IPR Äspö Hard Rock Laboratory. International Progress Report. Prototype Repository
|
|
- Ann-Charlotte Anita Eliasson
- för 5 år sedan
- Visningar:
Transkript
1 International Progress Report IPR Äspö Hard Rock Laboratory Prototype Repository Hydraulic tests and deformation measurements during operation phase Test campaign 9 Torbjörn Forsmark SWECO December 2008 Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 250, SE Stockholm Phone
2
3 Report no. No. IPR F63K Author Date Torbjörn Forsmark Checked by Date Ingvar Rhén Approved Date Anders Sjöland Äspö Hard Rock Laboratory Prototype Repository Hydraulic tests and deformation measurements during operation phase Test campaign 9 Torbjörn Forsmark SWECO December 2008 Keywords: Äspö HRL, Prototype Repository, Hydrogeology, Hydraulic tests, Pressure build-up tests, Transmissivity This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client.
4
5 Abstract The Prototype Repository Test is focused on testing and demonstrating the function of the SKB deep repository system. Activities aimed at contributing to development and testing of the practical, engineering measures required to rationally perform the steps of a deposition sequence are also included in the project but are also part of other projects. The objective of the single-hole tests is to estimate the transmissivity of the Hydro Mechanical (HM) test sections equipped with deformation sensors. Single hole tests are done in 8 boreholes of the Prototype Repository tunnel. In some of the holes several tests are made. The pressure change (dp p ) is limited to approximately 100 metres of water, 200 metres of water and finally a maximum possible pressure change (i.e open the flow control valves entirely) respectively. There are two HM sections in KA3544G01 and KA3550G01, which however could not be tested due to packer system failure. In the G-tunnel there is a hole with a HM-equipped section used as a reference hole. The results are shown in the table below. The evaluation method according to (Dougherty, Babu, 1984) was used using the software AQTESOLV ver The result from test campaign 9 using the method is shown in the table below. 3
6 Table 1. Results from the test campaign 9. (1) Indicates packer system failure, - indicates it is not possible to evaluate any value with selected method. (2) indicates no tests are done this test campaign. Section KA3550G01:2 KA3552G01:2 HM section X X dp p (m) Specific capacity (m 2 /s) T MOYE (m 2 /s) T eval (Dougherty & Babu) (m 2 /s) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) KA3554G01:2 X ~ KA3554G01:2 X ~ KA3554G01:2 X max KA3554G02:4 X ~ KA3554G02:4 X max KA3548A01:3 X ~ KA3548A01:3 X ~ KA3548A01:3 X max KA3542G01:3 X ~ KA3542G01:3 X ~ KA3542G01:3 X max KA3544G01:2 X (1) (1) (1) (1) (1) KA3542G02:2 X ~ KA3542G02:2 X max KA3563G:4 - max (2) (2) (2) (2) KA3546G01:2 X max KA3566G01:2 - max KA3572G01:2 - max KA3574G01:3 - max (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) KA3539G:2 X ~ KA3539G:2 X max Skin factor (Dougherty & Babu) (-) 4
7 Sammanfattning Huvudsyftet med prototypförvaret är att testa och demonstrera funktionen av en del av SKB:s djupförvarssystem. Aktiviteter som syftar till utveckling och försök av praktiska och ingenjörsmässiga lösningar, som krävs för att på ett rationellt sätt kunna stegvis utföra deponeringen av kapslar med kärnbränsle, är inkluderade i projektet för prototypförvaret men även i andra projekt. Målsättningen med enhålstesterna är att få en uppskattning av transmissiviteten hos de hydromekaniska testsektionerna, (HM), som är utrustade med sprickdeformationssensorer. Enhålstester gjordes i totalt 8 stycken borrhål. Ett nionde och tionde borrhål är utrustad med HM sensorer men har inte kunnat testas på grund av läckageproblem med de hydrauliska manschetterna. I G-tunneln finns ytterligare ett borrhål med en HM sensor installerad. Det hålet används som referenshål. Resultaten från denna testomgång presenteras i tabellen nedan. Metodiken enligt (Dougherty, Babu, 1984), har använts i samband med utvärderingen av denna testkampanj. Programvaran AQTESOLV ver. 4.5 har använts vid denna utvärdering. Resultat för testomgång 9 presenteras i tabellen nedan 5
8 Tabell 1. Resultat från testomgång 9. (1) indikerar läckageproblem med manschetterna, - indikerar att inget värde kunnat beräknas med valt utvärderingsmetod. (2) indikerar att ingen test gjordes i detta borrhål denna testkampanj. Sektion KA3550G01:2 HM sektion dp p (m) KA3552G01:2 X max X Specifik kapacitet (m 3 /s m) T MOYE (m 2 /s) T eval (Dougherty & Babu) (m 2 /s) (1) (1) (1) (1) (1) (1) (1) (1) (1) KA3554G01:2 X ~ KA3554G01:2 X ~ KA3554G01:2 X max KA3554G02:4 X ~ KA3554G02:4 X max KA3548A01:3 X ~ KA3548A01:3 X ~ KA3548A01:3 X max KA3542G01:3 X ~ KA3542G01:3 X ~ KA3542G01:3 X max KA3544G01:2 X (1) (1) (1) (1) (1) KA3542G02:2 X ~ KA3542G02:2 X max KA3563G:4 - max (2) (2) (2) (2) KA3546G01:2 X max KA3566G01:2 - max KA3572G01:2 - max KA3574G01:3 - max (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) KA3539G:2 X ~ KA3539G:2 X max Skinfaktor (Dougherty & Babu) (-) 6
9 Executive Summary In Tables 1 to 4 below is a summary of the test results of the single hole tests so far. In the heading of each test campaign column is indicated the number of days since the heaters in canister hole 5 (DA3551G01) were turned on. An evaluation method (Dougherty, Babu, 1984) has replaced the earlier used method. The software AQTESOLV ver. 4.5 has been used. All data from the earlier test campaigns 1 7 were re-evaluated using Dougherty & Babu model and presented in (Forsmark, 2007a) and are considered as the results that should prevail. 7
10 Table 1. Specific capacity. For each test campaign is indicated the number of days since starting of the heaters in canister hole 5 ( ). (1) indicates packer system failure, - indicates it is not possible to evaluate any value with selected method. (2) indicates no tests are done this test campaign. Section dp p (m) Test campaig 1 (-0 days) (m 3 /s m) Test campaign 2 (-166 days) (m 3 /s m) Test campaign 3 (-270 days) (m 3 /s m) Test campaign 4 (-461 days) (m 3 /s m) Test campaign 5 (-622 days) (m 3 /s m) Test campaign 6 (-935 days) (m 3 /s m) Test campaign 7 (-1236 days) (m 3 /s m) Test campaign 8 (-1625 days) (m 3 /s m) Test campaign 9 (-1992 days) (m 3 /s m) KA3550G01:2 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) KA3552G01:2 max (1) KA3554G01:2 ~100 KA3554G01:2 ~200 (2) (2) (2) (2) (2) (2) KA3554G01:2 max KA3554G02:4 ~100 (2) (2) (2) KA3554G02:4 max KA3548A01:3 ~100 KA3548A01:3 ~200 (2) (2) (2) (2) (2) (2) (2) (2) KA3548A01:3 max KA3542G01:3 ~100 KA3542G01:3 ~200 (2) (2) (2) (2) (2) (2) KA3542G01:3 max KA3544G01:2 (1) (1) (1) (1) (1) (1) (1) (1) KA3542G02:2 ~100 (2) (2) (2) (2) KA3542G02:2 max KA3563G:4 max (2) (2) (2) -9 (2) (2) (2) (2) KA3546G01:2 max KA3566G01:2 max (2) (2) (2) -11 (2) (2) (2) (2) KA3572G01:2 max (2) (2) (2) -10 (2) (2) (2) (2) KA3574G01:3 max (2) (2) (2) -10 (2) (2) (2) (2) KA3539G:2 ~100 (2) (2) (2) KA3539G:2 max
11 Table 2. T MOYE. For each test campaign is indicated the number of days since the starting of the heaters in canister hole 5 ( ). (1) indicates packer system failure, - indicates it is not possible to evaluate any value with selected method. (2) indicates no tests are done this test campaign. Section dp p (m) Test campaign 1 (-0 days) (m 2 /s) Test campaign 2 (-166 days) (m 2 /s) Test campaign 3 (-270 days) (m 2 /s) Test campaign 4 (-461 days) (m 2 /s) Test campaign 5 (-622 days) (m 2 /s) Test campaign 6 (-935 days) (m 2 /s) Test campaign 7 (-1236 days) (m 2 /s) Test campaign 8 (-1625 days) (m 2 /s) Test campaign 9 (-1992 days) (m 2 /s) KA3550G01:2 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) KA3552G01:2 max (1) KA3554G01:2 ~100 KA3554G01:2 ~200 (2) (2) (2) (2) (2) (2) KA3554G01:2 max KA3554G02:4 ~100 (2) (2) (2) KA3554G02:4 max KA3548A01:3 ~100 KA3548A01:3 ~200 (2) (2) (2) (2) (2) (2) (2) (2) KA3548A01:3 max KA3542G01:3 ~100 KA3542G01:3 ~200 (2) (2) (2) (2) (2) (2) KA3542G01:3 max KA3544G01:2 (1) KA3542G02:2 ~ (1) (1) (1) (1) (1) (1) (1) (2) (2) (2) (2) KA3542G02:2 max KA3563G:4 max (2) (2) (2) -9 (2) (2) (2) (2) KA3546G01:2 max KA3566G01:2 max (2) (2) (2) -11 (2) (2) (2) (2) KA3572G01:2 max (2) (2) (2) -10 (2) (2) (2) (2) KA3574G01:3 max (2) (2) (2) -10 (2) (2) (2) (2) KA3539G:2 ~100 (2) (2) (2) KA3539G:2 max
