Laboration 1: Icke-parametriska enstickprovstest
|
|
- Malin Pettersson
- för 5 år sedan
- Visningar:
Transkript
1 STOCKHOLMS UNIVERSITET 8 september 2004 Matematiska institutionen Avd. för matematisk statistik Mikael Andersson Laboration 1: Icke-parametriska enstickprovstest Syftet med denna datorlaboration är ni skall bekanta er lite med de numeriska beräkningar som ligger bakom de vanligaste icke-parametriska metoderna för analys av ett stickprov samt göra en jämförelse av resultaten av dessa. Instruktionerna är skrivna för programspråket MATLAB, men det är inget som hindrar att man löser uppgifterna med hjälp av annan programvara. Valet av MATLAB är gjort framförallt av pedagogiska skäl. Det finns flera statistiska program, exempelvis Minitab, SPSS och S-plus, som har färdiga rutiner för många ickeparametriska test, men användandet av sådana skulle inte bidra på samma sätt till en ökad förståelse av dessa metoder. Dessutom är MATLAB mycket effektivt när det gäller långa numeriska beräkningar, slumptalssimulering och hantering av stora datamängder som det ofta är frågan om. Instruktionerna är uppdelade i tre avsnitt, ett för inloggning och start av MATLAB i Linux, ett där ett enkelt exempel gås igenom i detalj och ett som innehåller själva uppgifterna som skall lösas. För er som aldrig har arbetat med MATLAB tidigare rekommeras att gå igenom det andra avsnittet noga innan ni ger er på uppgifterna. Vana MATLAB-användare kan å andra sidan gå till tredje avsnittet direkt. 1 Inloggning och start av MATLAB Mata först in kontonamn och lösenord och tryck på Go. Då kommer ni in i Linuxsystemet och kan arbeta i en Desktopmiljö liknande Windows. Om det är första gången ni loggar in så dyker det allra först upp en ruta för systemkonfiguration. Om ni inte vill konfigurera systemet så tryck bara på Avbryt. MATLAB startar ni genom att först klicka på den lilla röda hatten längst ner till vänster i fönstret, sedan på Math på menyn som dyker upp och slutligen på Matlab. Då kommer totalt fem olika fönster att öppnas: Launch Pad, Workspace, Command History, Current Directory och Command Window. För den här laborationen behövs bara Command Window där alla kommandon skrivs in. För att sedan avsluta körningen kan ni antingen skriva exit i Command Window eller gå in på menyn File längst upp till vänster och sedan Exit MATLAB. 1
2 VARNING: På grund av en bugg i MATLAB 6 för Linux kan man inte skriva symbolen ˆ för upphöjt till, då låser sig programmet och man måste starta om allting. Uttrycket a b kan i stället beräknas som power(a,b). 2 Introduktion Som en vägledning till MATLAB och hur man kan genomföra icke-parametriska test och beräkna konfidensintervall för ett stickprov skall vi betrakta följande enkla exempel. För ovana MATLAB-användare rekommeras häftet Användarhandledning för MATLAB, version 6 av Lennart Edsberg, särskilt avsnitt 1-5. Vid många kirurgiska ingrepp ger man patienter ett så kallat blodförtunningsmedel, som bland annat förlänger koaguleringstiden för blodet. Man gav fem försökspersoner ett nytt blodförtunningsmedel och uppmätte koaguleringstiderna i minuter till Normal koaguleringstid hos människor är 8.8 minuter. Testa om medlet ökar koaguleringstiden signifikant och beräkna även ett tvåsidigt 95 %-igt konfidensintervall. Börja med att mata in data i MATLAB genom att skriva följande efter promptern >> i Command Window >> x=[ ] x = t-test Låt oss allra först genomföra ett parametriskt t-test som referens. Eftersom vi vill påvisa en ökad koaguleringstid är det lämpligt med hypoteserna H 0 : µ = 8.8 H 1 : µ > 8.8 Under antagandet att data är oberoe och normalfördelade med väntevärde µ och varians σ 2 gäller att x 8.8 T = s/ 5 är t-fördelad med 4 frihetsgrader. Vi förkastar H 0 om T antar ett alltför högt värde, vilket innebär att p-värdet kan beräknas enligt 2
