Tentamen den 9 januari 2018 Datorarkitekturer med operativsystem (EITF60)
|
|
- Jonathan Ström
- för 5 år sedan
- Visningar:
Transkript
1 Lunds Universitet LTH Tentamen den 9 januari 2018 Datorarkitekturer med operativsystem (EITF60) Skrivtid: Tillåtna hjälpmedel: Inga. Maximalt antal poäng: 50 poäng För betyg 3 krävs 20 poäng För betyg 4 krävs 30 poäng För betyg 5 krävs 40 poäng Alla lösa blad skall vara samlade i omslagsarket. Inlämnade uppgifter skall vara försedda med uppgiftens nummer. Lösningarna skrivs in i nummerordning. Kryssa för lösta uppgifter och ange antalet inlämnade blad. 1
2 Uppgift 1. Totalt 5 poäng. Antag att dator A har en klockcykeltid (clock cycle time) på 250 ps och en CPI på 2.0 för något program, och att dator B har en klockcykeltid på 500 ps and CPI of 1.2 för samma program. Vilken dator är snabbast? Hur mycket snabbare är den? Svar: se sida 36 i kursboken. 2
3 Uppgift 2. Totalt 2 poäng. Följande är givet: Processorn använder direktmappat cache Dataord är på 8 bitar Minnet är byte adresserat En fysisk adress är 20 bitar En tag i cacheminnet är 11 bitar Varje block/cacherad består av 16 bytes Hur många block finns i cacheminnet? Svar: Det är givet att 20 bitar används för adress och av dessa är 11 bitar TAG. Alltså är det 9 bitar som är kvar för index och offset. Vi kan också bestämma antal bitar i offset eftersom det är givet att dataord är på 8 bitar, minnet är byteadresserbart och varje block/cacherad är på 16 bytes. Eftersom varje block/cacherad är på 16 bytes och det är byteadresserat behövs 4 bitar för offset. Det gör att det är ( =)5 bitar kvar till index. Vi vet att 5 bitar kan adressera: 2^5=32 så är det 32 block/cacherader i cacheminnet. 3
4 Uppgift 3. Totalt 4 poäng. Följande är givet: Antag ett 16-way set-associative cache Cacheminnet består av 2Mbytes (2^21 bytes) Dataord (word) är 8 bitar Systemet är byteadresserat Block/cacherad storlek är 32 dataord (words) Den fysiska adressen är på 64 bitar. Hur är de 64 bitarna fördelade på tag, index och offset? Svar: Vi börjar med att räkna ut bitar för offset. Det är 32 dataord per block/cacherad, vilket gör att 5 bitar behövs (2^5=32). Alltså är offset=5. För att beräkna index så vet vi att cacheminnet är på 2Mbytes (2^21 bytes) och vi vet att varje block/cacherad består av 32 (2^5) dataord som vardera är 8 (1 byte) bitar. Varje block/cacherad består alltså av 32 bytes, så antal block blir: 2^21/2^5=2^16. Eftersom minnet är 16-way set-associative grupperas blocken i set om 16. Antal set blir: 2^16/16=2^16/2^4=2^12. Det behövs alltså 12 bitar för index. För att räkna ut antal bitar för tag så vet vi att fysiska adressen är 64 bitar. Alltså blir tag=bitar för fysisk adress offset index= =47 bitar. För att summera: Tag: 47 bitar, index: 12 bitar, offset: 5 bitar. 4
5 Uppgift 4. Totalt 3 poäng. Följande är givet: Dataord är på 64 bitar Minnet är byte adresserat En fysisk adress är 32 bitar En tag i cacheminnet är 11 bitar Varje block/cacherad består av 16 bytes Hur många block finns i cacheminnet? Svar: se sida 388 i kursboken 5
6 Uppgift 5. Totalt 5 poäng. Medeltid (average) för läsning/skrivning (access) i ett datorsystem med ett L1 cache är 2.4 klockcykler. Om data är tillgängligt (hit), kostar det 1 klockcykel. Om data inte är tillgängligt (miss) kostar det 80 klockcykler, eftersom data måste hämtas från primärminnet. För att förbättra medeltid för minnesaccesser (average memory access time) med 65% genom att använda ett L2 cache. Detta L2 cacheminne har accesstid på 6 klockcykler. Ett L2 cacheminne påverkar inte access eller hit tider för L1 och access till primärminnet kostar fortfarande 80 klockcykler. För att uppnå 65% förbättring av medeltid för minnesaccesser, vilken hit rate krävs i L2 (visa uttryck och förenkla så långt det går)? Svar: Medeltid för minnesaccesser består av två fall: hit tid och miss tid som vi tecknar: hit tid + miss rate * miss penalty Om medeltid för accesser är 2.4, hit tid=1 och misstid är 80 får vi uttrycket: 2.4 = 1 + miss rate * 80. Vi räknar ut miss rate till: (2.4-1)/80=1.4/80 (1.75%) Vi vill ha en speedup på 65% så vi tecknar ett uttryck: Speedup = Tid (gammal lösning)/tid (ny lösning) Vi fyller i siffror: 1.65 = 2.4/Tid (ny lösning) och räknar ut: Tid (ny lösning) = 2.4/1.65 Vi tecknar nu uttryck för medeltid med L2: Tid(ny lösning) = Hit tid+miss rate*(l2_tid + Miss Rate (L2))*80) Med siffror: 2.4/1.65=1+1.4/80*(6+Miss rate(l2)*80) Som är: 2.4/1.65=1+1.4/80*6+1.4*Miss rate (L2) Miss rate (L2)=(2.4/ /80*6)/1.4 Hit rate (L2)=1-Miss rate(l2). Alltså måste hit rate (L2) minst vara: 1 (2.4/ /80*6)/1.4 6