12 Table 3. Transmissivity transient evaluation according to (Dougherty, Babu, 1984). For each test campaign is indicated the number of days since the starting of the heaters in canister hole 5 ( ). (1) indicates packer system failure, - indicates it is not possible to evaluate any value with selected method. (2) indicates no tests are done this test campaign. Section dp p (m) Test campaign 1 (-0 days) (m 2 /s) Test campaign 2 (-166 days) (m 2 /s) Test campaign 3 (-270 days) (m 2 /s) Test campaign 4 (-461 days) (m 2 /s) Test campaign 5 (-622 days) (m 2 /s) Test campaign 6 (-935 days) (m 2 /s) Test campaign 7 (-1236 days) (m 2 /s) Test campaign 8 (-1625 days) (m 2 /s) Test campaign 9 (-1992 days) (m 2 /s) KA3550G01:2 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) KA3552G01:2 max (1) KA3554G01:2 ~100 KA3554G01:2 ~200 (2) (2) (2) (2) (2) (2) KA3554G01:2 max KA3554G02:4 ~100 (2) (2) (2) KA3554G02:4 max KA3548A01:3 ~100 KA3548A01:3 ~200 (2) (2) (2) (2) (2) (2) (2) (2) KA3548A01:3 max KA3542G01:3 ~100 KA3542G01:3 ~200 (2) (2) (2) (2) (2) (2) KA3542G01:3 max KA3544G01:2 (1) KA3542G02:2 ~ (1) (1) (1) (1) (1) (1) (1) (2) (2) (2) (2) KA3542G02:2 max KA3563G:4 max (2) (2) (2) -8 (2) (2) (2) (2) KA3546G01:2 max KA3566G01:2 max (2) (2) (2) -10 (2) (2) (2) (2) KA3572G01:2 max (2) (2) (2) -8 (2) (2) (2) (2) KA3574G01:3 max - KA3539G:2 ~100 (2) (2) (2) (2) (2) (2) - (2) (2) (2) (2) KA3539G:2 max
13 Table 4. Skin factor according to (Dougherty, Babu, 1984). For each test campaign is indicated the number of days since the starting of the heaters in canister hole 5 ( ). (1) indicates packer system failure, - indicates it is not possible to evaluate any value with selected method. (2) indicates no tests are done this test campaign. Section dp p (m) Test campaign 1 (-0 days) (-) Test campaign 2 (-166 days) (-) Test campaign 3 (-270 days) (-) Test campaign 4 (-461 days) (-) Test campaign 5 (-622 days) (-) Test campaign 6 (-935 days) (-) Test campaign 7 (-1236 days) (-) Test campaign 8 (-1625 days) (-) Test campaign 9 (-1992 days) (-) KA3550G01:2 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) KA3552G01:2 max (1) KA3554G01:2 ~100 KA3554G01:2 ~200 (2) (2) (2) (2) (2) (2) KA3554G01:2 max KA3554G02:4 ~100 (2) (2) (2) KA3554G02:4 max KA3548A01:3 ~100 KA3548A01:3 ~200 (2) (2) (2) (2) (2) (2) (2) (2) KA3548A01:3 max KA3542G01:3 ~100 KA3542G01:3 ~200 (2) (2) (2) (2) (2) (2) KA3542G01:3 max KA3544G01:2 (1) (1) (1) (1) (1) (1) (1) (1) KA3542G02:2 ~100 (2) (2) (2) (2) KA3542G02:2 max KA3563G:4 max - (2) (2) (2) 31 (2) (2) (2) (2) KA3546G01:2 max KA3566G01:2 max - (2) (2) (2) 0.1 (2) (2) (2) (2) KA3572G01:2 max - (2) (2) (2) - (2) (2) (2) (2) KA3574G01:3 max - (2) (2) (2) - (2) (2) (2) (2) KA3539G:2 ~100 (2) (2) (2) KA3539G:2 max
14 12
15 Contents 1 Background Äspö Hard Rock Laboratory Prototype Repository General objectives 18 2 Objective 19 3 Scope 21 4 Equipment Description of equipment Pressure sensors Flowmeter equipment Deformation measurements Measurement equipment 26 5 Execution Preparations Execution of tests/measurements Test principle Test procedure Data handling Analyses and interpretation Single hole tests 32 6 Results Single hole tests KA3552G01:2, test No 9: KA3554G01:2, test No 9:2a KA3554G01:2, test No 9:2b KA3554G01:2, test No 9:2c KA3554G02:4, test No 9:3a KA3554G02:4, test No 9:3b KA3548A01:3, test No 9:4a KA3548A01:3, test No 9:4b KA3548A01:3, test No 9:4c KA3542G01:3, test No 9:5a KA3542G01:3, test No 9:5b KA3542G01:3, test No 9:5c KA3542G02:2, test No 9:7a KA3542G02:2, test No 9:7b KA3546G01:2, test No 9: KA3539G:2, test No 9:13a KA3539G:2, test No 9:13b Deformation measurements 86 7 Conclusion 87 References 89 13
16 14
17 Tables Table 3-1 Single hole tests during the campaign in November - December (1) indicates packer system failure, X indicates that section is equipped with HM sensors. (2) indicates no test is done in this campaign. 21 Table 4-1 Data of the deformation measurement sections (sensors, length, number of fractures etc). 28 Table 6-1 General test data for the pressure build-up test in section m of borehole KA3552G01 35 Table 6-2 General test data for the pressure build-up test in section m of borehole KA3554G01 38 Table 6-3 General test data for the pressure build-up test in section m of borehole KA3554G01 41 Table 6-4 General test data for the pressure build-up test in section m of borehole KA3554G01 44 Table 6-5 General test data for the pressure build-up test in section m of borehole KA3554G02 47 Table 6-6 General test data for the pressure build-up test in section m of borehole KA3554G02 50 Table 6-7 General test data for the pressure build-up test in section m of borehole KA3548A01 53 Table 6-8 General test data for the pressure build-up test in section m of borehole KA3548A01 56 Table 6-9 General test data for the pressure build-up test in section m of borehole KA3548A01 59 Table 6-10 General test data for the pressure build-up test in section m of borehole KA3542G01 62 Table 6-11 General test data for the pressure build-up test in section m of borehole KA3542G01 65 Table 6-12 General test data for the pressure build-up test in section m of borehole KA3542G01 68 Table 6-13 General test data for the pressure build-up test in section m of borehole KA3542G02 71 Table 6-14 General test data for the pressure build-up test in section m of borehole KA3542G02 74 Table 6-15 General test data for the pressure build-up test in section m of borehole KA3546G01 77 Table 6-16 General test data for the pressure build-up test in section m of borehole KA3539G 80 Table 6-17 General test data for the pressure build-up test in section m of borehole KA3539G 83 15
18 Figures Figure 1-1. Äspö Hard Rock Laboratory 17 Figure 4-1. All pressure transducers are connected to the HMS system. In the G-tunnel there is a computer in the HMS system where logging frequencies easily can be changed. 23 Figure 4-2. Pressure transducers connections 24 Figure 4-3. The equipment for flowrate measurement with Micro Motion Coriolis mass flowmeter system 25 Figure 4-4. A schematic figure that shows the different parts of the test equipment and also the definitions of the terms outer and inner. 27 Figure 4-5. A detailed figure of the three anchors, sensors (strain gage), positioning cylinder etc. 29 Figure 6-1. Flow rates during draw down in KA3552G01:2. 36 Figure 6-2. Flow rates during draw down in KA3554G01:2. 39 Figure 6-3. Flow rates during draw down in KA3554G01:2. 42 Figure 6-4 Flow rates during draw down in KA3554G01:2. 45 Figure 6-5 Flow rates during draw down in KA3554G02:4. 48 Figure 6-6 Flow rates during draw down in KA3554G02:4. 51 Figure 6-7 Flow rates during draw down in KA3548A01:3. 54 Figure 6-8 Flow rates during draw down in KA3548A01:3. 57 Figure 6-9 Flow rates during draw down in KA3548A01:3. 60 Figure 6-10 Flow rate during draw down in KA3542G01:3. 63 Figure 6-11 Flow rate during draw down in KA3542G01:3. 66 Figure 6-12 Flow rate during draw down in KA3542G01:3. 69 Figure 6-13 Flow rate during draw down in KA3542G02:2. 72 Figure 6-14 Flow rate during draw down in KA3542G02:2. 75 Figure 6-15 Flow rate during draw down in KA3546G01:2. The flow in this section is very low. No flowmeter readings are available. 78 Figure 6-16 Flow rate during draw down in KA3539G:2. 81 Figure 6-17 Flow rate during draw down in KA3539G:
19 2/ Background 1.1 Äspö Hard Rock Laboratory In order to prepare for the localization and licensing of a spent fuel repository SKB has constructed an underground research laboratory. In the autumn of 1990, SKB began the construction of Äspö Hard Rock Laboratory (Äspö HRL), see Figure 1-1, near Oskarshamn in the southeastern part of Sweden. A 3.6 km long tunnel was excavated in crystalline rock down to a depth of approximately 460 m. The laboratory was completed in 1995 and research concerning the disposal of nuclear waste in crystalline rock has since then been carried out. HLX02 HLX03 HLX04 HLX05 HAS02 HAS12 HAS10 HAS09 KAS03 HAS11 KAS04 HAS08 HAS19 ÄSPÖ HAS18 HAS01 KAS12 HAS20 HAS17 HAS07 KAS08 HAS06 HAS03 HAS16 HAS05 KAS02 HLX01 KLX01 KAS13 KAS05 KAS01 KAS07 HAS15 HAS21 HAS04 HAS13 KAS16 HAS14 KAS06 MJÄLEN KAS11 KAS10 HLX06 HLX07 HLX09 KAS09 KAS14 HMJ01 HAV02 KLX02 LAXEMAR HAV07 HAV05 HAV04 KAV03 HAV03 HÅLÖ HBH04 HBH03 HAV08 KAV01 KBH01 KBH02 HLX08 HBH05 HBH01 HBH02 ÄVRÖ HAV06 HAV01 KAV (m) / /DATA/ÄSPÖ_HRL.SRF 10/29/99 Figure 1-1. Äspö Hard Rock Laboratory. 17
20 1.2 Prototype Repository The Äspö Hard Rock Laboratory is an essential part of the research, development, and demonstration work performed by SKB in preparation for construction and operation of the deep repository for spent fuel. Within the scope of the SKB program for RD&D 1995, SKB has decided to carry out a project with the designation Prototype Repository Test. The aim of the project is to test important components in the SKB deep repository system in full scale and in a realistic environment. The Prototype Repository Test is focused on testing and demonstrating the function of the SKB deep repository system. Activities aimed at contributing to development and testing of the practical, engineering measures required to rationally perform the steps of a deposition sequence are also included. However, efforts in this direction are limited, since these matters are addressed in the Demonstration of Repository Technology project and to some extent in the Backfill and Plug Test General objectives The Prototype Repository should simulate as many aspects as possible a real repository, for example regarding geometry, materials, and rock environment. The Prototype Repository is a demonstration of the integrated function of the repository components. Results will be compared with models and assumptions to their validity. The major objectives for the Prototype Repository are: To test and demonstrate the integrated function of the repository components under realistic conditions in full scale and to compare results with models and assumptions. To develop, test and demonstrate appropriate engineering standards and quality assurance methods. To simulate appropriate parts of the repository design and construction process. The objective for the operation phase program is: To monitor processes and properties in the canister, buffer material, backfill and near-field rock mass 18
