng
TENTAMEN: Dataanalys och statistik för I2, TMS135 Fredagen den 12 mars kl. 8:45-11:45 på V. Jour: Jenny Andersson, ankn 8294 (mobil:070 3597858) Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 22 december, 2016 Examinatorer: Kerstin Wiklander och Erik Broman.
Matematisk statistik KTH. Formelsamling i matematisk statistik
Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska
0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.
Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling
Tentamen för kursen. Linjära statistiska modeller. 27 oktober
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 27 oktober 2017 9 14 Examinator: Ola Hössjer, tel. 070/672 12 18, ola@math.su.se Återlämning: Meddelas via kurshemsida
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2013-03-28 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson Jourhavande
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE31 Sannolikhet, statistik och risk 218-1-12 kl. 8:3-13:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE30 Sannolikhet, statistik och risk 207-08-5 kl. 8:30-3:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 03-7725325 Hjälpmedel: Valfri miniräknare.
Tentamen MVE302 Sannolikhet och statistik
Tentamen MVE32 Sannolikhet och statistik 219-6-5 kl. 8:3-12:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Föreläsning 6, Repetition Sannolikhetslära
Föreläsning 6, Repetition Sannolikhetslära kap 4 Sannolikhetslära och slumpvariabler kap 5 Stickprov, medelvärden, CGS, binomialfördelning Viktiga grundbegrepp utfall, händelse, sannolikheter, betingad
Provmoment: Forskningsmetod, Salstentamen nr 1 Ladokkod:
Forskningsmetod 6,0 högskolepoäng Provmoment: Forskningsmetod, Salstentamen nr 1 Ladokkod: 11OP90/TE01 samt 11PS30/TE01 Tentamen ges för: OPUS kull H12 termin 5 inriktning Psykologi samt fristående grundkurs
(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs.
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 31:E MAJ 2012 KL 08.00 13.00. Examinator: Tobias Rydén, tel 790 8469. Kursledare: Tatjana Pavlenko, tel 790 8466.
Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka.
Avd. Matematisk statistik TENTAMEN I SF1901, SF1905 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 11 JANUARI 2016 KL 14.00 19.00. Kursledare för CINEK2: Thomas Önskog, tel: 08 790 84 55 Kursledare för
Uppgift 1. f(x) = 2x om 0 x 1
Avd. Matematisk statistik TENTAMEN I Matematisk statistik SF1907, SF1908 OCH SF1913 TORSDAGEN DEN 30 MAJ 2013 KL 14.00 19.00. Examinator: Gunnar Englund, 073 321 3745 Tillåtna hjälpmedel: Formel- och tabellsamling
LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN
Del I. Uppgift 1 Låt A och B vara två oberoende händelser. Det gäller att P (A) = 0.4 och att P (B) = 0.3. Bestäm P (B A ). Svar:...
Avd. Matematisk statistik EXEMPELTENTAMEN I SANNOLIKHETSTEORI OCH STATISTIK, Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk statistik (utdelas vid tentamen). Tentamen består av två delar,
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (9 uppgifter) Tentamensdatum 2013-08-27 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson och
a) Beräkna sannolikheten att en följd avkodas fel, det vill säga en ursprungliga 1:a tolkas som en 0:a eller omvänt, i fallet N = 3.
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 14:E MARS 017 KL 08.00 13.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling
Del A: Schema för ifyllande av svar nns på sista sidan
Del A: Schema för ifyllande av svar nns på sista sidan 1 1 Nedladdningstiden (i sekunder) för en bestämd l registrerades 16 gånger vid var och en av tre olika tidpunkter på dygnet. ANOVA-analys av dessa
TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS,
Avd. Matematisk statistik TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, TORSDAGEN DEN 7 JUNI 2012 KL 14.00 19.00 Examinator:Gunnar Englund, 073 3213745 Tillåtna hjälpmedel: Formel- och
OBS! Vi har nya rutiner.
Försättsblad KOD: Kurskod: PC1546 Kursnamn: Forskningsmetodik och fördjupningsarbete Provmoment: Statistik, 5 hp Ansvarig lärare: Sara Landström & Pär Bjälkebring Tentamensdatum: 10/1-2015 Tillåtna hjälpmedel:
Laboration 3: Enkel linjär regression och korrelationsanalys
STOCKHOLMS UNIVERSITET 13 februari 2009 Matematiska institutionen Avd. för matematisk statistik Gudrun Brattström Laboration 3: Enkel linjär regression och korrelationsanalys I sista datorövningen kommer
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE30 Sannolikhet, statistik och risk 207-06-0 kl. 8:30-3:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 03-7725348 Hjälpmedel: Valfri miniräknare.
0 om x < 0, F X (x) = c x. 1 om x 2.
Avd. Matematisk statistik TENTAMEN I SF193 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH MÅNDAGEN DEN 16 AUGUSTI 1 KL 8. 13.. Examinator: Gunnar Englund, tel. 7974 16. Tillåtna hjälpmedel: Läroboken.