3 >> 1-tcdf((mean(x)-8.8)/(std(x)/sqrt(5)),4) Funktionerna mean(x) och std(x) beräknar medelvärdet och standardavvikelsen av vektorn x, funktionen sqrt(y) beräknar y och funktionen tcdf(t,n) beräknar fördelningsfunktionen för t-fördelningen i punkten t för n frihetsgrader. Gränserna i ett tvåsidigt konfidensintervall fås genom >> mean(x)-tinv(.975,4)*std(x)/sqrt(5) >> mean(x)+tinv(.975,4)*std(x)/sqrt(5) Funktionen tinv(a,n) ger a-kvantilen för t-fördelningen med n frihetsgrader. MATLAB-tips: Om man trycker på tangenten med pil uppåt kommer senast skrivna kommando upp och sedan kan man ändra detta om man har skrivit fel eller, som ovan, om man vill exekvera två snarlika uttryck. Upprepade tryckningar på piltangenten ger ännu tidigare kommandon. 2.2 Teckentest För att göra ett teckentest måste vi sätta upp hypoteserna där θ är medianen. Vi baserar testet på statistikan H 0 : θ = 8.8 H 1 : θ > 8.8 T = Antal observationer < 8.8 och förkastar H 0 om T antar ett alltför litet värde. Under H 0 är T som bekant binomialfördelad med parametrar 5 och 0.5, vilket gör att p-värdet kan beräknas enligt >> sum(binopdf(0:1,5,.5))
4 Funktionen binopdf(y,n,p) ger sannolikhetsfunktionen för binomialfördelningen med parametrar n och p i de punkter som specificeras av vektorn y. I vårt fall är vi intresserade av sannolikheten att få högst en observation mindre än 8.8, det vill säga antingen noll eller en observation, och detta anges som 0:1. Allmänt kan en vektor beståe av alla heltalsvärden från n till och med m genereras i MATLAB genom kommandot n:m. Funktionen sum(y) summerar elementen i vektorn y. För att beräkna ett tvåsidigt konfidensintervall måste vi först hitta ett lämpligt acceptansområde för ett tvåsidigt test. En lämplig kandidat är A(θ) = {T : 1 T 4} det vill säga att vi förkastar ast för T = 0 eller T = 5. Sannolikheten för A(θ), den så kallade täckningsgraden, under H 0 ges av >> sum(binopdf(1:4,5,.5)) Vi når inte riktigt upp till 95 % med ast 5 observationer, men vi kan knappast utöka acceptansområdet eftersom det skulle leda till oändliga gränser i konfidensintervallet. Det resulterande konfidensintervallet kan nu skrivas 2.3 Wilcoxons teckenrangtest 8.7 θ 10.4 (93.8%) Det här testet baserar sig på rangerna för absolutbeloppen av skillnaderna d i = x i θ 0. I MATLAB kan rangerna beräknas enligt >> r=tiedrank(abs(x-8.8)) r = Funktionen tiedrank(y) beräknar rangerna för vektorn y även om det förekommer ties och abs(y) ger absolutbelopp för elementen i y. I vårt fall är det mest praktiskt att basera testet på S = Summan av alla negativa ranger och eftersom ast första observationen ger en negativ differens får vi att S = 1. Under H 0 och det extra antagandet att observationerna kommer från en symmetrisk fördelning ger att vi får totalt 2 5 = 32 lika sannolika teckenkombinationer. För att beräkna S för alla dessa kombinationer behöver vi en kombinationsmatris, som kan beräknas enligt >> komb=[0;1]; >> for i=1:4 komb=[zeros(power(2,i),1) komb;ones(power(2,i),1) komb]; 4