21 2 Objective The objective of the single-hole tests is to estimate the transmissivity of the Hydro Mechanical (HM) test sections equipped with deformation sensors, (Alm et al, 2005). 19
22 20
23 3 Scope Single hole tests are done in 8 boreholes of the Prototype Repository tunnel. There are two more HM sections in KA3544G01 and KA3550G01, which however could not be tested due to packer system failure. In the G-tunnel there is a hole with a HM-equipped section to be used as a reference hole. The tested intervals and basic test data are listed in Table 3-1. The first figure in the test number indicates this being the seventh single hole test campaign, while the second number indicates the chronological order of the single hole tests. The same numbering of the tests as used during test campaign 1 to 8 is used (Forsmark et al, 2004), (Forsmark, Rhén, 2004a, 2004b, 2004c, 2005a, 2005b, 2005c), (Forsmark, 2006, 2007a, 2007b). Also indicated in the table are the sections where Hydro Mechanical (HM) measurements are done. In chapter 6 the results of the tests are presented. In some of the holes several tests are made. The pressure change (dp p ) is limited to approximately 100 metres of water, approximately 200 metres of water and finally a maximum possible pressure change (i.e open the flow control valves entirely) respectively. Table 3-1. Single hole tests during the campaign in October (HMS time) (1) indicates packer system failure, X indicates that section is equipped with HM sensors. (2) indicates no test is done in this campaign. (3) A probable packer failure. Bore hole Section (m) HM section Single hole test no. Date of test Start of test Flow start Flow stop Test stop KA3550G01:2 (1) X - (1) KA3552G01: X 9: :00:00 10:00:00 - (3) - KA3554G01: X 9:2a :25:00 14:25:00 16:25:00 17:25:00 KA3554G01: X 9:2b :00:00 11:00:00 13:00:00 14:00:00 KA3554G01: X 9:2c :40:00 09:40:00 11:40:00 12:40:00 KA3554G02: X 9:3a :00:00 08:00:00 10:00:00 11:00:00 KA3554G02: X 9:3b :00:00 13:00:00 15:00:00 16:00:00 KA3548A01: X 9:4a :00:00 16:00:00 17:00:00 18:00:00 KA3548A01: X 9:4b :40:00 07:40:00 08:40:00 09:40:00 KA3548A01: X 9:4c :40:00 07:40:00 08:40:00 09:40:00 KA3542G01: X 9:5a :30:00 19:30:00 20:30:00 22:30:00 KA3542G01: X 9:5b :00:00 18:00:00 19:00:00 21:00:00 KA3542G01: X 9:5c :40:00 17:40:00 18:40:00 20:40:00 KA3544G01:2 (1) X - (1) KA3542G02: X 9:7a :20:00 16:20:00 19:20:00 21:20:00 KA3542G02: X 9:7b :30:00 06:30:00 09:30:00 11:30:00 KA3563G: (2) KA3546G01: X 9: :40:00 12:40:00 15:40:00 17:40:00 KA3566G01: (2) KA3572G01: (2) KA3574G01: (2) KA3539G: X 9:13a :30:00 17:30:00 18:30:00 19:30:00 KA3539G: X 9:13b :00:00 14:00:00 15:00:00 16:00:00 21
24 22
25 4 Equipment 4.1 Description of equipment A large number of boreholes are instrumented with one or several packers. In all packed-off sections, the water pressure is measured. Each borehole section is connected to a tube of polyamide that via lead-through holes ends in the G-tunnel. All pressure transducers are placed in the G-tunnel to facilitate easy calibration and exchange of transducers that are out of order. The transducers are connected to the HMS system at Äspö Laboratory and it is a flexible system for changing the sampling frequency, see Figure 4-1. The maximum scan frequency is every third second. During periods with no hydraulic tests, the sampling (storing a value in the data base) frequency will be every second hour with an automatic increase of the sampling frequency if the pressure change since last registration is larger than 2kPa. During hydraulic tests, the sampling frequency may be up to every third second. Figure 4-1. All pressure transducers are connected to the HMS system. In the G-tunnel there is a computer in the HMS system where logging frequencies easily can be changed. 23
26 4.2 Pressure sensors The pressure in a borehole is transmitted via a plastic tube directly to a pressure transducer, see Figure 4-2. The pressure transducers are either of the type DRUCK PTX 500 series or DRUCK PTX 600 series with a pressure range of 0 50 bar (absolute). According to the manufacturer the uncertainty for these transducers is +/-0.2 % (type 500) and +/-0.08 % (type 600) of full scale (F.S) for the best straight line (B.S.L.). For the 600 series types the time drift is given to max % F.S., while no figure is given for the 500 series types. Normally, a pressure value is scanned once every third second. If the change since the latest stored value exceeds a change value of approximately 2 kpa the newly scanned value is stored. A value is always stored once every second hour, regardless of any changes. Figure 4-2. Pressure transducers connections. 24
27 4.3 Flowmeter equipment A new kind of flow meter, see Figure 4-3, is used in order to obtain continously flow measurements during the tests. The equipment system used was originally developed by Micro Motion, Inc. in USA, and is comprised of a sensor and a signal processing transmitter. It is called a Coriolis mass flow meter and measures mass flow directly. The volume flow can be obtained when knowing the temperature, the pressure and finally the density of the fluid (water). The fluid enters the sensor and travels through the sensor s flow tubes, which vibrate and twist. The twisting characteristic is called the Coriolis effect. According to Newton s Second Law of Motion, the amount of sensor tube twist is directly proportional to the mass flow rate of the fluid flowing through the tube. The equipment unit consists of two flow meters with different measurement ranges. The measurement range for the large flow meter is 0 to appr. 36 kg/min and for the small flow meter is 0 to approx. 1.8 kg/min. Figure 4-3. The equipment for flow rate measurement with Micro Motion Coriolis mass flow meter system. 25
28 4.4 Deformation measurements During storage of nuclear waste in the rock mass the temperature will increase due to the heat loss from the canisters with spent fuel. This will increase the rock stresses and the fractures will generally close, but may locally open due to the stress situation (Alm et al, 2005). It is of interest to investigate the magnitude of this effect on the fracture transmissivity since the fracture transmissivity is essential of two reasons. First, enough transmissivity is needed to provide the bentonite buffer with water if no artificial moistening of the buffer is arranged. Secondly, the transmissivity should be as low as possible in order to minimise the hydraulic contact with the canisters. The increased temperature will decrease the transmissivity, which in principal is positive in perspective of Safety Assessment. The last effect is however limited in time and may not be of any greater importance in Safety Assessment. Displacement measurements are done continuously. Hydraulic tests will be made a number of times during the operation period for the ten measurement sections. An extra section is also equipped with hydro mechanical measurements equipment and is used as a reference hole (KG0010B01). Most tests have been planned to be made during the first years of operation when the largest displacements are expected to occur. This report details the interference results from the fifth test campaign. They are done in order to provide hydrogeological data useful for setting up a hydrogeological model of the rock volume around the TBM tunnel. In order to investigate the hydro mechanical response of the fractures as a result of the increased thermal load, two different approaches are considered. The first approach is to measure the change of the fracture width as function of temperature and time. The displacement is both measured for the intact rock as for a section with one or more fractures. The second approach implies that the mechanical response is evaluated indirect by using the results from hydraulic tests. Single hole hydro tests are performed in the same sections as the mechanical measurements are made (Forsmark, Rhén, 2004a, 2004b, 2004c, 2005a and 2005c), (Forsmark, 2006, 2007a, 2007b). All results from the hydro mechanical measurements will be documented in separate documents Measurement equipment In order to measure the fracture deformation (and to separate the fracture deformation from the deformation of the intact rock) due to the increased temperature a measurement equipment has been developed. The equipment consists of two hydraulic packers, which hydraulically isolate the test section. Between the packers three anchors are placed. These anchors are fixed to the borehole wall and in the sections between the anchors sensors (strain gage) are mounted. These sections are called mechanical measurement sections. The sensors will register any relative movement between the anchors; see Figure 4-4 and 4-5. The temperature is also measured in each sensor by a thermistor. 26