Formler och tabeller till kursen MSG830
Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)
TENTAMEN I MATEMATISK STATISTIK
UMEÅ UNIVERSITET Institutionen för matematisk statistik Regressions- och variansanalys, 5 poäng MSTA35 Leif Nilsson TENTAMEN 2003-01-10 TENTAMEN I MATEMATISK STATISTIK Regressions- och variansanalys, 5
Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, HT2012
Statistiska Institutionen Patrik Zetterberg Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, HT2012 2013-01-18 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller
Matematisk statistik TMS064/TMS063 Tentamen
Matematisk statistik TMS64/TMS63 Tentamen 29-8-2 Tid: 4:-8: Tentamensplats: SB Hjälpmedel: Bifogad formelsamling och tabell samt Chalmersgodkänd räknare. Kursansvarig: Olof Elias Telefonvakt/jour: Olof
Uppgift a b c d e f (vet ej) Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
查 询 TMS160 供 应 商 捷 多 邦, 专 业 PCB 打 样 工 厂,24 小 时 加 急 出 货 TENTAMEN: Statistisk modellering för I3, TMS160, fredagen den 26 Augusti kl? på?. Jour: Holger Rootzén, ankn. 3578 Hjälpmedel: Utdelad formelsamling
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 5:E APRIL 2018 KL 14.00 19.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling
Formel- och tabellsamling i matematisk statistik
Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P
Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal
Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle
Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Lärare: Mikael Elenius, 2006-08-25, kl:9-14 Betygsgränser: 65 poäng Väl Godkänt, 50 poäng
Tentamen för kursen. Linjära statistiska modeller. 22 augusti
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 22 augusti 2008 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus
Tentamen i matematisk statistik
Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:
Tillämpad statistik. Jesper Rydén
Tillämpad statistik Jesper Rydén 2 Förord Detta kompendium kompletterar kursinnehållet i kursen Tillämpad statistik 1MS026. Uppsala, februari 2014 Jesper Rydén i ii Innehåll Förord i 1 Något om konfidensintervall
Psykologiska institutionen tillämpar anonymitet i samband med tentor i skrivsal, som går till så här:
GÖTEBORGS UNIVERSITET Psykologiska institutionen Tentamen Kurs: PC1307 Kurs 7: Samhällsvetenskaplig forskningsmetodik PC1546 Forskningsmetodik och fördjupningsarbete Provmoment: Statistik, 5 hp Tentamensdatum:
1. En kortlek består av 52 kort, med fyra färger och 13 valörer i varje färg.
Tentamenskrivning för TMS63, Matematisk Statistik. Onsdag fm den 1 juni, 16, Eklandagatan 86. Examinator: Marina Axelson-Fisk. Tel: 7-88113. Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte
SF1922/SF1923: SANNOLIKHETSTEORI OCH INTERVALLSKATTNING. STATISTIK. Tatjana Pavlenko. 24 april 2018
SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 11 INTERVALLSKATTNING. Tatjana Pavlenko 24 april 2018 PLAN FÖR DAGENS FÖRELÄSNING Vad är en intervallskattning? (rep.) Den allmänna metoden för
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics
Tentamen för kursen. Linjära statistiska modeller. 17 februari
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 17 februari 2010 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312,
Standard Normal Quantiles. Vilken av följande slutsatser kan man dra från qq-plotten?
-2.5cm TENTAMEN: Statistisk modellering för I3, TMS160, lördagen den 11 december 2004 kl 8:30-11:30 på M. Jour: John Gustavsson, mob 0705-330375 Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på
Vi har en ursprungspopulation/-fördelning med medelvärde µ.
P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har
OBS! Vi har nya rutiner.
Försättsblad KOD: Kurskod: PC1307/PC1546 Kursnamn: Kurs 7: Samhällsvetenskaplig forskningsmetodik/ Forskningsmetodik och fördjupningsarbete Provmoment: Statistik, 5 hp Ansvarig lärare: Sara Landström Tentamensdatum:
Tentamen består av 12 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 32 poäng för att få väl godkänt.
KOD: Kurskod: PC1244 Kursnamn: Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Sandra Buratti Tentamensdatum: 2013-11-16 Tillåtna hjälpmedel: Miniräknare Tentamen består
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2014-01-17 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 15.00 20.00 Lärare: Adam Jonsson, Mykola
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF194 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAG 1 AUGUSTI 019 KL 8.00 13.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
Föreläsning 11: Mer om jämförelser och inferens
Föreläsning 11: Mer om jämförelser och inferens Matematisk statistik David Bolin Chalmers University of Technology Maj 12, 2014 Oberoende stickprov Vi antar att vi har två oberoende stickprov n 1 observationer
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2013-10-29 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Mykola
FACIT: Tentamen L9MA30, LGMA30
Göteborgs Universitetet GU Lärarprogrammet 216 FACIT: Matematik 3 för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik 3 för gymnasielärare, Sannolikhetslära och statistik 216-1-21 kl. 8.3-12.3
F13 Regression och problemlösning
1/18 F13 Regression och problemlösning Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/3 2013 2/18 Regression Vi studerar hur en variabel y beror på en variabel x. Vår modell
Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF90/SF9 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAG 5 JUNI 09 KL 4.00 9.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling
Exempel på tentamensuppgifter
STOCKHOLMS UNIVERSITET 4 mars 2010 Matematiska institutionen Avd. för matematisk statistik Mikael Andersson Exempel på tentamensuppgifter Uppgift 1 Betrakta en allmän I J-tabell enligt 1 2 3 J Σ 1 n 11
b) Teknologen Osquarulda känner inte till ML-metoden, men kom på intuitiva grunder fram till att p borde skattas med p = x 1 + 2x 2
Avd. Matematisk statistik TENTAMEN I B14 MATEMATISK STATISTIK GRUNDKURS FÖR E gamlingar TISDAGEN DEN 14 DECEMBER 4 KL 8. 13. Examinator: Gunnar Englund, 79 7416 Tillåtna hjälpmedel: Formel- och tabellsamling