5 Detta genererar en matris med 32 rader och fem kolumner beståe av nollor och ettor motsvarande samtliga teckenkombinationer. Effekten av ett semikolon sist på kommandoraden är att resultatet inte skrivs ut på skärmen, något som kan vara praktiskt när man upprepar en beräkning många gånger som i ovanståe for-sats. Vi går inte in i detalj på stegen i den här beräkningen. För att se hur matrisen ser ut, skriv helt enkelt >> komb Nu kan vi generera en vektor beståe av samtliga värden på S enligt följande >> for i=1:32 S(i)=sum(r.*komb(i,:)); Kommandona for och anger att alla beräkningar däremellan skall utföras då i går från 1 till 32. Kommandot komb(i,:) anger att rad nummer i i kombinationsmatrisen skall användas och.* anger komponentvis multiplikation av elementen i vektorerna. Skriv >> S för att se vilka värden som finns i vektorn S. Man kan även åskådliggöra resultatet i ett histogram enligt >> hist(s,0:15) där 0:15 anger att staplar skall ritas för alla heltal från 0 och 15, som är alla möjliga värden för S. Nu kan vi beräkna p-värdet för testet enligt >> sum(s<=1)/ Kommandot sum(s<=1) ger antal kombinationer där S 1 och normerar vi med antal kombinationer får vi p-värdet. När det gäller konfidensintervall behöver vi först beräkna Walshmedelvärdena. Detta kan göras med hjälp av två for-sekvenser enligt >> walsh=[]; >> for i=1:5 for j=i:5 walsh=[walsh (x(i)+x(j))/2]; >> walsh=sort(walsh); 5
6 Kommandot walsh=[] skapar en tom vektor med namnet walsh och sedan läggs alla Walshmedelvärden i den vektorn då index i går från 1 till 5 och index j från i till 5. Slutligen sorteras alla element i storleksordning med kommandot sort. Även här måste vi först ange ett lämpligt acceptansområde för ett tvåsidigt test av medianen för att erhålla ett tvåsidigt konfidensintervall. Enda rimliga kandidaten med en täckningsgrad så nära 95 % som möjligt och som inte ger oändliga gränser är A(θ) = {S : 1 S 14} vars exakta täckningsgrad kan beräknas enligt >> sum(s>=1 & S<=14)/ det vill säga samma som för teckentestet. Med andra ord ges gränserna i intervallet av det minsta respektive det största Walshmedelvärdet, vilket vi får som >> walsh(1) >> walsh(15) Bootstrap Slutligen skall vi se hur vi kan uppskatta p-värde och konfidensintervall genom att använda bootstrap-simulering. Notera att denna metod bygger på slumptalssimulering, vilket innebär att olika körningar kan ge olika resultat. Bästa sättet att reducera denna osäkerhet är att generera så många bootstrap-stickprov som möjligt. I MATLAB kan vi skapa en matris av bootstrap-stickprov enligt följande >> slump=ceil(rand(1000,5)*5); >> for i=1:1000 bootstrap(i,:)=x(slump(i,:)); Kommandot rand(n,m) genererar en matris med n rader och m kolumner beståe av slumptal mellan 0 och 1. Genom att multiplicera hela matrisen med m och avrunda uppåt genom kommandot ceil får vi en matris slump med heltal från 1 till m. Rad i i denna matris anger nu vilka observationer i det ursprungliga stickprovet som skall ingå i bootstrapstickprov i och dessa utgör nu raderna i matrisen bootstrap. 6
7 Nu kan vi välja att basera resultaten antingen på medianerna, vilket gör en jämförelse med tidigare metoder möjlig, eller medelvärdena, vilket ger bättre precision. Dessa kan enkelt beräknas enligt >> mdn=sort(median(bootstrap )); >> snt=sort(mean(bootstrap )); Apostrof betyder transponering i MATLAB och är nödvändig för att få radvisa medianer respektive medelvärden. Fördelningarna kan återigen åskådliggöras med hjälp av hist, lämpligtvis enligt >> hist(mdn,8.7:.1:10.4) >> hist(snt,8.7:.1:10.4) Argumentet 8.7:.1:10.4 anger att histogrammet skall ha staplar från 8.7 till 10.4 med mellanrum 0.1. Nu kan vi beräkna p-värden enligt >> sum(mdn<=8.8)/ >> sum(snt<=8.8)/ Återigen bör noteras att dessa resultat är i högsta grad beroe av just de slumptal som genererades då jag körde dessa kommandon. Ni får troligtvis något avvikande värden. Upprepa gärna beräkningarna för att få en uppfattning om osäkerheten i skattningarna och/eller utöka antal boostrap-stickprov, förslagsvis till Konfidensintervall är också enkla att beräkna genom att inkludera de 95 % av alla värden som så att säga ligger i mitten. För 1000 värden utgör alltså det 25:e minsta och det 25:e största (975:e minsta) värdet gränserna i intervallen. För medianen får vi >> mdn(25) >> mdn(975)