29 Tunnel Secup Seclow Outer Secup Seclow Inner Figure 4-4. A schematic figure that shows the different parts of the test equipment and also the definitions of the terms outer and inner. The deformation is measured in two sections in each borehole. One mechanical measurement section is placed over a fracture (or fractures) and the other mechanical measurement section is placed over intact rock. That makes it possible to separate the fracture deformation from the deformation of the intact rock. Of all boreholes in the prototype tunnel, ten are equipped as described above. Five of the measurement sections are placed over a single fracture and the rest are placed over two to six fractures, see Table 4-1. Since hydraulic packers isolate the test sections and the test sections have contact with the tunnel (atmospheric pressure) via tubes and valves it is possible to perform hydraulic tests in the sections. 27
30 Table 4-1. Data of the deformation measurement sections (sensors, length, number of fractures etc). Label Cable mark Sensor S/N Position Secup Seclow Section length (m) Number of fractures KA3539G-2-1 HRA Inner KA3539G-2-2 HRA Outer KA3542G HRA Inner KA3542G HRA Outer KA3542G HRA Inner KA3542G HRA Outer KA3544G HRA Inner KA3544G HRA Outer KA3546G HRA Inner KA3546G HRA Outer KA3548A HRA Inner KA3548A HRA Outer KA3550G HRA Inner KA3550G HRA Outer KA3552G HRA Inner KA3552G HRA Outer KA3554G HRA Inner KA3554G HRA Outer KA3554G HRA Inner KA3554G HRA Outer KG0010B Inner KG0010B Outer
31 Figure 4-5. A detailed figure of the three anchors, sensors (strain gage), positioning cylinder etc. 29
32 30
33 5 Execution 5.1 Preparations Planning is an important step in the preparation stage. No other activities, which may cause pressure responses, must occur in the neighbourhood of the test area. Such activities include drilling, blasting and flowing of boreholes. Preparations also include checking of equipment to be used in the tests. The equipment included measuring glasses of various sizes synchronizing watches with the HMS system (only normal time) protocols for flow measurements water sampling bottles hand calculator flow rate measurement equipment with Micro Motion flow meter system 5.2 Execution of tests/measurements Test principle The main purpose of a single hole pressure build-up test is to do a test, which makes it possible to evaluate the hydraulic properties of the bedrock around the tested borehole section Test procedure The following measurement cycle is used: Initialising of the HMS system 30 minutes before flow start with logging interval of 5 minutes A couple of minutes before flow start and until 5 minutes after flow start the highest logging interval of 3 seconds are used. Thereafter the logging interval is 30 seconds which is used until 30 minutes after flow start and a logging interval of 5 minutes is then used once again The flow is measured manually 2-3 times the first 5 minutes after flow start, 2-3 times the following 60 minutes and 3 times shortly before flow stop From shortly before flow stop until 5 minutes after flow stop the highest logging interval of 3 seconds are used. Thereafter the logging frequency is 30 seconds which is used until 30 minutes after flow start and a logging frequency of 5 minutes is then used The valve shutting is done as swiftly as possible 31
34 5.3 Data handling The test operator is keeping a diary during the test period. Data from the hydro tests includes: Daily logs in accordance with Äspö Hard Rock Laboratory routines Protocols from flow measurements The project coordinator collected all data and delivered it to the data handling responsible person at Äspö for further SICADA handling. 5.4 Analyses and interpretation Single hole tests The following description applies to the analysis in this report. The analysis done is for the recovery phase only. The specific capacity is as mentioned above, Q/s, where Q is the calculated average water flow before shutting the valve and s is the maximum change of pressure, in metres, during the test. The Moye formula can be used for interpretation of stationary tests in order to get an estimate of the transmissivity T Moye = Q ( 1 + ln(l/(2 r w ))) / (2 π Δh) where Δh = (p 0 - p p ) / (ρ w g) L = test section length r w = borehole radius p 0 = absolute pressure in test section before start of flow period p p = absolute pressure in test section before stop of flow period [m] [m] [m] [Pa] [Pa] ρ w = water density [kg/m 3 ] g = acceleration of gravity [m/s 2 ] 32
35 While plotting the data, three different kinds of graphs are produced. The first plot is made in a linear scale. The time, date and hours is indicated on the horizontal axis. The pressure (p), expressed in bar or metres of water head is indicated on the vertical axis. The second plot is made in a semi-logarithmic diagram, where the pressure change, Δp, is plotted versus the equivalent time, dt e, in minutes. The equivalent time, dt e, (Spane and Wurstner, 1993) is defined as dt e = (t p dt) / (t p + dt) where t p = dt = the flowing time of the borehole before shutting the valve the time after shutting the valve The pressure change Δp is calculated as Δp = p(dt) - p(t p ) p(dt) = measured pressure at time dt after shutting the valve p(t p ) = measured pressure just before shutting the valve The third plot is made in a logarithmic diagram, where the change of pressure, Δp, is plotted versus the equivalent time, dt e, in minutes. The derivative of the pressure is also plotted in this diagram. The pressure normally is signed using the p and a change of pressure using a Δp. In the diagrams the pressure can be expressed in bar, kpa or in metres of water head. In the formulas below however the praxis is to use the s for the change of water head and Δs for the difference of pressure over one decade in a logarithmic diagram. The s or Δs values shall be expressed in metres before used in the formulas. Hydrologic test analysis based on the derivative of pressure (i.e., rate of pressure change) with respect to the natural logarithm of time has been shown to significantly improve the diagnostic and quantitative analysis of slug and constant-rate discharge tests (i.e., pumping tests) (Spane and Wurstner, 1993). The improvement in hydrologic test analysis is attributed to the sensitivity of the derivative response to small variations in the rate of pressure change that occurs during testing, which would otherwise be less obvious with standard pressure change versus time analysis techniques. The sensitivity of pressure derivatives to pressure change responses facilitates their use in identifying the presence of wellbore storage, boundaries, and establishment of flow conditions, as e.g. radial flow, within the test data record. Specifically, pressure derivative analysis can be used to: diagnostically determine formation response (homogeneous vs. heterogeneous) and boundary conditions (impermeable or constant head) that are evident during the test, determine when radial flow conditions are established and, therefore, when straight-line solution analysis of drawdown data is valid, and assist in log-log type-curve matching to determine hydraulic properties for test data exhibiting wellbore storage and/or leakage effects. 33