7 Uppgift 6. Totalt 5 poäng. Anta en processor med 6 cores och ett program. Programmet består av: iterationer. Bortse för tid för uppstart och avslut (fokusera enbart på iterationerna) Varje iteration tar 100 klockcykler Om mer än 1 core används tillkommer overhead för kommunikation mellan cores. Om 2 cores används tillkommer 10 klockcykler per iteration, om 3 cores används tillkommer 20 klockcykler per iteration, o s v. Teckna ett uttryck som kan bestämma hur många cores som ska användas för att snabbast exekvera programmet. Svar: Ett uttryck för exekveringstiden består av tid för loopar och tid för kommunikation mellan cores, d v s T= Tkom + Tloop där Tkom beror på hur många cores X som används och hur många iterationer N som görs. För X>1 kostar varje loop 10 klockcykler. Detta gör: Tkom= N*(X-1)*10. När det gäller Tloop så beror det på N och X och tid per loop. Uttryck för Tloop blir=100*n/x. Det totala uttrycket blir: T=Tkom+Tloop=N*(X-1)*10+100*N/X 7
8 Uppgift 7. Totalt 5 poäng. Enligt Amdahls lag, vilken speed-up fås om ett program kan köras parallellt till 80% och antalet beräkningsenheter är 4? Svar: Låt Ts vara tiden som krävs för att exekvera programmet på en beräkningsenhet och Tp vara tiden som krävs för att exekvera programmet på 4 beräkningsenheter. Speed-up ges av: Ts/Tp. Amdahls lag är: Tp=f*Ts+(1-f)*Ts/p där f är del av program som måste exekveras sekventiellt och p är antal beräkningsenheter. I uppgiften ges att 1-f=80%, vilket för att f=20%=0.2 och att antal beräkningsenheter p är 4. Vi räknar ut Tp= f*ts+(1- f)*ts/p=0.2*ts+0.8*ts/4. Vi är intresserade av Ts/Tp, vilket blir: Ts/(f*Ts+(1-f)*Ts/p)=1/(f+(1- f)/p)=1/( /4)=1/( )=1/0.4=2.5 Enligt Amdahls lag, hur parallellt måste ett program minst göras för att få en speed-up (Ts/Tp) på 2 när antalet beräkningsenheter är 4? Svar: Givet är att Amdahls lag är: Tp=f*Ts+(1-f)*Ts/p och vi vet att p=4 och Ts/Tp=2. Vi ska nu räkna ut f. Eftersom Ts/Tp=2, så är Tp/Ts=1/2. Eftersom Tp=f*Ts+(1-f)*Ts/p så är Tp/Ts=f+(1- f)/p. Vi känner Tp/Ts och p och får: 1/2=f+(1-f)/4 vilket gör att f=1/3. Enligt Amdahls lag, hur mycket speed-up är teoretiskt möjlig att få om ett program kan köras parallellt till 80%? Svar: Givet är att Amdahls lag är: Tp=f*Ts+(1-f)*Ts/p och att 1- f=80%, f=0.2. Detta ger: Tp=0.2*Ts+0.8*Ts/p. Eftersom speedup är: Ts/Tp, får vi att Ts/Tp=1/( /p). Vi ökar nu på (vi låter p gå mot oändligheten) och får då att termen 0.8/p går mot 0. Uttrycket för Ts/Tp blir 1/0.2, vilket är 5. 8
9 Uppgift 8. Totalt 2 poäng. Tid för de olika stegen i en processor visas nedan: IF DI EX MEM WB 250ps 350ps 150ps 300ps 200ps Om processorn är icke-pipelinad (non-pipelined), vad är klockcykeltiden? Om processorn är pipelinad (pipelined), vad är klockcykeltiden? Svar: Se sidan 275 i kursboken 9
10 Uppgift 9. Totalt 10 poäng. Antag ett datorsystem som använder virtuelltminne och cacheminne. Det virtuellaminnet använder sig av en TLB och sidtabeller. Ett antal alternativ kan uppkomma, markerade som a-f i tabellen nedan. Tabellen läses enligt följande. I uppgift a gäller att det vid en minnesaccess blir det en hit i TLB, en hit i sidtabell och en miss i cache. För varje alternativ nedan (a-f) diskutera vilka som är möjliga och förklara varför/varför inte. Uppgift TLB Sidtabell Cache a hit hit miss b miss hit hit c miss hit miss d miss miss miss e hit miss miss f hit miss hit g miss miss hit Svar: se sida 443 i kursboken. 10