8 och för medelvärdet får vi >> snt(25) >> snt(975) Uppgift Vid en undersökning tog man prov från slemhinnan i näsan hos nio stycken allergiker och uppmätte halten histamin. Man ville dels få en uppfattning om normal histaminhalt hos allergiker och dels testa om allergiker har en signifikant förhöjd histaminhalt jämfört med icke-allergiker. De uppmätta värdena blev (i µg/g torrvikt) Normal histaminhalt hos icke-allergiker ligger på 36 µg/g. Testa om det föreligger signifikant förhöjd histaminhalt med hjälp av 1) t-test, 2) teckentest, 3) teckenrangtest och 4) bootstrap och beräkna även tvåsidiga symmetriska konfidensintervall med konfidensgrad så nära 95 % som möjligt. Vissa operationer kan ta något längre tid än i det föregåe exemplet eftersom MATLAB måste gå igenom betydligt fler kombinationer. I den skriftliga redovisningen skall ingå p-värden för alla test, övre och undre gräns i konfidensintervallen och histogram över fördelningen för teststatistikan under H 0 för teckenrangtest och bootstrap. Dessutom skall en jämförelse göras mellan de fyra metoderna och en diskussion angåe vilken/vilka som kan anses mest lämplig/lämpliga för det aktuella datamaterialet ingå. 8
Laboration 3: Icke-parametrisk korrelations- och regressionsanalys
STOCKHOLMS UNIVERSITET 7 oktober 2004 Matematiska institutionen Avd. för matematisk statistik Mikael Andersson Laboration 3: Icke-parametrisk korrelations- och regressionsanalys I den här laborationen
Läs merSF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011
Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i
Läs merSF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2
Matematisk Statistik SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 1 Introduktion Denna laboration är inte poänggivande utan är till för den som vill bekanta sig med MATLAB. Fokusera
Läs merIntroduktion och laboration : Minitab
Robert Parviainen, Tel. 471 31 86 E-post: robert@math.uu.se Matematisk Statistik IT VT 2004 Introduktion och laboration : Minitab Den här laborationen går ut på att stifta bekantskap med ett statistiskt
Läs merInledning till statistikteorin. Skattningar och konfidensintervall för μ och σ
Inledning till statistikteorin Skattningar och konfidensintervall för μ och σ Punktskattningar Stickprov från en population - - - Vi vill undersöka bollhavet men får bara göra det genom att ta en boll
Läs merTMS136. Föreläsning 10
TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis
Läs merDatorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se
Föreläsning 10 Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se vad som skall göras Föreläsning 10 Inferens
Läs merLaboration med Minitab
MATEMATIK OCH STATISTIK NV1 2005 02 07 UPPSALA UNIVERSITET Matematiska institutionen Silvelyn Zwanzig, Tel. 471 31 84 Laboration med Minitab I denna laboration skall du få stifta bekantskap med ett statistiskt
Läs merLaboration 2: Statistisk hypotesprövning
STOCKHOLMS UNIVERSITET 13 februari 2009 Matematiska institutionen Avd. för matematisk statistik Gudrun Brattström Laboration 2: Statistisk hypotesprövning Huvudsyftet med denna andra datorlaboration är
Läs merrepetera begreppen sannolikhetsfunktion, frekvensfunktion och fördelningsfunktion
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF25: MATEMATISK STATISTIK KOMPLETTERANDE PROJEKT DATORLABORATION 1, 14 NOVEMBER 2017 Syfte Syftet med dagens laboration är att du ska träna
Läs merLaboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka
Läs mer2. Test av hypotes rörande medianen i en population.
Stat. teori gk, ht 006, JW F0 ICKE-PARAMETRISKA TEST (NCT 15.1, 15.3-15.4) Ordlista till NCT Nonparametric Sign test Rank Icke-parametrisk Teckentest Rang Teckentest Teckentestet är formellt ingenting
Läs merIntroduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab
Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts
Läs merFöreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
Läs merMatematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels
Läs merLaboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 3 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT15 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla
Läs mer7.3.3 Nonparametric Mann-Whitney test
7.3.3 Nonparametric Mann-Whitney test Vi har sett hur man kan testa om två populationer har samma väntevärde (H 0 : μ 1 = μ 2 ) med t-test (two-sample). Vad gör man om data inte är normalfördelat? Om vi
Läs merInstruktion för laboration 1
STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för matematisk statistik ANL/TB SANNOLIKHETSTEORI I, HT07. Instruktion för laboration 1 De skrifliga laborationsrapporterna skall vara skrivna så att
Läs merLaboration 1: Introduktion till R och Deskriptiv statistik
STOCKHOLMS UNIVERSITET 13 februari 2009 Matematiska institutionen Avd. för matematisk statistik Gudrun Brattström Laboration 1: Introduktion till R och Deskriptiv statistik Denna första datorlaboration
Läs merF3 Introduktion Stickprov
Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever
Läs merInstitutionen för teknikvetenskap och matematik, S0001M LABORATION 2
Institutionen för teknikvetenskap och matematik, S0001M LABORATION 2 Laborationen avser att illustrera användandet av normalfördelningsdiagram, konfidensintervall vid jämförelser samt teckentest. En viktig
Läs merLaboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer
Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,
Läs merπ = proportionen plustecken i populationen. Det numeriska värdet på π är okänt.
Stat. teori gk, vt 006, JW F0 ICKE-PARAMETRISKA TEST (NCT 13.1, 13.3-13.4) Or dlista till NCT Nonparametric Sign test Rank Teckentest Icke-parametrisk Teckentest Rang Teckentestet är formellt ingenting
Läs merLektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Läs merDATORÖVNING 2: STATISTISK INFERENS.
DATORÖVNING 2: STATISTISK INFERENS. START Logga in och starta Minitab. Se till att du kan skriva Minitab-kommandon direkt i Session-fönstret (se föregående datorövning). CENTRALA GRÄNSVÄRDESSATSEN Enligt
Läs merAnalys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken
Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen
Läs merDatorövning 1: Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, VT-17 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och
Läs merSF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt
Läs merbli bekant med summor av stokastiska variabler.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för diskreta, bivariate
Läs merDATORÖVNING 6: CENTRALA GRÄNSVÄRDES-
DATORÖVNING 6: CENTRALA GRÄNSVÄRDES- SATSEN OCH FELMARGINALER I denna datorövning ska du använda Minitab för att empiriskt studera hur den centrala gränsvärdessatsen fungerar, samt empiriskt utvärdera
Läs merträna på att använda olika grafiska metoder för att undersöka vilka fördelningar ett datamaterial kan komma från
Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 1, 1 APRIL 215 FÖRDELNINGAR, SIMULERING OCH FÖRDELNINGSANPASSNING Syfte Syftet med dagens laboration är att du ska
Läs merSyftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar
Läs merInstruktion för laboration 1
STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för matematisk statistik MD, ANL, TB (rev. JM, OE) SANNOLIKHETSTEORI I Instruktion för laboration 1 De skriftliga laborationsrapporterna skall vara
Läs merDatorövning 1 Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 1 Fördelningar I denna datorövning ska du utforska begreppen sannolikhet
Läs merFÖRELÄSNING 8:
FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data
Läs merLaboration 3: Enkla punktskattningar, styrkefunktion och bootstrap
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3, HT -06 MATEMATISK STATISTIK FÖR F, PI OCH NANO, FMS 012 MATEMATISK STATISTIK FÖR FYSIKER, MAS 233 Laboration 3: Enkla punktskattningar,
Läs merTentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.
Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för
Läs merDatorlaboration 1 Deskriptiv statistik med hjälp av MS Excel vers. 2010
v. 2015-01-07 ANVISNINGAR Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel vers. 2010 Detta häfte innehåller kortfattade anvisningar om hur ni använder Excel under denna laboration. Be om hjälp
Läs mer*****************************************************************************
Statistik, 2p ANVISNINGAR Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel Detta häfte innehåller kortfattade anvisningar om hur ni använder Excel under denna laboration. Be om hjälp när/om
Läs merFöreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 4 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Icke-parametriska test Mann-Whitneys test (kap 8.10 8.11) Wilcoxons test (kap 9.5) o Transformationer (kap 13) o Ev. Andelar
Läs merStatistik och epidemiologi T5
Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Biostatistik kursmål Dra slutsatser utifrån basala statistiska begrepp och analyser och själva kunna använda sådana metoder.
Läs merMatematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet
Läs merFÖRELÄSNING 7:
FÖRELÄSNING 7: 2016-05-10 LÄRANDEMÅL Normalfördelningen Standardnormalfördelning Centrala gränsvärdessatsen Konfidensintervall Konfidensnivå Konfidensintervall för väntevärdet då variansen är känd Samla
Läs merFöreläsning 5 och 6.
Föreläsning 5 och 6. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper@math.uu.se Tillämpad statistik för STS vt 2014 Icke-parametriska metoder Föreläsningarnas innehåll: Allmänt, icke-parametrisk
Läs merMatematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 HT11. Laboration. Statistiska test /16
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 HT11 Laboration Statistiska test 2011-11-15/16 2 Syftet med laborationen är att: Ni skall bekanta er med lite av de funktioner som finns
Läs merMATLAB the Matrix Laboratory. Introduktion till MATLAB. Martin Nilsson. Enkel användning: Variabler i MATLAB. utvecklat av MathWorks, Inc.
Introduktion till MATLAB Martin Nilsson Avdelningen för teknisk databehandling Institutionen för informationsteknologi Uppsala universitet MATLAB the Matrix Laboratory utvecklat av MathWorks, Inc. Matematisk
Läs merTenta i Statistisk analys, 15 december 2004
STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, ML 15 december 004 Lösningar Tenta i Statistisk analys, 15 december 004 Uppgift 1 Vi har två stickprov med n = 5 st.
Läs merTMS136. Föreläsning 11
TMS136 Föreläsning 11 Andra intervallskattningar Vi har sett att vi givet ett stickprov och under vissa antaganden kan göra intervallskattningar för väntevärden Man kan även gör intervallskattningar för
Läs merDATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03. bli bekant med summor av stokastiska variabler.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03 Syfte: Syftet med dagens laborationen är att du skall: få förståelse
Läs mera) Facit till räkneseminarium 3
3.1 Fig 1. Sammanlagt 30 individer rekryteras till studien. Individerna randomiseras till en av de fyra studiearmarna (1: 500 mg artemisinin i kombination med piperakin, 2: 100 mg AMP1050 i kombination
Läs merDatorlaboration 1 Deskriptiv statistik med hjälp av MS Excel
ANVISNINGAR Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel Detta häfte innehåller kortfattade anvisningar om hur ni använder Excel under denna laboration. Be om hjälp när/om ni tycker att
Läs merTMS136. Föreläsning 13
TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra
Läs merMatematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT Laboration P3-P4. Statistiska test
Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 HT-2009 Laboration P3-P4 Statistiska test MH:231 Grupp A: Tisdag 17/11-09, 8.15-10.00 och Måndag 23/11-09, 8.15-10.00 Grupp B: Tisdag
Läs merFöreläsning G60 Statistiska metoder
Föreläsning 5 Statistiska metoder 1 Dagens föreläsning o Konfidensintervall För andelar För medelvärden Vid jämförelser o Den statistiska felmarginalen o Stickprovsstorlek 2 Introduktion När man beräknar
Läs merNär man vill definiera en matris i MATLAB kan man skriva på flera olika sätt.
"!$#"%'&)(*,&.-0/ 177 Syftet med denna övning är att ge en introduktion till hur man arbetar med programsystemet MATLAB så att du kan använda det i andra kurser. Det blir således inga matematiska djupdykningar,
Läs merHypotestestning och repetition
Hypotestestning och repetition Statistisk inferens Vid inferens använder man urvalet för att uttala sig om populationen Centralmått Medelvärde: x= Σx i / n Median Typvärde Spridningsmått Används för att
Läs merDatorövning 1: Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF45/MASB03: MATEMATISK STATISTIK, 9 HP, VT-18 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och
Läs merF22, Icke-parametriska metoder.
Icke-parametriska metoder F22, Icke-parametriska metoder. Christian Tallberg Statistiska institutionen Stockholms universitet Tidigare när vi utfört inferens, dvs utifrån stickprov gjort konfidensintervall
Läs merLaboration 3: Parameterskattning och Fördelningsanpassning
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3 MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 3: Parameterskattning och Fördelningsanpassning 1 Syfte Syftet
Läs merThomas Önskog 28/
Föreläsning 0 Thomas Önskog 8/ 07 Konfidensintervall På förra föreläsningen undersökte vi hur vi från ett stickprov x,, x n från en fördelning med okända parametrar kan uppskatta parametrarnas värden Detta
Läs merMatematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg. Laboration 1. Simulering
Matematikcentrum (7) Matematisk Statistik Lunds Universitet Per-Erik Isberg Laboration Simulering HT 006 Introduktion Syftet med laborationen är dels att vi skall bekanta oss med lite av de olika funktioner
Läs merLaboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E JANUARI 2018 KL 14.00 19.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling
Läs merLaboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 3 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla
Läs mer9. Konfidensintervall vid normalfördelning
TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag
Läs merLaboration 1: Beskrivande statistik
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 1: Beskrivande statistik 1 Syfte Syftet med den här laborationen
Läs merDatorövning 2 Betingad fördelning och Centrala gränsvärdessatsen
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, HT-16 Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen Syftet med den här laborationen
Läs mer8 Inferens om väntevärdet (och variansen) av en fördelning
8 Inferens om väntevärdet (och variansen) av en fördelning 8. Skattning av µ och Students T-fördelning Om σ är känd, kan man använda statistikan X µ σ/ n för att hitta konfidensintervall för µ. Om σ inte
Läs merParade och oparade test
Parade och oparade test Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning: möjliga jämförelser Jämförelser mot ett
Läs merF9 Konfidensintervall
1/16 F9 Konfidensintervall Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 18/2 2013 2/16 Kursinformation och repetition Första inlämningsuppgiften rättas nu i veckan. För att
Läs merMVE051/MSG Föreläsning 7
MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel
Läs merFöreläsning 4: Konfidensintervall (forts.)
Föreläsning 4: Konfidensintervall forts. Johan Thim johan.thim@liu.se 3 september 8 Skillnad mellan parametrar Vi kommer nu fortsätta med att konstruera konfidensintervall och vi kommer betrakta lite olika
Läs merTentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:
Läs merEn introduktion till och första övning i @Risk5 for Excel
LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg / Lars Wahlgren VT2012 En introduktion till och första övning i @Risk5 for Excel Vi har redan under kursen stiftat bekantskap med Minitab
Läs mer1 Syfte. 2 Förberedelseuppgifter DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-03
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR L, FMS 0, HT-0! "$&%')(+*,-./01.02% 1 Syfte Syftet med den här laborationen är att du ska bli
Läs merHistogram, pivottabeller och tabell med beskrivande statistik i Excel
Histogram, pivottabeller och tabell med beskrivande statistik i Excel 1 Histogram är bra för att dem på ett visuellt sätt ger oss mycket information. Att göra ett histogram i Excel är dock rätt så bökigt.
Läs merDATORÖVNING 5: SANNOLIKHETSFÖRDELNINGAR FÖR
DATORÖVNING 5: SANNOLIKHETSFÖRDELNINGAR FÖR STICKPROVSMEDELVÄRDEN I denna datorövning ska du använda Minitab för att slumpmässigt dra ett mindre antal observationer från ett större antal, och studera hur
Läs merMatriser och vektorer i Matlab
CTH/GU LABORATION 2 TMV157-2014/2015 Matematiska vetenskaper Matriser och vektorer i Matlab 1 Inledning Först skall vi se lite på matriser, vilket är den grundläggande datatypen i Matlab, sedan skall vi
Läs merUppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln
Matlab-föreläsning (4), 10 september, 015 Innehåll m-filer (script) - fortsättning från föreläsning 1 In- och utmatning Sekvenser, vektorer och matriser Upprepning med for-slingor (inledning) Matlab-script
Läs merLaboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Läs merSF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)
SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012
Läs merF8 Skattningar. Måns Thulin. Uppsala universitet Statistik för ingenjörer 14/ /17
1/17 F8 Skattningar Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 14/2 2013 Inledande exempel: kullager Antag att diametern på kullager av en viss typ är normalfördelad N(µ,
Läs merBetrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa.
Betrakta kopparutbytet från malm från en viss gruva. Anta att budgeten för utbytet är beräknad på att kopparhalten ligger på 70 %. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten
Läs merDemonstration av laboration 2, SF1901
KTH 29 November 2017 Laboration 2 Målet med dagens föreläsning är att repetera några viktiga begrepp från kursen och illustrera dem med hjälp av MATLAB. Laboration 2 har följande delar Fördelningsfunktion
Läs merI den här datorövningen ser vi hur R kan utnyttjas för att kontrollera modellantaganden och beräkna konfidensintervall.
UPPSALA UNIVERSITET Matematiska institutionen Måns Thulin Statistik för ingenjörer 1MS008 VT 2011 DATORÖVNING 2: SKATTNINGAR OCH KONFIDENSINTERVALL 1 Inledning I den här datorövningen ser vi hur R kan
Läs merBild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II
Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I
Läs merTentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341, STN2) 213-1-11 kl 14 18 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd
Läs merArbeta med normalfördelningar
Arbeta med normalfördelningar I en större undersökning om hur kvinnors längd gjorde man undersökning hos kvinnor i ett viss åldersintervall. Man drog sedan ett slumpmässigt urval på 2000 kvinnor och resultatet
Läs merFÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik
Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende
Läs merSTOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik Anders Björkström
STOCKHOLMS UNIVERSITET 2001-10-22 MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik Anders Björkström GRUNDLÄGGANDE MATLAB-TRÄNING för den som aldrig har arbetat med Matlab förut A. Matlabs allmänna
Läs merLösningar till tentamensskrivning för kursen Linjära statistiska modeller. 14 januari
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Lösningar till tentamensskrivning för kursen Linjära statistiska modeller 14 januari 2010 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se
Läs merDatorlaboration 7. Simuleringsbaserade tekniker
Datorlaboration 7 Simuleringsbaserade tekniker 2. DATORLABORATION 7 Under denna laboration ska ni få prova några enklare datorbaserade statistiska tester. Vi använder PopTools - en så kallad "add-in" till
Läs merF14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva
Stat. teori gk, ht 006, JW F14 HYPOTESPRÖVNING (NCT 10., 10.4-10.5, 11.5) Hypotesprövning för en proportion Med hjälp av data från ett stickprov vill vi pröva H 0 : P = P 0 mot någon av H 1 : P P 0 ; H
Läs merLaboration 4 Statistiska test
Matematikcentrum Matematisk statistik Lunds universitet MASB11 HT14, lp2 Laboration 4 Statistiska test 2015-01-09 Del I: Styrkefunktion Del II: Standardtest Syftet med laborationen är att ni ska bekanta
Läs merMålet för D3 är att studenterna ska kunna följande: Dra slumptal från olika sannolikhetsfördelningar med hjälp av SAS
Datorövning 3 Statistisk teori med tillämpningar Simulering i SAS Syfte Att simulera data är en metod som ofta används inom forskning inom ett stort antal ämnen, exempelvis nationalekonomi, fysik, miljövetenskap
Läs merLaboration 4 Statistiska test Del I: Standardtest Del II: Styrkefubktion
Matematikcentrum Matematisk statistik Lunds universitet MASB11 VT15, lp3 Laboration 4 Statistiska test 2015-03-06 Del I: Standardtest Del II: Styrkefubktion Syftet med laborationen är att ni ska bekanta
Läs merSF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski
SF1901: Sannolikhetslära och statistik Föreläsning 10. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 18.02.2016 Jan Grandell & Timo Koski Matematisk statistik 18.02.2016
Läs merKomponentvisa operationer,.-notation Multiplikation (*), division (/) och upphöj till (ˆ) av vektorer följer vanliga vektoralgebraiska
Matlab-föreläsning 3 (4), 17 september, 2015 Innehåll Sekvenser (från förra föreläsningen) Upprepning med for-slingor och while-slingor Villkorssatser med if - then -else - Logik Sekvenser - repetion från
Läs merMatriser och Inbyggda funktioner i Matlab
Matematiska vetenskaper 2010/2011 Matriser och Inbyggda funktioner i Matlab 1 Inledning Vi skall denna vecka se på matriser och funktioner som är inbyggda i Matlab, dels (elementära) matematiska funktioner
Läs merIntroduktion till Matlab
Introduktion till Matlab Inledande matematik, I1, ht10 1 Inledning Detta är en koncis beskrivning av de viktigaste delarna av Matlab. Till en början är det enkla beräkningar och grafik som intresserar
Läs mer