36 In a fracture, different flow regimes may be observed at different times, (Horne, 1995). At very early time only a linear flow regime occur within the fracture. At early time, there is linear flow within the fracture and linear flow into the fracture from the rock formation. The combination of these two linear flows gives rise to a bilinear flow period. This part of the pressure response is characterized by a straight line with slope 1:4 at early time on a log-log plot of pressure drop against time. Following the bilinear flow period, finite conductivity fracture responses generally enter a transition after bilinear flow, but reach radial flow before ever achieving linear flow, recognizeable by the upward bending of the pressure response curve towards a 1:2 slope on the log-log plot. In practice, the 1:2 slope is rarely seen except in fractures where the conductivity is infinite. The above described methodology is used in chapter 6. The tests are evaluated using the software AQTESOLV ver. 4.50, and results are reported in chapter 6 and in the executive summary. AQTESOLV is the all-in-one software package for the design and analysis of aquifer tests including pumping tests, step-drawdown tests, variable-rate tests, recovery tests, single-well tests, slug tests and constant-head tests. The software is developed by HydroSOLVE, Inc., USA. The solution used in these analysis is the Dougherty-Babu model for a pumping test in a confined aquifer (Dougherty, Babu, 1984). The model assumes radial flow in a porous medium. AQTESOLV uses the principle of superposition in time to simulate variablerate tests including recovery with the solution. The result consist of Transmissivity, T (m 2 /s) Skinfactor, Sw (-) It is of uttermost importance when evaluation the hydraulic tests within the scope of this report that all tests are evaluated using the same approach between the test campaigns. This is important to be able to evaluate the relative difference of the transmissivity from one test campaign to another. It is however important as well to observe any significant changes of the pressure plot from on time to another. If changes have occurred another matching of the data to a chosen model may be necessary. 34
37 6 Results 6.1 Single hole tests KA3552G01:2, test No 9:1 General test data for the pressure build-up test in the interval m of borehole KA3552G01 are presented in Table 6-1. Table 6-1. General test data for the pressure build-up test in section m of borehole KA3552G01. General test data Borehole section KA3552G01:2 Test No 9:1 Field crew A. Blom(SWECO AB) Test equipment system HMS General comment Single hole test (dp p = max) Nomencl ature Test section- secup Secup m 4.35 Test section- seclow Seclow m 6.05 Test section length L w m 1.70 Test section diameter 2 r w mm 76 Unit Value Test start (start of pressure registration) yymmdd hh:mm:ss :00:00 Packer expanded yymmdd hh:mm:ss - Start of flow period yymmdd hh:mm:ss :00:30 Stop of flow period yymmdd hh:mm:ss - Test stop (stop of pressure registration) yymmdd hh:mm:ss - Total flow time t p min - Total recovery time t F min - Pressure data Pressure data Nomenclature Unit Value Comment Absolute pressure in borehole before start of flow period p 0 kpa Absolute pressure in test section before stop of flow p p kpa - Absolute pressure in test section at stop of recovery period p f kpa - Maximal pressure change during flow period dp p kpa - Flow data Flow data Nomenclature Unit Value Flow rate from test section just before stop of flowing Q p m 3 /s - Mean (arithmetic) flow rate during flow period Q m m 3 /s - Total volume discharged during flow period V p m 3-35
38 Flow meter rates Manually measured flow rates Q (L/min) :30:00 10:00:00 10:30:00 11:00:00 Figure 6-1. Flow rates during draw down in KA3552G01:2. Comments to the test During this test a equipment failure occurred. It was probably a tube coupling to one of the packer inflating tube that now leaks gas into the test section. The inflating gas to the packers is now turned off. No more tests in this borehole will probably be possible in the future. Interpreted flow regimes The test was abandoned. Calculated parameters The test was abandoned. Selected representative parameters The test was abandoned. 36
39 Test Summary Sheet Project: PROTOTYPE Test type: PBT Area: ÄSPÖ Test no: 9:1 Borehole ID: KA3552G01 Test start: :00 Test section (m): Responsible for test performance: Section diameter, 2 r w (m): Responsible for test evaluation: SWECO AB A. Blom SWECO AB T. Forsmark Linear plot Head Flow period Recovery period Indata Indata 0 p 0 (kpa) p i (kpa ) -100 p p (kpa) p F (kpa ) -200 Q p (m 3 /s) tp (min) t F (min) S* S* EC w (ms/m) Te w (gr C) Derivative fact. Derivative fact :00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 Head (masl) Lin-Log plot Results Results Q/s (m 2 /s) Flow regime: T Moye (m 2 /s) dt e1 (min) Flow regime: dt e2 (min) dt 1 (min) T (m 2 /s) dt 2 (min) S (-) T (m 2 /s) S (-) S s (1/m) C (m 3 /Pa) S s (1/m) C D (-) C (m 3 /Pa) ξ (-) C D (-) ξ (-) Log-Log plot incl. derivative- recovery period Interpreted formation and well parameters. Flow regime: C (m 3 /Pa) dt 1 (min) C D (-) dt 2 (min) ξ (-) T T (m 2 /s) S (-) S s (1/m) Comments: The test was abandoned due to equipment failure. No analysis is done. 37
40 6.1.2 KA3554G01:2, test No 9:2a General test data for the pressure build-up test in the interval m of borehole KA3554G01 are presented in Table 6-2. Table 6-2. General test data for the pressure build-up test in section m of borehole KA3554G01. General test data Borehole section KA3554G01:2 Test No 9:2a Field crew A. Blom (SWECO AB) Test equipment system HMS General comment Single hole test (dp p = approx. 100 m) Nomenclature Unit Value Test section- secup Secup m Test section- seclow Seclow m Test section length L w m 1.55 Test section diameter 2 r w mm 76 Test start (start of pressure registration) yymmdd hh:mm:ss :25:00 Packer expanded yymmdd hh:mm:ss - Start of flow period yymmdd hh:mm:ss :25:00 Stop of flow period yymmdd hh:mm:ss :25:00 Test stop (stop of pressure registration) yymmdd hh:mm:ss :25:00 Total flow time t p min 120 Total recovery time t F min 60 Pressure data Pressure data Nomenclature Unit Value Comment Absolute pressure in borehole before start of flow period p 0 kpa Absolute pressure in test section before stop of flow p p kpa Absolute pressure in test section at stop of recovery period p f kpa Maximal pressure change during flow period dp p kpa Flow data Flow data Nomenclature Unit Value Flow rate from test section just before stop of flowing Q p m 3 /s Mean (arithmetic) flow rate during flow period Q m m 3 /s Total volume discharged during flow period V p m
41 Flow meter rates Manually measured flow rates Q (L/min) :00:00 15:00:00 16:00:00 Figure 6-2. Flow rates during draw down in KA3554G01:2. Comments to the test Transmissivity and skinfactor evaluated by using AQTESOLV - with (Dougherty, Babu, 1984) method. Interpreted flow regimes minutes Well Bore Storage (WBS) minutes Transition period 5 10 minutes Radial flow period 10 minutes Transition period Calculated parameters Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section Selected representative parameters The selected representative parameters from the test in the interval m in KA3554G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period. 39
42 Test Summary Sheet Project: PROTOTYPE Test type: PBT Area: ÄSPÖ Test no: 9:2a Borehole ID: KA3554G01 Test start: :25 Test section (m): Responsible for test performance: Section diameter, 2 r w (m): Responsible for test evaluation: SWECO AB A. Blom SWECO AB T. Forsmark Linear plot Head Flow period Recovery period Indata Indata 0 p 0 (kpa) p i (kpa ) p p (kpa) p F (kpa ) Q p (m 3 /s) Head (masl) tp (min) 120 t F (min) 60 S* S* EC w (ms/m) Te w (gr C) Derivative fact. Derivative fact Lin-Log plot Results Results Q/s (m 2 /s) Flow regime: Radial T Moye (m 2 /s) dt e1 (min) 5 Prototype Repository Test 9:2a 0. Obs. Wells KA3554G01:2 Flow regime: dt e2 (min) 10 dt 1 (min) T (m 2 /s) dt 2 (min) S (-) T (m 2 /s) 40. S (-) S s (1/m) C (m 3 /Pa) 60. S s (1/m) C D (-) C (m 3 /Pa) ξ (-) 34 Recovery (m) Agarwal Equivalent Time (min) C D (-) ξ (-) Log-Log plot incl. derivative- recovery period Recovery (m) Prototype Repository Test 9:2a Obs. Wells KA3554G01:2 Aquifer Model Confined Solution Dougherty-Babu Parameters T = 8.046E-7 m 2 /sec S = 1.0E-6 Kz/Kr = 1. Sw = 34.1 r(w) = m r(c) = m Interpreted formation and well parameters. Flow regime: Radial C (m 3 /Pa) dt 1 (min) 5 C D (-) dt 2 (min) 10 ξ (-) 34 T T (m 2 /s) S (-) S s (1/m) Comments: Transmissivity and skinfactor evaluated by using AQTESOLV - with (Dougherty, Babu, 1984) method Agarwal Equivalent Time (min) 40
IPR Äspö Hard Rock Laboratory. International Progress Report. Prototype Repository
International Progress Report IPR-07-02 Äspö Hard Rock Laboratory Prototype Repository Hydraulic tests and deformation measurements during operation phase Test campaign 7 Single hole test Torbjörn Forsmark
IPR Äspö Hard Rock Laboratory. International Progress Report. Prototype Repository
International Progress Report IPR-00-21 Äspö Hard Rock Laboratory Prototype Repository Hydrogeology interference test campaign 2 after drill campaign 3 Torbjörn Forsmark Ingvar Rhén VBB VIAK September
Module 6: Integrals and applications
Department of Mathematics SF65 Calculus Year 5/6 Module 6: Integrals and applications Sections 6. and 6.5 and Chapter 7 in Calculus by Adams and Essex. Three lectures, two tutorials and one seminar. Important
Sammanfattning hydraulik
Sammanfattning hydraulik Bernoullis ekvation Rörelsemängdsekvationen Energiekvation applikationer Rörströmning Friktionskoefficient, Moody s diagram Pumpsystem BERNOULLI S EQUATION 2 p V z H const. Quantity
IPR Äspö Hard Rock Laboratory. International Progress Report. Prototype Repository. Hydrogeology injection test campaign 1