11 Uppgift 10 Totalt 10 poäng. Följande är givet för ett datorsystem: en miss rate på 2% i instruktions cache en miss rate på 4 % i data cache processor har CPI=2 när det inte inträffar några missar, dvs bara cache hits av alla instruktioner som exekveras så är 36% instruktioner med läsning/skrivning. en cache miss har en miss penalty på 100 cykler. Om 100 instruktioner exekveras, vad är den förväntade tiden för att: hantera missar i instruktionscachen? hantera missar i datacachen? hantera missar i både instruktionscachen och datacachen? exekvera instruktionerna och hantera missar i både instruktionscachen och datacachen? Svar: se sida 410 i kursboken. 11
Tentamen den 17 mars 2016 Datorteknik, EIT070
Lunds Universitet LTH Tentamen den 17 mars 2016 Datorteknik, EIT070 Skrivtid: 14.00-19.00 Tillåtna hjälpmedel: Inga. Maximalt antal poäng: 50 poäng För betyg 3 krävs 20 poäng För betyg 4 krävs 30 poäng
Läs merTentamen den 12 januari 2017 Datorarkitektur med operativsystem, EDT621
Lunds Universitet LTH Tentamen den 12 januari 2017 Datorarkitektur med operativsystem, EDT621 Skrivtid: 8.00-13.00 Inga tillåtna hjälpmedel Uppgifterna i tentamen ger maximalt 60 poäng. Uppgifterna är
Läs merTentamen den 18 mars svar Datorteknik, EIT070
Lunds Universitet LTH Tentamen den 18 mars 2015 - svar Datorteknik, EIT070 Skrivtid: 14.00-19.00 Tillåtna hjälpmedel: Inga. Maximalt antal poäng: 50 poäng För betyg 3 krävs 20 poäng För betyg 4 krävs 30
Läs merTentamen den 14 januari 2015 Datorarkitekturer med operativsystem, EDT621, 7,5 poäng
Lunds Universitet LTH Ingenjörshögskolan, Helsingborg Tentamen den 14 januari 2015 Datorarkitekturer med operativsystem, EDT621, 7,5 poäng Skrivtid: 08.00-13.00 Tillåtna hjälpmedel: Inga. Maximalt antal
Läs merSvar till tentamen den 16 december 2013 Datorarkitekturer med operativsystem, EDT621, 7,5 poäng
Lunds Universitet LTH Ingenjörshögskolan, Helsingborg Svar till tentamen den 16 december 2013 Datorarkitekturer med operativsystem, EDT621, 7,5 poäng Skrivtid: 08.00-13.00 Tillåtna hjälpmedel: Inga. Maximalt
Läs merTentamen den 14 januari 2016 Datorarkitektur med operativsystem, EDT621
Lunds Universitet LTH Tentamen den 14 januari 2016 Datorarkitektur med operativsystem, EDT621 Skrivtid: 08.00-13.00 Tillåtna hjälpmedel: Inga. Maximalt antal poäng: 50 poäng För betyg 3 krävs 20 poäng
Läs merExempeltentamen Datorteknik, EIT070,
Lunds Universitet LTH Exempeltentamen Datorteknik, EIT070, Skrivtid: xx.00-xx.00 Tillåtna hjälpmedel: Inga. Maximalt antal poäng: 50 poäng För betyg 3 krävs 20 poäng För betyg 4 krävs 30 poäng För betyg
Läs merMinnet från processorns sida Datorteknik
Minnet från processorns sida Datorteknik ERIK LARSSON Processorn ger kommandon/instruktioner med en adress och förväntar sig data. Exempel: READ(ADR) -> DATA Fysisk adress Logisk adress READ 00001000 READ
Läs merCE_O5. Cacheminne. Hemlaboration 2.
IS1500 Exempelsamling till övning CE_O5, 2014 CE_O5. Cacheminne. Hemlaboration 2. 5.1. Medeltidshistoria Diskutera förloppet då CPU:n gör en läsreferens i huvudminnet dvs information kopieras från huvudminne
Läs merFöreläsningsanteckningar 5. Cacheminnen
Föreläsningsanteckningar 5. Cacheminnen Olle Seger 2012 Anders Nilsson 2016 1 Inledning Bakgrunden till att cacheminnen behövs för nästan alla datorer är enkel. Vi kan kallt räkna med att processorn är
Läs merCE_O8. Cacheminne. Hemlaboration 2.
IS1200 Lösningsförslag till övning CE_O8, 2015 CE_O8. Cacheminne. Hemlaboration 2. 8.1. Medeltidshistoria Diskutera förloppet då CPU:n gör en läsreferens i huvudminnet dvs information kopieras från huvudminne
Läs merDatorteknik ERIK LARSSON
Datorteknik ERIK LARSSON Laborationer Gå bara på tillfällen där du är anmäld. Moment svarar mot 1.5hp, dvs 40 timmar arbete Schemalagd tid: 4*2 (lektioner)+4*4(laborationer)=20 timmar Material: Finns på
Läs merSnapdragon 810: Cacheminnet
Snapdragon 810: Cacheminnet Daniel Eckerström dat14dec@student.lu.se Sammanfattnig Snapdragon 810 innehåller två olika processor arkitekturer, ARM Cortex-A53 samt Cortex-A57. Detta för att kunna på ett
Läs merTentamen i Digitala system - EITA15 15hp varav denna tentamen 4,5hp
Tentamen i Digitala system EITA5 5hp varav denna tentamen 4,5hp Institutionen för elektro och informationsteknik Campus Helsingborg, LTH 289 8. 3. (förlängd 4.) Uppgifterna i tentamen ger totalt 6 poäng.
Läs merEn processor kan ha en klockfrekvens på flera GHz. Det går alltså a9 exekvera en instruk=on väldigt for, givet a9 instruk=onen finns i processorn.