International Progress Report IPR-00-20 Äspö Hard Rock Laboratory Prototype Repository Hydrogeology injection test campaign 1 Torbjörn Forsmark Ingvar Rhén VBB VIAK September 2000 Svensk Kärnbränslehantering
Beijer Electronics AB 2000, MA00336A, 2000-12
Demonstration driver English Svenska Beijer Electronics AB 2000, MA00336A, 2000-12 Beijer Electronics AB reserves the right to change information in this manual without prior notice. All examples in this
IPR Äspö Hard Rock Laboratory. International Progress Report. Prototype Repository
International Progress Report IPR-07-03 Äspö Hard Rock Laboratory Repository Tracer dilution tests during operation phase, test campaign 2 Kristoffer Gokall Norman Peter Andersson Geosigma AB February
Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm
Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm Guldplätering kan aldrig helt stoppa genomträngningen av vätgas, men den får processen att gå långsammare. En tjock guldplätering
12.6 Heat equation, Wave equation
12.6 Heat equation, 12.2-3 Wave equation Eugenia Malinnikova, NTNU September 26, 2017 1 Heat equation in higher dimensions The heat equation in higher dimensions (two or three) is u t ( = c 2 2 ) u x 2
P Äspö Hard Rock Laboratory. Ground magnetic survey at site for planned facility for calibration of borehole orientation equipment at Äspö
P-12-10 Äspö Hard Rock Laboratory Ground magnetic survey at site for planned facility for calibration of borehole orientation equipment at Äspö Håkan Mattsson, GeoVista AB January 2012 Svensk Kärnbränslehantering
A study of the performance
A study of the performance and utilization of the Swedish railway network Anders Lindfeldt Royal Institute of Technology 2011-02-03 Introduction The load on the railway network increases steadily, and
KTH MMK JH TENTAMEN I HYDRAULIK OCH PNEUMATIK allmän kurs 2006-12-18 kl 09.00 13.00
KTH MMK JH TENTAMEN I HYDRAULIK OCH PNEUMATIK allmän kurs 2006-12-18 kl 09.00 13.00 Svaren skall vara läsligt skrivna och så uppställda att lösningen går att följa. När du börjar på en ny uppgift - tag
This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum
Examiner Linus Carlsson 016-01-07 3 hours In English Exam (TEN) Probability theory and statistical inference MAA137 Aids: Collection of Formulas, Concepts and Tables Pocket calculator This exam consists
Stiftelsen Allmänna Barnhuset KARLSTADS UNIVERSITET
Stiftelsen Allmänna Barnhuset KARLSTADS UNIVERSITET National Swedish parental studies using the same methodology have been performed in 1980, 2000, 2006 and 2011 (current study). In 1980 and 2000 the studies
Module 1: Functions, Limits, Continuity
Department of mathematics SF1625 Calculus 1 Year 2015/2016 Module 1: Functions, Limits, Continuity This module includes Chapter P and 1 from Calculus by Adams and Essex and is taught in three lectures,
P Forsmark site investigation. Single-hole injection tests in borehole KFM03B. Calle Hjerne, Janette Jönsson, Jan-Erik Ludvigson Geosigma AB
P-04-278 Forsmark site investigation Single-hole injection tests in borehole KFM03B Calle Hjerne, Janette Jönsson, Jan-Erik Ludvigson Geosigma AB November 2004 Svensk Kärnbränslehantering AB Swedish Nuclear
Styrteknik: Binära tal, talsystem och koder D3:1
Styrteknik: Binära tal, talsystem och koder D3:1 Digitala kursmoment D1 Boolesk algebra D2 Grundläggande logiska funktioner D3 Binära tal, talsystem och koder Styrteknik :Binära tal, talsystem och koder
SVENSK STANDARD SS-ISO :2010/Amd 1:2010
SVENSK STANDARD SS-ISO 14839-1:2010/Amd 1:2010 Fastställd/Approved: 2010-11-08 Publicerad/Published: 2010-11-30 Utgåva/Edition: 1 Språk/Language: engelska/english ICS: 01.040.17; 17.160 Vibration och stöt
Isometries of the plane
Isometries of the plane Mikael Forsberg August 23, 2011 Abstract Här följer del av ett dokument om Tesselering som jag skrivit för en annan kurs. Denna del handlar om isometrier och innehåller bevis för
Dokumentnamn Order and safety regulations for Hässleholms Kretsloppscenter. Godkänd/ansvarig Gunilla Holmberg. Kretsloppscenter
1(5) The speed through the entire area is 30 km/h, unless otherwise indicated. Beware of crossing vehicles! Traffic signs, guardrails and exclusions shall be observed and followed. Smoking is prohibited
Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:
IMCDP Grafisk teknik The impact of the placed dot is fed back to the original image by a filter Original Image Binary Image Sasan Gooran (HT 2006) The next dot is placed where the modified image has its
Adding active and blended learning to an introductory mechanics course
Adding active and blended learning to an introductory mechanics course Ulf Gran Chalmers, Physics Background Mechanics 1 for Engineering Physics and Engineering Mathematics (SP2/3, 7.5 hp) 200+ students
Installation Instructions
Installation Instructions (Cat. No. 1794-IE8 Series B) This module mounts on a 1794 terminal base unit. 1. Rotate keyswitch (1) on terminal base unit (2) clockwise to position 3 as required for this type
Undergraduate research:
Undergraduate research: Laboratory experiments with many variables Arne Rosén 1, Magnus Karlsteen 2, Jonathan Weidow 2, Andreas Isacsson 2 and Ingvar Albinsson 1 1 Department of Physics, University of
Manhour analys EASA STI #17214
Manhour analys EASA STI #17214 Presentatör Johan Brunnberg, Flygteknisk Inspektör & Del-M Koordinator Sjö- och luftfartsavdelningen Operatörsenheten Sektionen för teknisk operation 1 Innehåll Anmärkningen
SWESIAQ Swedish Chapter of International Society of Indoor Air Quality and Climate
Swedish Chapter of International Society of Indoor Air Quality and Climate Aneta Wierzbicka Swedish Chapter of International Society of Indoor Air Quality and Climate Independent and non-profit Swedish
Why Steam Engine again??
Småskalig ångteknik för värmeåtervinning inom Stålindustrin med modern ångmotor 1 Why Steam Engine again?? Rankine power cycles is more fuel flexible than any other power cycles but in the small scale
Item 6 - Resolution for preferential rights issue.
Item 6 - Resolution for preferential rights issue. The board of directors in Tobii AB (publ), reg. no. 556613-9654, (the Company ) has on November 5, 2016, resolved to issue shares in the Company, subject
STORSEMINARIET 3. Amplitud. frekvens. frekvens uppgift 9.4 (cylindriskt rör)
STORSEMINARIET 1 uppgift SS1.1 A 320 g block oscillates with an amplitude of 15 cm at the end of a spring, k =6Nm -1.Attimet = 0, the displacement x = 7.5 cm and the velocity is positive, v > 0. Write
Materialplanering och styrning på grundnivå. 7,5 högskolepoäng
Materialplanering och styrning på grundnivå Provmoment: Ladokkod: Tentamen ges för: Skriftlig tentamen TI6612 Af3-Ma, Al3, Log3,IBE3 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles
Parking garage, Gamletull. MDM-piles, pre-installation testing RÄTT FRÅN GRUNDEN!
Parking garage, Gamletull MDM-piles, pre-installation testing Gamletull, MDM-pålar 1 CPT tests Gamletull, MDM-pålar 2 CPT test results Cone resistance Undrained shear strength Gamletull, MDM-pålar 3 Interpretation
TEXTURED EASY LOCK BLOCK INSTALLATION GUIDE. australianpaving.com.au
TEXTURED EASY LOCK BLOCK INSTALLATION GUIDE 1800 191 131 australianpaving.com.au TEXTURED EASY LOCK BLOCK The Textured Easy Lock Block retaining wall system is the premium retaining wall product for near
3 rd October 2017
3 rd October 2017 Failures of Scaffold False work Failures Form work Bursting Trench Support Failure Hoarding Failures Can be expensive and result in fatalities and serious injuries Cardiff
Rastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM
Rastercell Digital Rastrering Hybridraster, Rastervinkel, Rotation av digitala bilder, AM/FM rastrering Sasan Gooran (VT 2007) Önskat mått * 2* rastertätheten = inläsningsupplösning originalets mått 2
FORTA M315. Installation. 218 mm.
1 Installation 2 1 2 1 218 mm. 1 2 4 5 6 7 8 9 2 G, G0= Max 100 m 1.5 mm² (AWG 15) X1, MX, Y, VH, VC = Max 200 m 0.5 mm² (AWG 20) Y X1 MX VH VC G1 G0 G 0 V 24 V~ IN 0-10 0-5, 2-6 60 s OP O 1 2 4 5 6 7
Boiler with heatpump / Värmepumpsberedare
Boiler with heatpump / Värmepumpsberedare QUICK START GUIDE / SNABBSTART GUIDE More information and instruction videos on our homepage www.indol.se Mer information och instruktionsvideos på vår hemsida
Grafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions:
Grafisk teknik Sasan Gooran (HT 2006) Iterative Method Controlling Dot Placement (IMCDP) Assumptions: The original continuous-tone image is scaled between 0 and 1 0 and 1 represent white and black respectively
Isolda Purchase - EDI
Isolda Purchase - EDI Document v 1.0 1 Table of Contents Table of Contents... 2 1 Introduction... 3 1.1 What is EDI?... 4 1.2 Sending and receiving documents... 4 1.3 File format... 4 1.3.1 XML (language
Bernoullis ekvation Rörelsemängdsekvationen Energiekvation applikationer Rörströmning Friktionskoefficient, Moody s diagram Pumpsystem.
010-04-6 Sammanfattning Bernoullis ekvation Rörelsemängdsekvationen Energiekvation applikationer Rörströmning Friktionskoefficient, Moody s diagram Pumpsystem BERNOULLI S EQUATION p V z H const. g Quantity
GERDA Cryostat Rn emanation
GERDA Cryostat Rn emanation K.T. Knöpfle, B. Schwingenheuer, H. Simgen, G. Zuzel MPI für Kernphysik, Heidelberg General remarks Tolerable rate: ~8 (14) mbq 10-4 cts/(kg kev y) assuming homogenous Rn distribution
Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00. English Version
Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00 Examinator/Examiner: Xiangfeng Yang (Tel: 070 2234765) a. You are permitted to bring: a calculator; formel -och tabellsamling i matematisk statistik
SVENSK STANDARD SS-ISO 8779:2010/Amd 1:2014
SVENSK STANDARD SS-ISO 8779:2010/Amd 1:2014 Fastställd/Approved: 2014-07-04 Publicerad/Published: 2014-07-07 Utgåva/Edition: 1 Språk/Language: engelska/english ICS: 23.040.20; 65.060.35; 83.140.30 Plaströrssystem
Preschool Kindergarten
Preschool Kindergarten Objectives CCSS Reading: Foundational Skills RF.K.1.D: Recognize and name all upper- and lowercase letters of the alphabet. RF.K.3.A: Demonstrate basic knowledge of one-toone letter-sound
Signatursida följer/signature page follows
Styrelsens i Flexenclosure AB (publ) redogörelse enligt 13 kap. 6 och 14 kap. 8 aktiebolagslagen över förslaget till beslut om ökning av aktiekapitalet genom emission av aktier och emission av teckningsoptioner
The Municipality of Ystad
The Municipality of Ystad Coastal management in a local perspective TLC The Living Coast - Project seminar 26-28 nov Mona Ohlsson Project manager Climate and Environment The Municipality of Ystad Area:
Projektmodell med kunskapshantering anpassad för Svenska Mässan Koncernen
Examensarbete Projektmodell med kunskapshantering anpassad för Svenska Mässan Koncernen Malin Carlström, Sandra Mårtensson 2010-05-21 Ämne: Informationslogistik Nivå: Kandidat Kurskod: 2IL00E Projektmodell
2.1 Installation of driver using Internet Installation of driver from disk... 3
&RQWHQW,QQHKnOO 0DQXDOÃ(QJOLVKÃ'HPRGULYHU )RUHZRUG Ã,QWURGXFWLRQ Ã,QVWDOOÃDQGÃXSGDWHÃGULYHU 2.1 Installation of driver using Internet... 3 2.2 Installation of driver from disk... 3 Ã&RQQHFWLQJÃWKHÃWHUPLQDOÃWRÃWKHÃ3/&ÃV\VWHP
Grafisk teknik. Sasan Gooran (HT 2006)
Grafisk teknik Sasan Gooran (HT 2006) Iterative Method Controlling Dot Placement (IMCDP) Assumptions: The original continuous-tone image is scaled between 0 and 1 0 and 1 represent white and black respectively
Webbregistrering pa kurs och termin
Webbregistrering pa kurs och termin 1. Du loggar in på www.kth.se via den personliga menyn Under fliken Kurser och under fliken Program finns på höger sida en länk till Studieöversiktssidan. På den sidan
Eternal Employment Financial Feasibility Study
Eternal Employment Financial Feasibility Study 2017-08-14 Assumptions Available amount: 6 MSEK Time until first payment: 7 years Current wage: 21 600 SEK/month (corresponding to labour costs of 350 500
Design Service Goal. Hantering av demonterbara delar som ingår i Fatigue Critical Baseline Structure List. Presentatör
Design Service Goal Hantering av demonterbara delar som ingår i Fatigue Critical Baseline Structure List Presentatör Thobias Log Flygteknisk Inspektör Sjö- och luftfartsavdelningen Enheten för operatörer,
x 2 2(x + 2), f(x) = by utilizing the guidance given by asymptotes and stationary points. γ : 8xy x 2 y 3 = 12 x + 3
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN2 Date:
STANDARD. UTM Ingegerd Annergren UTMS Lina Orbéus. UTMD Anders Johansson UTMS Jan Sandberg
1(7) Distribution: Scania, Supplier Presskruvar med rundat huvud - Metrisk gänga med grov delning Innehåll Sida Orientering... 1 Ändringar från föregående utgåva... 1 1 Material och hållfasthet... 1 2
P Forsmark site investigation. Hydraulic interference test with borehole HFM33 used as pumping borehole, November of 2007
P-07-229 Forsmark site investigation Hydraulic interference test with borehole HFM33 used as pumping borehole, November of 2007 Kristoffer Gokall-Norman, Jan-Erik Ludvigson, Geosigma AB May 2008 Svensk
EASA FTL (Flygarbetstid)
EASA FTL EASA FTL (Flygarbetstid) Ett urval av reglerna Christer Ullvetter Transportstyrelsen i Norrköping 1 Air taxi operation New definition Air taxi operation means, for the purpose of flight time and
Tryck- och svetsseminarie 2014 Föredrag: Golden welds vad är problemet? Föredragshållare: Mikael Rehn, Inspecta Sweden AB 2014-04-24
Tryck- och svetsseminarie 2014 Föredrag: Golden welds vad är problemet? Föredragshållare: Mikael Rehn, Inspecta Sweden AB 1 2 Vad menar vi med en golden weld? Typically pressure testing is used to ensure
Users manual Bruksanvisning Gebrauchanweisung Guide d instructions
Multi-pressure bucket pump Bärbar fettpump hochdruck abschmierpumpe distributeur manuel de graisse Users manual Bruksanvisning Gebrauchanweisung Guide d instructions 11018-1 - 815850 R02/03 IMPORTANT:
Oförstörande provning (NDT) i Del M Subpart F/Del 145-organisationer
Oförstörande provning (NDT) i Del M Subpart F/Del 145-organisationer Ref. Del M Subpart F & Del 145 2012-05-02 1 Seminarium för Teknisk Ledning HKP 3maj, 2012, Arlanda Inledning Allmänt Viktigare krav
Collaborative Product Development:
Collaborative Product Development: a Purchasing Strategy for Small Industrialized House-building Companies Opponent: Erik Sandberg, LiU Institutionen för ekonomisk och industriell utveckling Vad är egentligen
Is it possible to protect prosthetic reconstructions in patients with a prefabricated intraoral appliance?
r Is it possible to protect prosthetic reconstructions in patients with a prefabricated intraoral appliance? - A pilot study Susan Sarwari and Mohammed Fazil Supervisors: Camilla Ahlgren Department of
Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås
Schenker Privpak AB Interface documentation for web service packageservices.asmx 2012-09-01 Version: 1.0.0 Doc. no.: I04304b Sida 2 av 7 Revision history Datum Version Sign. Kommentar 2012-09-01 1.0.0
Image quality Technical/physical aspects
(Member of IUPESM) Image quality Technical/physical aspects Nationella kvalitetsdokument för digital radiologi AG1 Michael Sandborg och Jalil Bahar Radiofysikavdelningen Linköping 2007-05-10 Requirements
GOLD SD 14-40. Med styrenhet/with control unit. Fläkt/ Fan. Utan filter/ Without filter. Fläkt/Fan. Fläkt/ Fan. Med filter/ With filter.
GOLD SD 4-40 Med styrenhet/with control unit Skiss visar styrenhet för aggregat med inspektionssida vänster, styrenhet för aggregat med inspektionssida höger ser något annorlunda ut, men principen är lika./
School of Management and Economics Reg. No. EHV 2008/220/514 COURSE SYLLABUS. Fundamentals of Business Administration: Management Accounting
School of Management and Economics Reg. No. EHV 2008/220/514 COURSE SYLLABUS Fundamentals of Business Administration: Management Accounting Course Code FE3001 Date of decision 2008-06-16 Decision-making
säkerhetsutrustning / SAFETY EQUIPMENT
säkerhetsutrustning / SAFETY EQUIPMENT Hastighetsvakt / Speed monitor Kellves hastighetsvakter används för att stoppa bandtransportören när dess hastighet sjunker under beräknade minimihastigheten. Kellve
Uttagning för D21E och H21E
Uttagning för D21E och H21E Anmälan till seniorelitklasserna vid O-Ringen i Kolmården 2019 är öppen fram till och med fredag 19 juli klockan 12.00. 80 deltagare per klass tas ut. En rangordningslista med
Schenker Privpak AB Telefon 033-178300 VAT Nr. SE556124398001 Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr 033-257475 Säte: Borås
Schenker Privpak AB Interface documentation for web service packageservices.asmx 2010-10-21 Version: 1.2.2 Doc. no.: I04304 Sida 2 av 14 Revision history Datum Version Sign. Kommentar 2010-02-18 1.0.0
Agenda. Tid Aktivitet Föreläsare Åtgång tid 08:30 Registrering vid TS recep. Transport till våning 5.