1 2 En processor kan ha en klockfrekvens på flera GHz. Det går alltså a9 exekvera en instruk=on väldigt for, givet a9 instruk=onen finns i processorn. Instruk=onerna =ll programmet som exekveras finns
Läs merDatorarkitekturer med Operativsystem
Lunds Tekniska Högskola Campus Helsingborg Datorarkitekturer med Operativsystem EDT621 Rapport Cacheminneshantering för ARM3-processorer 7 december 2015 Pierre Aupeix dat11pau@student.lu.se 1 Abstract
Läs merDatorarkitekturer med operativsystem ERIK LARSSON
Datorarkitekturer med operativsystem ERIK LARSSON Översikt Minnets komponenter Minneshierarkin Cacheminne Paging Virtuellt minne Minnets komponenter Enhet för indata Primärminne (CPU) Enhet för utdata
Läs merDatorarkitekturer med operativsystem ERIK LARSSON
Datorarkitekturer med operativsystem ERIK LARSSON Dator Primärminne Instruktioner och data Data/instruktioner Kontroll Central processing unit (CPU) Fetch instruction Execute instruction Programexekvering
Läs merDigitala System: Datorteknik ERIK LARSSON
Digitala System: Datorteknik ERIK LARSSON Översikt Minnets komponenter Minneshierarkin Cacheminne Paging Virtuellt minne Minnets komponenter Enhet för indata Primärminne (CPU) Enhet för utdata Sekundärminne
Läs merMulti-ported cache En rapport om några lösningar till att få flera minnesaccesser simultant.
Multi-ported cache En rapport om några lösningar till att få flera minnesaccesser simultant. Sammanfattning När processorns klockhastighet ökar medför det en ökning av instruktioner vilket såklart ökar
Läs merFilsystem - Inode. Datorteknik. Minnets komponenter. Programexekvering. Enhet för indata. Enhet för utdata CPU. Primärminne.
Datorteknik Filsystem - Inode ERIK LARSSON ABBA: Dancing Queen Minnets komponenter Programexekvering Enhet för indata CPU Enhet för utdata Program i högnivåspråk.. Z:=(Y+X)*3. Kompilator Exekverbart program
Läs merDigitala System: Datorteknik ERIK LARSSON
Digitala System: Datorteknik ERIK LARSSON Huvudled (H) Trafikljus för övergångsställe Trafikljus för huvudled (H) Trafikljus: Sväng vänster (H->T) Gående - vänta Trafikljus för tvärgata (T) Tvärgata (T)
Läs merSVAR TILL TENTAMEN I DATORSYSTEM, HT2013
Rahim Rahmani (rahim@dsv.su.se) Division of SAS Department of Computer and Systems Sciences Stockholm University SVAR TILL TENTAMEN I DATORSYSTEM, HT2013 Tentamensdatum: 2013-10-30 Tentamen består av totalt
Läs merDatorteknik ERIK LARSSON
Datorteknik ERIK LARSSON Så här långt. FÖ2 RISC/CISC FÖ1 Primärminne Instruktioner och data Address Instruction 00001000 0000101110001011 00001001 0001101110000011 00001010 0010100000011011 00001011 0001001110010011
Läs merDatorsystem. Tentamen 2011-10-29
Datorsystem Tentamen 2011-10-29 Instruktioner Samtliga svar skall vara motiverade och läsbara. Eventuella tabeller och beräkningar som används för att nå svaret ska också finnas med i lösningen. Ett svar
Läs merUppgift 1: a) u= a c + a bc+ ab d +b cd
Uppgift 1: a) u= a c a bc ab d b cd b) a b c d u 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1
Läs merJämförelse av skrivtekniker till cacheminne
Jämförelse av skrivtekniker till cacheminne 1 Innehåll 1. Sammanfattning 2. Inledning 3. Diskussion 4. Referenslista 1. Sammanfattning En rapport innehållande jämförelser av olika skrivtekniker till minnen
Läs merPipelining i Intel 80486
Lunds Universitet Pipelining i Intel 80486 EITF60 Datorarkitekturer med operativsystem Martin Wiezell 2017-12-04 Abstract This paper gives a brief description of the instruction pipeline of the Intel 80486
Läs merDatorsystemteknik för E/D
Tentamen i kursen Datorsystemteknik (EDA330 för D och EDA370 för E) 19/8 2000 1(8) Tentamen i kursen Datorsystemteknik (EDA330 för D och EDA370 för E) Datorsystemteknik för E/D 19/8 2000 Tentamensdatum:
Läs merDatorteknik ERIK LARSSON
Datorteknik ERIK LARSSON Programexekvering (1) Hämta instruktion på 00001000 (där PC pekar) Fetch (2) Flytta instruktionen 0000101110001011 till CPU (3) Avkoda instruktionen: 00001 MOVE, 01110001 Adress,
Läs merMESI i Intel Core 2 Duo
MESI i Intel Core 2 Duo Sammanfattning Denna rapport beskriver en processor (Intel Core 2 Duo) vars cache coherence protokoll är MESI. Rapporten beskriver hur processorn är uppbyggd, hur många kärnor den
Läs merSVAR TILL TENTAMEN I DATORSYSTEM, VT2013
Rahim Rahmani (rahim@dsv.su.se) Division of ACT Department of Computer and Systems Sciences Stockholm University SVAR TILL TENTAMEN I DATORSYSTEM, VT2013 Tentamensdatum: 2013-03-21 Tentamen består av totalt
Läs merDatorsystemteknik D. Lösningar till tentamen i kursen EDA330 14/1 2000
1(6) Lösningar till tentamen i kursen EDA330 Datorsystemteknik D 14/1 2000 Följande är skisser till lösningar av uppgifterna. Full poäng på en uppgift kräver i de flesta fall en något fylligare motivering.
Läs merTSEA28 Datorteknik Y (och U)
TSEA8 Datorteknik Y (och U), föreläsning, Kent Palmkvist 8-4-6 TSEA8 Datorteknik Y (och U) Föreläsning Kent Palmkvist, ISY Praktiska kommentarer Laboration 4 tips Sorteringsalgoritm använder A > B i flödesschemat
Läs merDugga 1 status 41 godkända 39 ej godkända ERIK LARSSON
Datorteknik Dugga 1 status 41 godkända 39 ej godkända ERIK LARSSON e.g. Harvard or Boston Home About Rankings Survey Universities GRUP Initiative Conference Study in China Advertise with Us Home>> Global
Läs merDatorteknik ERIK LARSSON
Datorteknik ERIK LARSSON Fetch-Execute Utan pipelining: Tid: 1 2 3 4 5 6 Instruktion 1 Instruktion 2 Instruktion 3 Fetch Execute Fetch Execute Fetch Execute Med pipelining: Tid: 1 2 3 4 Instruktion 1 Instruktion
Läs merParallellism i CDC 7600, pipelinens ursprung
Lunds universitet Parallellism i CDC 7600, pipelinens ursprung Henrik Norrman EITF60 Datorarkitekturer med operativsystem Kursansvarig: Erik Larsson 4 december 2017 INNEHÅLL Parallellism i CDC 7600 Innehåll
Läs merDatorarkitekturer med operativsystem ERIK LARSSON
Datorarkitekturer med operativsystem ERIK LARSSON Pipelining Tid SSA P Pipelining FI DI CO FO EI WO FI DI CO FO EI WO FI DI CO FO EI WO FI DI CO FO EI WO Superscalar pipelining FI DI CO FO EI WO FI DI
Läs merHF0010. Introduktionskurs i datateknik 1,5 hp
HF0010 Introduktionskurs i datateknik 1,5 hp Välkommna - till KTH, Haninge, Datateknik, kursen och till första steget mot att bli programmerare! Er lärare och kursansvarig: Nicklas Brandefelt, bfelt@kth.se
Läs merNärliggande allokering Datorteknik
Närliggande allokering Datorteknik ERIK LARSSON TID Problem: Minnet blir fragmenterat Paging Demand paging Sida (S) Dela upp primärminnet i ramar (frames) och program i sidor (pages) Program 0 RD.0 1 RD.1
Läs merTentamen i Digitala system - EDI610 15hp varav denna tentamen 4,5hp
Tentamen i Digitala system - EDI610 15hp varav denna tentamen 4,5hp Institutionen för elektro- och informationsteknik Campus Helsingborg, LTH 2016-12-22 8.00-13.00 Uppgifterna i tentamen ger totalt 60
Läs merHantering av hazards i pipelines
Datorarkitektur med operativsystem Hantering av hazards i pipelines Lisa Arvidsson IDA2 Inlämningsdatum: 2018-12-05 Abstract En processor som använder pipelining kan exekvera ett flertal instruktioner
Läs merDatorsystem 2 CPU. Förra gången: Datorns historia Denna gång: Byggstenar i en dators arkitektur. Visning av Akka (för de som är intresserade)
Datorsystem 2 CPU Förra gången: Datorns historia Denna gång: Byggstenar i en dators arkitektur CPU Visning av Akka (för de som är intresserade) En dators arkitektur På en lägre nivå kan vi ha lite olika
Läs merNågra gamla tentamensuppgifter: Minneshantering
1 Tentamen 1992-08-26 5. I ett virtuellt minne med skiva är primärminnets accesstid 1 mikrosekund, sidstorleken 1 K, skivans rotationstid 10 millisekunder, inställningstiden för skivans arm 5 millisekunder
Läs merCacheminne i en AMD Opteron Processor
Handledare: Erik Larsson Lunds Tekniska Högskola HT15 Cacheminne i en AMD Opteron Processor En rapport om cacheminne och dess struktur, i en 12 kärnig AMD Opteron Magny-Cours processor. Författare: Hamza
Läs merHemlaboration Cache Cacheminnen
IS1200 Datorteknik IS1500 Datorteknik och komponenter Hemlaboration Cache Cacheminnen 2014-12-15 Kursdeltagarens namn:.. Datum: Godkänd av (assistentens signatur):.. IS1200/IS1500 Hemlab cache: Cacheminnen
Läs merDatorsystemteknik DVGA03 Föreläsning 8
Datorsystemteknik DVGA03 Föreläsning 8 Processorns uppbyggnad Pipelining Större delen av materialet framtaget av :Jan Eric Larsson, Mats Brorsson och Mirec Novak IT-inst LTH Innehåll Repetition av instruktionsformat
Läs merOmtentamen i CDT204 - Datorarkitektur
Omtentamen i CDT204 - Datorarkitektur 2012-11-05 Skrivtid: 08.10-12.30 Hjälpmedel: Miniräknare och valfritt skriftligt (ej digitalt) material. Lärare: Stefan Bygde, kan nås på 070-619 52 83. Tentamen är
Läs merDigitalteknik och Datorarkitektur 5hp
Digitalteknik och Datorarkitektur 5hp Minnes-hierarkier och Cache 12 maj 2008 karl.marklund@it.uu.se issa saker använder vi ofta Dessa saker vill vi ha nära till hands Storleken har betydelse Litet är
Läs merTentamen i Digitala system - EITA15 15hp varav denna tentamen 4,5hp
Tentamen i Digitala system - EITA15 15hp varav denna tentamen 4,5hp Institutionen för elektro- och informationsteknik Campus Helsingborg, LTH 2018-01-09 8.00-13.00 (förlängd 14.00) Uppgifterna i tentamen
Läs merLösningar till valda övningsuppgifter i. Computer Organization & Design The Hardware / Software Interface (2nd ed.)
Lösningar till valda övningsuppgifter i Computer Organization & Design The Hardware / Software Interface (2nd ed.) David A. Patterson & John L. Hennessy Lösningarna gjorda av: Jonas Alowersson, Mats Brorsson,
Läs merLösningar till tentamen i EIT070 Datorteknik
Lösningar till tentamen i EIT070 Datorteknik Institutionen för Elektro- och informationsteknik, LTH Onsdagen den 13 mars 2013, klockan 14:00 19:00 i Vic 2 A-D, 3 A-C. Tillåtna hjälpmedel: på tentan utdelad
Läs merLunds Tekniska Högskola Datorarkitektur med operativsystem EITF60. Superscalar vs VLIW. Cornelia Kloth IDA2. Inlämningsdatum:
Lunds Tekniska Högskola Datorarkitektur med operativsystem EITF60 Superscalar vs VLIW Cornelia Kloth IDA2 Inlämningsdatum: 2018-12-05 Abstract Rapporten handlar om två tekniker inom multiple issue processorer
Läs merTSEA28 Datorteknik Y (och U)
TSEA8 Datorteknik Y (och U) Föreläsning Kent Palmkvi, ISY TSEA8 Datorteknik Y (och U), föreläsning, Kent Palmkvi 7-4- Dagens föreläsning Latens/genomrömning Minneyper Läsminne (ROM) Läs och skriv minnen
Läs merEn Von Neumann-arkitektur ( Von Neumann-principen i föreläsning 1) innebär:
Lösningsförslag för 725G45-tentan 3/11-10 1. Vad menas med Von Neumann-arkitektur? (2p) En Von Neumann-arkitektur ( Von Neumann-principen i föreläsning 1) innebär: Data och instruktioner lagras i samma
Läs merFetch-Execute. Datorteknik. Pipelining. Pipeline diagram (vid en viss tidpunkt)
Datorteknik ERIK LRSSON Fetch- Utan pipelining: Tid: 1 2 3 4 5 6 Instruktion 1 Instruktion 2 Instruktion 3 Fetch Fetch Fetch Med pipelining: Tid: 1 2 3 4 Instruktion 1 Instruktion 2 Instruktion 3 Fetch
Läs merCacheminne och adressöversättning
Cacheminne och adressöversättning From: Central Processing Box 1 COMPUTERLAND 1 Virtual $00005A3C From: Central Processing Box 1 COMPUTERLAND 1 Physical $00005A3C $007B2A3C Innehåll Cacheminnen Cacheminnen
Läs merCacheminne Intel Core i7
EDT621 Datorarkitekturer med operativsystem 7,5 hp 2015-12-07 Cacheminne i Intel Core i7 Författare: Adnan Karahmetovic Handledare: Erik Larsson Innehåll 1. Inledning... 1 1.1 Syfte... 1 1.2 Frågeställning...
Läs merDatorarkitektur I. Tentamen Lördag 10 April Ekonomikum, B:154, klockan 09:00 14:00. Följande gäller: Skrivningstid: Fråga
Datorarkitektur I Tentamen Lördag 10 April 2010 Ekonomikum, B:154, klockan 09:00 14:00 Examinator: Karl Marklund 0704 73 32 17 karl.marklund@it.uu.se Tillåtna hjälpmedel: Penna Radergummi Linjal Följande
Läs merHemlaboration Cache Cacheminnen
IS1200 Datorteknik IS1500 Datorteknik och komponenter Hemlaboration Cache Cacheminnen 2011-08-30 Kursdeltagarens namn:.. Datum: Godkänd av (assistentens signatur):.. IS1200/IS1500 Hemlab cache: Cacheminnen
Läs merFöreläsning 5 1 CPI Sammanfattning pipelining Cacheminnen
Föreläsning 5 1 CPI Sammanfattning pipelining Cacheminnen associativt minne som cache associativt minne som BPT direkt-mappad cache flervägscache (2,4) I/D-cache pmem 4 1 Så här långt är pipelining enkelt!
Läs merLösningsförslag till Tenta i Mikrodator
Lösningsförslag till Tenta i Mikrodator 050113 1. Vilka register finns det i processorn och vad används dessa till? D0 till D7: Dataregister som används för beräkningar A0 till A6: Adressregister som används
Läs merDatorsystem. Tentamen
Datorsystem Tentamen 2012-03-17 Instruktioner Samtliga svar skall vara motiverade och läsbara. Eventuella tabeller, illustrationer och beräkningar som används för att nå svaret ska också finnas med i lösningen.
Läs merDatorarkitekturer med operativsystem ERIK LARSSON
Datorarkitekturer med operativsystem ERIK LARSSON Parallellberäkning Konstant behov av högre prestanda Prestanda har uppnåtts genom: Utveckling inom halvledarteknik Tekniker som:» Cacheminne» Flera bussar»
Läs merDigitala System: Datorteknik ERIK LARSSON
Digitala System: Datorteknik ERIK LARSSON Dator Primärminne Instruktioner och data Data/instruktioner Kontroll Central processing unit (CPU) Fetch instruction Execute instruction Programexekvering (1)
Läs merTSEA28 Datorteknik Y (och U)
Praktiska kommentarer TSEA8 Datorteknik Y (och U) Föreläsning Kent Palmkvist, ISY Dagens föreläsning RISC Mer information om hur arkitekturen fungerar Begränsningar Lab extra tillfälle för redovisning
Läs merMinnets komponenter. Digitala System: Datorteknik. Programexekvering. Programexekvering. Enhet för utdata. Enhet för indata CPU.
Digitala System: Datorteknik Minnets komponenter ERIK LARSSON Enhet för indata CPU Enhet för utdata Sekundärminne Programexekvering Program i högnivåspråk.. Z:=(Y+X)*3. Kompilator Exekverbart program i
Läs merIBM POWER4, den första flerkärniga processorn och dess pipelines.
IBM POWER4, den första flerkärniga processorn och dess pipelines. 5 DECEMBER 2016 FÖRFATTARE: OSCAR STRANDMARK EXAMINATOR: ERIK LARSSON Abstract Rapporten redovisar IBM:s POWER-serie, generation ett till
Läs merOBS!! Detta är DEL 2 av tentan. För att få ut denna måste du ha lämnat in del 1. Om du inte fått ut del 1 bör du meddela skrivningsvakten. OBS!!
Sid 1 av 8 Datavetenskap Tentamen för DVG A03 Datorsystemteknik, 7,5 hp, del 2 fredag 2009-01-09 kl. 08.15-13.15 Tentamen del 2 består av 4 sidor. Ansvariga lärare: Tillåtna hjälpmedel: Kerstin Andersson
Läs merCacheminne i en Intel Core 2 Duo-processor
Peter Hesslow EDT621 Cacheminne i en Intel Core 2 Duo-processor Abstrakt Det finns många olika sätt att bygga upp ett datorminne på, och med en flerkärnig processor så blir alternativen ännu fler. Denna
Läs merEmil Kristiansson Kurs: EDT621 Delmoment: Rapport. En introduktion till Smart cache
En introduktion till Smart cache 1 Sammanfattning Syftet med den här rapporten är att ge en introduktion till tekniken smart cache för läsaren. Smart cache är en teknik som låter de olika cacheminnena
Läs merDatorarkitekturer med operativsystem ERIK LARSSON
Datorarkitekturer med operativsystem ERIK LARSSON Semantic gap Alltmer avancerade programmeringsspråk tas fram för att göra programvaruutveckling mer kraftfull Dessa programmeringsspråk (Ada, C++, Java)
Läs merDatorteknik. Föreläsning 6. Processorns uppbyggnad, pipelining. Institutionen för elektro- och informationsteknologi, LTH. Mål
Datorteknik Föreläsning 6 Processorns uppbyggnad, pipelining Mål Att du ska känna till hur processorn byggs upp Att du ska kunna de viktigaste byggstenarna i processorn Att du ska känna till begreppet
Läs merHannes Larsson - IDA 2, LTH Campus Helsingborg. NEC V R 4300i. Interlock-handling EDT621
Hannes Larsson - IDA 2, LTH Campus Helsingborg NEC V R 4300i Interlock-handling EDT621 Läsperiod 2, 2017 Innehållsförteckning s.2 - Förord s.2 - Inledning s.2 - NEC VR-4305 s.3 - Pipeline s.4 - Interlocks
Läs merEn något mer detaljerad bild av en processor. De tre delarna i processorn är: Nere 3ll vänster finns e' antal register som används för a' lagra data.
1 3 4 Antag a' processorn ska exekvera instruk3onen ADD R1, R3. När instruk3onen är exekverad så a' processorn tagit innehållet i R1 och R3 och med hjälp av ALU:n är värdena adderade och resultatet är
Läs merEn något mer detaljerad bild av en processor. De tre delarna i processorn är: Nere 3ll vänster finns e' antal register som används för a' lagra data.
1 2 3 Antag a' processorn ska exekvera instruk3onen ADD R1, R3. När instruk3onen är exekverad så a' processorn tagit innehållet i R1 och R3 och med hjälp av ALU:n är värdena adderade och resultatet är
Läs merFöreläsning 5 1 CPI. Sammanfattning pipelining Cacheminnen
Föreläsning 5 1 CPI Sammanfattning pipelining Cacheminnen associativt minne som cache associativt minne som BPT direkt-mappad cache flervägscache (2,4) I/D-cache DSP = digital signal processor PC pmem
Läs merTentamen. Datorteknik Y, TSEA28
Tentamen Datorteknik Y, TSEA28 Datum 2016-05-31 Lokal Kåra, T1, T2, U1, U15 Tid 14-18 Kurskod TSEA28 Provkod TEN1 Kursnamn Provnamn Datorteknik Y Skriftlig tentamen Institution ISY Antal frågor 6 Antal
Läs merLösningar till tentamen i EIT070 Datorteknik
Lösningar till tentamen i EIT070 Datorteknik Institutionen för Elektro- och informationsteknik, LTH Torsdagen den 13 mars 2014, klockan 14:00 19:00 i MA:10. Tillåtna hjälpmedel: på tentan utdelad formelsamling,
Läs merHyper Threading Intels implementation av SMT. Datorarkitekturer med operativsystem - EITF60. Felix Danielsson IDA2
Hyper Threading Intels implementation av SMT Datorarkitekturer med operativsystem - EITF60 Felix Danielsson IDA2 Sammanfattning Simultaneous multithreading (SMT) är en teknik som används i processorer
Läs merCache-koherens protokoll MESI och MOSI
Handledare: Erik Larsson Lunds Tekniska Högskola HT2016 Cache-koherens protokoll MESI och MOSI Författare: Adnan Mohamed Abstrakt Cache koherens protokoll hanterar cacheminnet i ett multiprocessor system,
Läs merPipelining i RISC-processorn. Joakim Lindström Institutionen för informationsbehandling Åbo Akademi E-post: jolindst@abo.fi
Pipelining i RISC-processorn Joakim Lindström Institutionen för informationsbehandling Åbo Akademi E-post: jolindst@abo.fi Innehållsförteckning 1. Inledning 2. Historia: Intel 8086 (1978) till Pentium
Läs merDatorsystemteknik för IT
Tentamen i kursen Datorsystemteknik (EDA440 för IT) 12/3 2003 1(9) Tentamen i kursen Datorsystemteknik (EDA440 för IT) Datorsystemteknik för IT 12/3 2003 Tentamensdatum: Onsdag 12/3 2003 kl. 8.45 i sal
Läs merDatorarkitekturer med operativsystem ERIK LARSSON
Datorarkitekturer med operativsystem ERIK LARSSON Personal Examinator: Erik Larsson 0462224654 Erik.Larsson@eit.lth.se (använd ämne/subject: EDT621) Dimitar Nikolov Dimitar.Nikolov@eit.lth.se Kursmoment
Läs merProcessor pipelining genom historien (Intel i9-intel i7)
Processor pipelining genom historien (Intel i9-intel i7) Besnik Redzepi Lunds Universitet Abstrakt/Sammanfattning Syftet med denna uppsats är att jämföra Intels nya generation processorer och deras pipelining.
Läs merMESI protokollet och dess derivater
LTH LUNDS TEKNISKA HÖGSKOLA MESI protokollet och dess derivater Peter Persson 2015-12-08 Sammanfattning Dagens multicore processorer använder sig av ett flertal cacheminnen. Därför behövs det metoder för
Läs merMESI-Protokollet. Richard Elvhammar. Lund Universitet 4/12-16
MESI-Protokollet Richard Elvhammar Lund Universitet 4/12-16 Abstract För att ett system snabbt ska kunna hantera information så används, å sidan åt primärminnet och sekundärminnet, ett cacheminne. I modern
Läs merOperativsystem ID2206 Tentamen TEN1 4.5 hp :00-18:00
Operativsystem ID2206 Tentamen TEN1 4.5 hp 2018-04-03 14:00-18:00 Instruktioner Du får, förutom skrivmateriel, endast ha med dig en egenhändigt handskriven A4 med anteckningar. Svaren skall lämnas på dessa
Läs merLösningsförslag till Tenta i Mikrodator
Lösningsförslag till Tenta i Mikrodator 040117 1. Vilka register finns det i processorn och vad används dessa till? D0 till D7: Dataregister som används för beräkningar A0 till A6: Adressregister som används
Läs merTentamen PC-teknik 5 p Lösningar och kommentarer
Tentamen PC-teknik 5 p Lösningar och kommentarer Program: Di2, Em3, Et3 Datum: 04-08-10 Tid: 13:30-18:30 Lokal E171 Hjälpmedel: Linjal, miniräknare, Instruktionsrepertoar för 8086 (utdelas), Lathund, Pacific
Läs merFöreläsningsanteckningar 4. Pipelining
Föreläsningsanteckningar 4. Pipelining Olle Seger 2012, olles@isy.liu.se 21 januari 2013 1 Inledning Denna föreläsning handlar om pipelining, som är den helt dominerande processorarkitekturen i dag. Man
Läs merBetygsgränser: För. Skriv endast på en. Denna. Uppgift. 1. (2p) 2. (2p) Uppgift. Uppgift 1) 4. Var god. vänd.
Tentamen i Matematik, HF93 7 dec 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng. Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, 3 respektive poäng. Komplettering:
Läs merTentamensskrivning 11 januari 2016
Lunds Universitet LTH Ingenjörshögskolan IDA IEA Helsingborg Tentamensskrivning 11 januari 2016 EDI 610 Digitala system 15 poäng, varav tentamen 4,5 p Kursansvarig: Bernt-Arne Jönsson och Bertil Larsson
Läs merTentamen i Digital Design
Kungliga Tekniska Högskolan Tentamen i Digital Design Kursnummer : Kursansvarig: 2B56 :e fo ingenjör Lars Hellberg tel 79 7795 Datum: 27-5-25 Tid: Kl 4. - 9. Tentamen rättad 27-6-5 Klagotiden utgår: 27-6-29
Läs merFö 2: Minnen. Introduktion. Primärminnet. Interna och externa minnen. Introduktion, Klassificiering
Fö 2: Minnen Introduktion, Klassificiering Primärminne Sekundärminne Minneshiearki Cache-minne Introduktion Primärminnet används för att lagra program och data som är aktuella att använda. Sekundärminnet
Läs merÖka prestanda i Shared-Cache multi-core processorer
Öka prestanda i Shared-Cache multi-core processorer 1. Abstract Många processorer har nuförtiden flera kärnor. Det är även vanligt att dessa kärnor delar på högsta nivås cachen för att förbättra prestandan.
Läs mer0.1. INTRODUKTION 1. 2. Instruktionens opcode decodas till en språknivå som är förstålig för ALUn.
0.1. INTRODUKTION 1 0.1 Introduktion Datorns klockfrekvens mäts i cykler per sekund, eller hertz. En miljon klockcykler är en megahertz, MHz. L1 cache (level 1) är den snabbaste formen av cache och sitter
Läs merRapport (1,5 HP) Lunds Universitet HT15
Rapport (1,5 HP) Lunds Universitet HT15 Cache-koherens protokoll i Intel Core i7 En rapport om cache-koherens och protokollet som används i Intel Core i7 processorer för att hålla minnet koherent Författare:
Läs mer4. Pipelining. 4. Pipelining
4. Pipelining 4. Pipelining Det finns en pipelinad biltvätt i Linköping spoltvätttork spoltvätt tork spolning tvätt tork De tre momenten tar lika lång tid Alla bilar går igenom samma program Väntetid 1/3
Läs merDatorarkitekturer med operativsystem ERIK LARSSON
Datorarkitekturer med operativsystem ERIK LARSSON Personal Examinator: Erik Larsson 0462224654 Erik.Larsson@eit.lth.se (använd ämne/subject: EITF60) Christoffer Cederberg christoffer.ceder@gmail.com Nyheter
Läs mer