Agenda Tid Aktivitet Föreläsare Åtgång tid 08:30 Registrering vid TS recep. Transport till våning 5. Dennis, Jerry och Gun. 30 min. 09:00 Intro. (Agendan, lokaler, m.m.) Dennis / Jerry/Gun 15 min 09:15
FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR
FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR Kontrollera vilka kurser du vill söka under utbytet. Fyll i Basis for nomination for exchange studies i samråd med din lärare. För att läraren ska kunna göra en korrekt
Syns du, finns du? Examensarbete 15 hp kandidatnivå Medie- och kommunikationsvetenskap
Examensarbete 15 hp kandidatnivå Medie- och kommunikationsvetenskap Syns du, finns du? - En studie över användningen av SEO, PPC och sociala medier som strategiska kommunikationsverktyg i svenska företag
8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MAA150 Vektoralgebra TEN1 Datum: 9januari2015 Skrivtid:
Measuring child participation in immunization registries: two national surveys, 2001
Measuring child participation in immunization registries: two national surveys, 2001 Diana Bartlett Immunization Registry Support Branch National Immunization Program Objectives Describe the progress of
Gradientbaserad Optimering,
Gradientbaserad Optimering, Produktfamiljer och Trinitas Hur att sätta upp ett optimeringsproblem? Vad är lämpliga designvariabler x? Tjockleksvariabler (sizing) Tvärsnittsarean hos stänger Längdmått hos
Resultat av den utökade första planeringsövningen inför RRC september 2005
Resultat av den utökade första planeringsövningen inför RRC-06 23 september 2005 Resultat av utökad första planeringsövning - Tillägg av ytterligare administrativa deklarationer - Variant (av case 4) med
Documentation SN 3102
This document has been created by AHDS History and is based on information supplied by the depositor /////////////////////////////////////////////////////////// THE EUROPEAN STATE FINANCE DATABASE (Director:
P Forsmark site investigation
P-05-21 Forsmark site investigation Comparison of measured EC in selected fractures in boreholes KFM02A, KFM03A and KFM04A from difference flow logging and hydro-geochemical characterization Analysis of
Kvalitetskontroller inom immunhematologi Vad är good enough? Erfarenheter från Sverige
Kvalitetskontroller inom immunhematologi Vad är good enough? Erfarenheter från Sverige Agneta Wikman, överläkare Klinisk immunologi och transfusionsmedicin Karolinska Universitetssjukhuset Stockholm Referenser
Aborter i Sverige 2008 januari juni
HÄLSA OCH SJUKDOMAR 2008:9 Aborter i Sverige 2008 januari juni Preliminär sammanställning SVERIGES OFFICIELLA STATISTIK Statistik Hälsa och Sjukdomar Aborter i Sverige 2008 januari juni Preliminär sammanställning
Tentamen i Matematik 2: M0030M.
Tentamen i Matematik 2: M0030M. Datum: 203-0-5 Skrivtid: 09:00 4:00 Antal uppgifter: 2 ( 30 poäng ). Examinator: Norbert Euler Tel: 0920-492878 Tillåtna hjälpmedel: Inga Betygsgränser: 4p 9p = 3; 20p 24p
Chapter 2: Random Variables
Chapter 2: Random Variables Experiment: Procedure + Observations Observation is an outcome Assign a number to each outcome: Random variable 1 Three ways to get an rv: Random Variables The rv is the observation
Plain A262. För T16 (T5) lysrör. Innehåll. Monteringsanvisning. A. Instruktion för rampmontering
Plain A262 För T16 (T5) lysrör Innehåll Ramparmatur: ändmodul En stängd gavel/ en öppen gavel Plint i båda ändarna Överkopplingssladd 1 rampgavel 1 lysrörsbytare Ramparmatur: mellanmodul Plint i en ände
Information technology Open Document Format for Office Applications (OpenDocument) v1.0 (ISO/IEC 26300:2006, IDT) SWEDISH STANDARDS INSTITUTE
SVENSK STANDARD SS-ISO/IEC 26300:2008 Fastställd/Approved: 2008-06-17 Publicerad/Published: 2008-08-04 Utgåva/Edition: 1 Språk/Language: engelska/english ICS: 35.240.30 Information technology Open Document
SVENSK STANDARD SS-ISO 8734
SIS - Standardiseringskommissionen i Sverige Handläggande organ SMS, SVERIGES MEKANSTANDARDISERING SVENSK STANDARD SS-ISO 8734 Fastställd Utgåva Sida Registering 1992-11-16 1 1 (1+8) SMS reg 27.1128 SIS
Pharmacovigilance lagstiftning - PSUR
Pharmacovigilance lagstiftning - PSUR Karl Mikael Kälkner Tf enhetschef ES1 EUROPAPARLAMENTETS OCH RÅDETS DIREKTIV 2010/84/EU av den 15 december om ändring, när det gäller säkerhetsövervakning av läkemedel,
EBBA2 European Breeding Bird Atlas
Methodology Sergi Herrando, Verena Keller, Petr Voříšek et al. objectives 1. To document breeding evidence for all bird species at a resolution of 50x50 km 2. To estimate abundance for all bird species
Examensarbete Introduk)on - Slutsatser Anne Håkansson annehak@kth.se Studierektor Examensarbeten ICT-skolan, KTH
Examensarbete Introduk)on - Slutsatser Anne Håkansson annehak@kth.se Studierektor Examensarbeten ICT-skolan, KTH 2016 Anne Håkansson All rights reserved. Svårt Harmonisera -> Introduktion, delar: Fråga/
Webbreg öppen: 26/ /
Webbregistrering pa kurs, period 2 HT 2015. Webbreg öppen: 26/10 2015 5/11 2015 1. Du loggar in på www.kth.se via den personliga menyn Under fliken Kurser och under fliken Program finns på höger sida en
GOLD SD 50-80. Fläkt 2/ Fan 2. Fläkt 1/ Fan 1. Fläkt/ Fan. Utan filter/ Without filter. Fläkt 1/ Fan 1. Fläkt 2/ Fan 2. Med filter/ With filter Filter
SE/G.ELSD5080.0803 GOLD SD 50-80 Med styrenhet/with control unit Skiss visar styrenhet för aggregat med inspektionssida vänster, styrenhet för aggregat med inspektionssida höger ser något annorlunda ut,
INDUKTIV SLINGDETEKTOR INDUCTIVE LOOP DETECTOR
INDUKTIV SLINGDETEKTOR INDUCTIVE LOOP DETECTOR Slingdetektorn används som ett alternativ till mekaniska gränslägen, momentbrytare eller annat gränsläge i gödselrännor. Detektorn är kopplad till en trådslinga
Vågkraft. Verification of Numerical Field Model for Permanent Magnet Two Pole Motor. Centrum för förnybar elenergiomvandling
Vågkraft Verification of Numerical Field Model for Permanent Magnet Two Pole Motor. Avd. För 751 05 Uppsala, Sweden Introduction PhD-student Uppsala University Avd. För Field of Research: Electromagnetic
SAMMANFATTNING AV SKILLNADER MELLAN VADHÅLLNINGSBESTÄMMELSER ATG (SVERIGE) OCH PHUMELELA (SYDAFRIKA)
SAMMANFATTNING AV SKILLNADER MELLAN VADHÅLLNINGSBESTÄMMELSER ATG (SVERIGE) OCH PHUMELELA (SYDAFRIKA) Spelet till sydafrikansk galopplopp sker i gemensam pool med Phumelela i Sydafrika. Det är således de
CANALKLER 250S. Gänga i tum Thread in inch
Skruvkoppling/Reusable coupling CANALKLER kopplingar används under högt tryck. Använd endast kopplingar som rekommenderas av Trelleborg och följ monteringsanvisningarna noggrant. Kontrollera så att slangen
School of Management and Economics Reg. No. EHV 2008/245/514 COURSE SYLLABUS. Business and Market I. Business Administration.
School of Management and Economics Reg. No. EHV 2008/245/514 COURSE SYLLABUS Business and Market I Course Code FE4001 Date of decision 2008-09-02 Decision-making Body Board: School of Management and Economics
1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)
UMEÅ UNIVERSITY Department of Mathematics and Mathematical Statistics Pre-exam in mathematics Linear algebra 2012-02-07 1. Compute the following matrix: (2 p 3 1 2 3 2 2 7 ( 4 3 5 2 2. Compute the determinant
ISO STATUS. Prof. dr Vidosav D. MAJSTOROVIĆ 1/14. Mašinski fakultet u Beogradu - PM. Tuesday, December 09,
ISO 9000 - STATUS Prof. dr Vidosav D. MAJSTOROVIĆ 1/14 1 ISO 9000:2000, Quality management systems - Fundamentals and vocabulary Establishes a starting point for understanding the standards and defines
Laser Diffraction System Verification
Laser Diffraction System Verification mark.bumiller@horiba.com 2007 HORIBA, Ltd. All rights reserved. Calibration vs. Verification Calibration : enter standard sample(s), adjust instrument response to
P Site investigation SFR. Hydro Monitoring Program. Report for May 2008 August Göran Nyberg, Eva Wass Geosigma AB.
P-09-65 Site investigation SFR Hydro Monitoring Program Report for May 2008 August 2009 Göran Nyberg, Eva Wass Geosigma AB October 2009 Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management
IRAB Mottagare sida 2-5 Tele Radio AB Mottagare sida 6
IRAB Mottagare sida -5 Tele Radio AB Mottagare sida 6 Installation of receiver type smd 700 4 RELAY FUNCTIONS / -4 VAC/DC PCB TYPE NO: LWEG 4L Rev: 95-09 Installation: Install the receivers in a protected
Solutions to exam in SF1811 Optimization, June 3, 2014
Solutions to exam in SF1811 Optimization, June 3, 14 1.(a) The considered problem may be modelled as a minimum-cost network flow problem with six nodes F1, F, K1, K, K3, K4, here called 1,,3,4,5,6, and
Anvisningar för ämnesansvariga vid LTV-fakulteten
STYRANDE DOKUMENT SLU ID: SLU.ltv 2015.1.1.1-839 Sakområde: Organisation och beslutsstruktur samt Forskning och utbildning på forskarnivå Dokumenttyp: Anvisning/Instruktion Beslutsfattare: Dekan Avdelning/kansli: