Parallellism i CDC 7600, pipelinens ursprung

Storlek: px
Starta visningen från sidan:

Download "Parallellism i CDC 7600, pipelinens ursprung"

Transkript

1 Lunds universitet Parallellism i CDC 7600, pipelinens ursprung Henrik Norrman EITF60 Datorarkitekturer med operativsystem Kursansvarig: Erik Larsson 4 december 2017

2 INNEHÅLL Parallellism i CDC 7600 Innehåll 1 Introduktion 2 2 Syfte 2 3 Arkitektur 3 PPU CPU Översikt Beräkningsenhet SCM och LCM Parallellism 6 CIW (Current Instruction Word) Busy flag Segmentering Exempel på exekvering Klockcykel Klockcykel Klockcykel Klockcykel Klockcykel Klockcykel Klockcykel Klockcykel Klockcykel Slutsats 11 6 Referenser 12 1

3 1. INTRODUKTION Parallellism i CDC Introduktion Control Data Corporation eller CDC, ett företag idag helt okänt för de flesta, var under 1900-talet hjärnorna bakom flera av världens då snabbaste datorer. Under en tid då det tog längre tid att procesera data än vad det tog att ladda in samma data från minnet, var processorn oftast flaskhalsen i marknadens då bästa datorer. Seymour Cray, den ledande konstruktören av CDC, var väl medveten om detta. CDC men framför allt Cray hade som mål att skapa en dator snabbare än något jätten IBM någonsin lyckats skapa (The CDC 6600 Project, 1980). För att åstadkomma detta utnyttjade Cray parallellism för att öppna upp processorns flaskhals, och många principer som fortfarande används idag tog form. CDCs första stora projekt, CDC 6600, var världens snabbaste dator mellan 1964 och 1969, men förutom sin titel som världens snabbaste dator i fem år, var den även känd för sin revolutionerande teknik. Inte bara var den först med multitrådning och superskalär arkitektur, men den ses också som RISC-processorns förfader (Gordon, 1998). CDC 6600 var dessutom det första systemet med dynamic scheduling (eller out-of-order execution) (Smith, 1989). Denna rapport kommer dock inte fokusera på CDC 6600, utan Crays nästa projekt, CDC 7600, en dator nästan identisk till CDC 6600 förutom att den också använde sig av instruction pipelining (Gordon, 1998). Med denna då väldigt nya teknik, tog den över som världens snabbaste dator, och höll titeln i nästan 7 år. One of my guiding principles is don t do anything that other people are doing. Seymour Cray 2 Syfte Syftet med denna rapport är att få en inblick i hur ett gammalt system som CDC 7600 fungerar. Först genom att kolla övergripande på arkitekturen, och sedan genom att kolla djupare på den parallellism som systemet var bland de första i världen med att använda sig av. 2

4 3. ARKITEKTUR Parallellism i CDC Arkitektur PPU Systemet består av tio stycken PPU (Peripheral Processing Unit), dessa är alla självständiga enheter som procceserar den data som skickas mellan de åtta I/Oenheterna och den centrala processorn. Vid inkommande data eller behov av systemets minne, skickas en interrupt från PPU-enheten till den centrala processorn (Sutherland et al., 1971). Den centrala processorn behöver alltså aldrig proccesera information direkt från I/O-enheterna (se figur 1), detta gör att processorn kan lägga mer kraft på färre instruktioner, och på så sätt arbeta snabbare, en teknik som idag kallas RISC. Fig. 1 Blockdiagram av systemet (Sutherland et al., 1971). 3

5 3. ARKITEKTUR Parallellism i CDC 7600 CPU Översikt CDC 7600 har en CPU som består av tre delar, en beräkningsenhet (Computation Unit), en SCM (Small Core Memory), och en LCM (Large Core Memory) (CDC, 1969). Dessa enheter arbetar alla synkront efter en klocka med en klockperiod på 27.5 nanosekunder (CDC, 1969), systemet har alltså en klockfrekvens på 36.4 MHz. För att kunna öka systemets klockfrekvens använder CDC 7600, till skillnad från CDC 6600, inte dynamic schedueling utan exekverar instruktionerna i strikt programsekvens (Weiss and Smith, 1984). Beräkningsenhet Beräkningsenheten innehåller nio olika aritmetiska enheter, 24 adresserbara register, och en instruktionsstack med tolv stycken minneplatser (se figur 2). De nio aritmetiska enheterna kan alla arbeta parallellt under samma klockcykel. De adressbara registerna är direkt kopplade till både SCM och LCM, och det tar därför bara en klockcykel att ladda eller spara något till minnet. Beräkningsenheten innehåller också ett CIW (Current Instruction Word)-register där instruktionen får instruktionsstacken sparas precis innan den ska exekveras (CDC, 1969). Fig. 2 Diagram över beräkningsenhetens register och aritmetiska enheter. Figuren hämtad från (Gordon, 1998). 4

6 3. ARKITEKTUR Parallellism i CDC 7600 SCM och LCM SCM och LCM kan jämföras med moderna processorers cache- och primärminne, där SCM är ett mindre men snabbare minne som ligger närmre processorkärnan, och LCM är ett större minne som SCM hämtar sin data från. Figur 3 visar hur datan stegvis flyttas genom minneshierarkin. Precis som i en modern processor med primär- och cacheminne, måste instruktionerna som ska exekveras först laddas in på SCM innan de kan börja processeras (Sutherland et al., 1971). SCM kan lagra upp till 64K words (word = 60 bitar) medans det betydligt större LCM kan hålla upp till 500K words (Sutherland et al., 1971). Fig. 3 Data flyttas från Disc till SCM via LCM (Sutherland et al., 1971). 5

7 4. PARALLELLISM Parallellism i CDC Parallellism De nio aritmetiska enheterna i processorns beräkningsenhet (markerade som Functional Units i figur 2); Long Add, Floating Add, Floating Multiply, Floating Divide, Boolean, Shift, Normalize, Population Count, Increment, kan alla arbeta parallellt, vilket betyder att till exempel, en addition, subtraktion, multiplikation och division alla kan påbörjas under samma klockcykel. Detta fenomen kallas superskalär exekvering (Larsson, 2017b), en form av parallellism som fanns redan i CDC En annan form av parallellism som används i CDC 7600 kallas pipelining, en princip som går ut på att stycka upp en lång process i småsteg, på så sätt kan flera instruktioner bearbetas samtidigt i olika delar av processen (Larsson, 2017a). Systemets pipeline kommer förklaras med de tre nyckelorden; CIW, Busy flag, och Segmentering. CIW (Current Instruction Word) CIW-registret fungerar som ett sista lagringsregister precis innan instruktionen ska exekveras. CIW fungerar som en mellanhand mellan instruktionsstacken och alla aritmetiska enheter (CDC, 1969). Allt som ska exekveras måste alltså först läggas i CIW innan det sedan flyttas vidare till rätt enhet. Busy flag Busy-flaggan används av de aritmatisk enheterna och LCM för att meddela systemet att den är upptagen (CDC, 1969), om flaggan är uppe kan enheten alltså inte ta emot någon data den klockcykeln. Om till exempel Long Add-enheten har satt sin busy-flagga, och en Long Add instruktion ligger redo i CIW, måste instruktionen ligga kvar i registret tills följande klockcykel då flaggan tagits bort igen. Flaggan kan också sättas av LCM, och de aritmetiska enheterna tvingas då vänta med att skriva tillbaka ett resultat tills LCM är redo att ta emot ny data igen. Flaggan används som en enkel kontroll för att säkerställa att det är lämpligt att mata enheten med nya värden. 6

8 4. PARALLELLISM Parallellism i CDC 7600 Segmentering Tabellen nedan visar hur segmenteringen är uppdelar på de olika enheterna. Segmenttiden är den tid det tar att exekvera varje segment i enheten, medans exekveringstiden är den total tid det tar för värdena att gå genom enhetens alla algoritmer. Aritmatisk enhet segmenttid exekveringstid Long Add 1 clk 2 clk Floating Add 1 clk 4 clk Floating Multiply 2 clk 5 clk Floating Divide 18 clk 20 clk Boolean 1 clk 2 clk Shift 1 clk 2 clk Normalize 1 clk 3 clk Population Count 1 clk 2 clk Increment 1 clk 2 clk Data från (CDC, 1969) Förutom Floating Multiply och Floating Divide är alla enheter uppdelade i segment på en klockcykel, alltså kan dessa enheter ta emot nya värden varie klockcykel. Tabellen visar hur till exempel Floating Add teoretiskt exekveras fyra gånger snabbare med pipelining. 7

9 4. PARALLELLISM Parallellism i CDC 7600 Exempel på exekvering Nedan följer ett exempel på hur två instruktioner exekveras och passerar genom Floating Multiply-enheten. Notera att det är en Floating Multiply-operation, alltså är segmenttiden 2 klockcyklar, och den totala exekveringstiden 5 klockcyklar. Detta är ett förenklat exempel för att visa hur CIW, Busy flag, och Segmenteringen fungerar tillsammans. Klockcykel 0 clk 0 Input Segment 1 Segment 2 Segment 3 Register 1 Register 2 Klockcykel 1 FLOAT MUL A, A, B clk 1 Input Segment 1 Segment 2 Segment 3 Register 1 A Register 2 B Busy Flag 1 A och B flyttas till enhetens input register. Floating Multiply busy flag = 1 FLOAT MUL A, A, B clk 1 Input Segment 1 Segment 2 Segment 3 Register 1 A Register 2 B Det finns plats inne i enheten, så A och B flyttas direkt in i enhetens första segment. Då värdena flyttats in i enheten kan input registerna ta emot nya värden, busy-flaggan kan därför stängas av. 8

10 4. PARALLELLISM Parallellism i CDC 7600 Klockcykel 2 FLOAT MUL C, C, D clk 2 Input Segment 1 Segment 2 Segment 3 Register 1 C A Register 2 D B Busy Flag 1 C och D flyttas till enhetens input register. Floating Multiply busy flag = 1 A och B är fortfarande kvar i enhetens första segment, C och D kan därför inte flyttas in i enheten, och måste ligga kvar i input registerna. Klockcykel 3 clk 3 Input Segment 1 Segment 2 Segment 3 Register 1 C A Register 2 D B A och B flyttas vidare till nästa segment. C och D kan då flyttas in i segment 1. Floating Multiply busy flag = 0 Klockcykel 4 clk 4 Input Segment 1 Segment 2 Segment 3 Register 1 C A Register 2 D B A och B - fortfarande i segment 2. C och D - fortfarande i segment 1. 9

11 4. PARALLELLISM Parallellism i CDC 7600 Klockcykel 5 clk 5 Input Segment 1 Segment 2 Segment 3 Register 1 C A Register 2 D B A och B flyttas vidare till segment 3. C och D flyttas vidare till segment 2. Klockcykel 6 clk 6 Input Segment 1 Segment 2 Segment 3 Register 1 C Register 2 D Resultatet från A och B är klart och kan flyttas till register A (som givet i instruktionen från CIW på clk 1) Klockcykel 7 clk 7 Input Segment 1 Segment 2 Segment 3 Register 1 C Register 2 D C och D flyttas vidare till segment 3. 10

12 5. SLUTSATS Parallellism i CDC 7600 clk 8 Input Segment 1 Segment 2 Segment 3 Register 1 Register 2 Klockcykel 8 Resultatet från C och D är klart och kan flyttas till register C (som givet i instruktionen från CIW på clk 1) 5 Slutsats Syftet med denna rapport var inte att påstå att en pipeline är allt som krävs för att dubbla ett systems prestanda. Hårdvaran och de exempel som använts är från 1970-talet, en tid då det bara fanns ett fåtal datorer jämfört med idag. De datorer som fanns var också kraftigt begränsade av vad processorn klarade av, därför kunde en liten förbättring i processorn förbättra hela systemet väldigt mycket. Med bara denna rapport är det svårt att få en uppfattning av hur viktigt parallellism är i dagsläget, men det var inte heller syftet. Rapportens mål var att visa en del av de principer som fortfarande används i en så tidig version som möjligt, och detta för att få en förståelse för hur, men också varför de uppkom. 11

13 6. REFERENSER Parallellism i CDC Referenser Referenser CDC (1969), Control Data 7600 Computer System, Preliminary Reference Manual. Gordon, B. (1998), A seymour cray perspective. Larsson, E. (2017a), Pipeline. Larsson, E. (2017b), Superscalar arkitekturer. Smith, J. E. (1989), Dynamic instruction scheduling and the astronautics zs-1, Computer 22(7), Sutherland, G. G., Coverston, H. G., DuBois, P. J., Emery, D. R., Kent, D. A., Lund, P. E., Powles, G. H., Storch, F. D., Tennant, L. O. and Von Buskirk, D. L. (1971), Livermore time-sharing system for the cdc 7600., ACM Operating Systems Review 5(2/3), 6. The CDC 6600 Project (1980), Annals of the History of Computing, Annals Hist. Comput (4), 338. Weiss, S. and Smith, J. (1984), Instruction issue logic in pipelined supercomputers., IEEE Transactions on Computers C-33(11),

Lunds Tekniska Högskola Datorarkitektur med operativsystem EITF60. Superscalar vs VLIW. Cornelia Kloth IDA2. Inlämningsdatum:

Lunds Tekniska Högskola Datorarkitektur med operativsystem EITF60. Superscalar vs VLIW. Cornelia Kloth IDA2. Inlämningsdatum: Lunds Tekniska Högskola Datorarkitektur med operativsystem EITF60 Superscalar vs VLIW Cornelia Kloth IDA2 Inlämningsdatum: 2018-12-05 Abstract Rapporten handlar om två tekniker inom multiple issue processorer

Läs mer

Pipelining i Intel 80486

Pipelining i Intel 80486 Lunds Universitet Pipelining i Intel 80486 EITF60 Datorarkitekturer med operativsystem Martin Wiezell 2017-12-04 Abstract This paper gives a brief description of the instruction pipeline of the Intel 80486

Läs mer

Datorteknik ERIK LARSSON

Datorteknik ERIK LARSSON Datorteknik ERIK LARSSON Så här långt. FÖ2 RISC/CISC FÖ1 Primärminne Instruktioner och data Address Instruction 00001000 0000101110001011 00001001 0001101110000011 00001010 0010100000011011 00001011 0001001110010011

Läs mer

Digitala System: Datorteknik ERIK LARSSON

Digitala System: Datorteknik ERIK LARSSON Digitala System: Datorteknik ERIK LARSSON Dator Primärminne Instruktioner och data Data/instruktioner Kontroll Central processing unit (CPU) Fetch instruction Execute instruction Programexekvering (1)

Läs mer

Hantering av hazards i pipelines

Hantering av hazards i pipelines Datorarkitektur med operativsystem Hantering av hazards i pipelines Lisa Arvidsson IDA2 Inlämningsdatum: 2018-12-05 Abstract En processor som använder pipelining kan exekvera ett flertal instruktioner

Läs mer

Moment 2 Digital elektronik. Föreläsning Inbyggda system, introduktion

Moment 2 Digital elektronik. Föreläsning Inbyggda system, introduktion Moment 2 Digital elektronik Föreläsning Inbyggda system, introduktion Jan Thim 1 Inbyggda system, introduktion Innehåll: Historia Introduktion Arkitekturer Mikrokontrollerns delar 2 1 Varför lär vi oss

Läs mer

0.1. INTRODUKTION 1. 2. Instruktionens opcode decodas till en språknivå som är förstålig för ALUn.

0.1. INTRODUKTION 1. 2. Instruktionens opcode decodas till en språknivå som är förstålig för ALUn. 0.1. INTRODUKTION 1 0.1 Introduktion Datorns klockfrekvens mäts i cykler per sekund, eller hertz. En miljon klockcykler är en megahertz, MHz. L1 cache (level 1) är den snabbaste formen av cache och sitter

Läs mer

CDC en jämförelse mellan superskalära processorer. EDT621 Campus Helsingborg av: Marcus Karlsson IDA

CDC en jämförelse mellan superskalära processorer. EDT621 Campus Helsingborg av: Marcus Karlsson IDA CDC6600 - en jämförelse mellan superskalära processorer av: Marcus Karlsson Sammanfattning I denna rapport visas konkret information om hur den första superskalära processorn såg ut och hur den använde

Läs mer

SVAR TILL TENTAMEN I DATORSYSTEM, VT2013

SVAR TILL TENTAMEN I DATORSYSTEM, VT2013 Rahim Rahmani (rahim@dsv.su.se) Division of ACT Department of Computer and Systems Sciences Stockholm University SVAR TILL TENTAMEN I DATORSYSTEM, VT2013 Tentamensdatum: 2013-03-21 Tentamen består av totalt

Läs mer

Datorsystem 2 CPU. Förra gången: Datorns historia Denna gång: Byggstenar i en dators arkitektur. Visning av Akka (för de som är intresserade)

Datorsystem 2 CPU. Förra gången: Datorns historia Denna gång: Byggstenar i en dators arkitektur. Visning av Akka (för de som är intresserade) Datorsystem 2 CPU Förra gången: Datorns historia Denna gång: Byggstenar i en dators arkitektur CPU Visning av Akka (för de som är intresserade) En dators arkitektur På en lägre nivå kan vi ha lite olika

Läs mer

Tentamen den 14 januari 2015 Datorarkitekturer med operativsystem, EDT621, 7,5 poäng

Tentamen den 14 januari 2015 Datorarkitekturer med operativsystem, EDT621, 7,5 poäng Lunds Universitet LTH Ingenjörshögskolan, Helsingborg Tentamen den 14 januari 2015 Datorarkitekturer med operativsystem, EDT621, 7,5 poäng Skrivtid: 08.00-13.00 Tillåtna hjälpmedel: Inga. Maximalt antal

Läs mer

Datorteknik ERIK LARSSON

Datorteknik ERIK LARSSON Datorteknik ERIK LARSSON Programexekvering (1) Hämta instruktion på 00001000 (där PC pekar) Fetch (2) Flytta instruktionen 0000101110001011 till CPU (3) Avkoda instruktionen: 00001 MOVE, 01110001 Adress,

Läs mer

Grundläggande datavetenskap, 4p

Grundläggande datavetenskap, 4p Grundläggande datavetenskap, 4p Kapitel 2 Datamanipulation, Processorns arbete Utgående från boken Computer Science av: J. Glenn Brookshear 2004-11-09 IT och Medier 1 Innehåll CPU ALU Kontrollenhet Register

Läs mer

Datorarkitekturer med operativsystem ERIK LARSSON

Datorarkitekturer med operativsystem ERIK LARSSON Datorarkitekturer med operativsystem ERIK LARSSON Dator Primärminne Instruktioner och data Data/instruktioner Kontroll Central processing unit (CPU) Fetch instruction Execute instruction Programexekvering

Läs mer

Multi-ported cache En rapport om några lösningar till att få flera minnesaccesser simultant.

Multi-ported cache En rapport om några lösningar till att få flera minnesaccesser simultant. Multi-ported cache En rapport om några lösningar till att få flera minnesaccesser simultant. Sammanfattning När processorns klockhastighet ökar medför det en ökning av instruktioner vilket såklart ökar

Läs mer

Datorteknik ERIK LARSSON

Datorteknik ERIK LARSSON Datorteknik ERIK LARSSON Fetch-Execute Utan pipelining: Tid: 1 2 3 4 5 6 Instruktion 1 Instruktion 2 Instruktion 3 Fetch Execute Fetch Execute Fetch Execute Med pipelining: Tid: 1 2 3 4 Instruktion 1 Instruktion

Läs mer

Datorarkitekturer med operativsystem ERIK LARSSON

Datorarkitekturer med operativsystem ERIK LARSSON Datorarkitekturer med operativsystem ERIK LARSSON Pipelining Tid SSA P Pipelining FI DI CO FO EI WO FI DI CO FO EI WO FI DI CO FO EI WO FI DI CO FO EI WO Superscalar pipelining FI DI CO FO EI WO FI DI

Läs mer

Tentamen den 9 januari 2018 Datorarkitekturer med operativsystem (EITF60)

Tentamen den 9 januari 2018 Datorarkitekturer med operativsystem (EITF60) Lunds Universitet LTH Tentamen den 9 januari 2018 Datorarkitekturer med operativsystem (EITF60) Skrivtid: 08.00-13.00 Tillåtna hjälpmedel: Inga. Maximalt antal poäng: 50 poäng För betyg 3 krävs 20 poäng

Läs mer

Datorarkitekturer med operativsystem ERIK LARSSON

Datorarkitekturer med operativsystem ERIK LARSSON Datorarkitekturer med operativsystem ERIK LARSSON Parallellberäkning Konstant behov av högre prestanda Prestanda har uppnåtts genom: Utveckling inom halvledarteknik Tekniker som:» Cacheminne» Flera bussar»

Läs mer

Tentamen den 18 mars svar Datorteknik, EIT070

Tentamen den 18 mars svar Datorteknik, EIT070 Lunds Universitet LTH Tentamen den 18 mars 2015 - svar Datorteknik, EIT070 Skrivtid: 14.00-19.00 Tillåtna hjälpmedel: Inga. Maximalt antal poäng: 50 poäng För betyg 3 krävs 20 poäng För betyg 4 krävs 30

Läs mer

Svar till tentamen den 16 december 2013 Datorarkitekturer med operativsystem, EDT621, 7,5 poäng

Svar till tentamen den 16 december 2013 Datorarkitekturer med operativsystem, EDT621, 7,5 poäng Lunds Universitet LTH Ingenjörshögskolan, Helsingborg Svar till tentamen den 16 december 2013 Datorarkitekturer med operativsystem, EDT621, 7,5 poäng Skrivtid: 08.00-13.00 Tillåtna hjälpmedel: Inga. Maximalt

Läs mer

Närliggande allokering Datorteknik

Närliggande allokering Datorteknik Närliggande allokering Datorteknik ERIK LARSSON TID Problem: Minnet blir fragmenterat Paging Demand paging Sida (S) Dela upp primärminnet i ramar (frames) och program i sidor (pages) Program 0 RD.0 1 RD.1

Läs mer

Utvecklingen från en 8 bitars till en 16 bitars mikroprocessor

Utvecklingen från en 8 bitars till en 16 bitars mikroprocessor Utvecklingen från en 8 bitars till en 16 bitars mikroprocessor Sammanfattning: Utvecklingen från processor till processor är inte lätt. Det finns många beslut som måste tas när det gäller kompatibilitet,

Läs mer

Pipeline hos ARM Cortex-A53 och ARM Cortex-A73

Pipeline hos ARM Cortex-A53 och ARM Cortex-A73 Lunds universitet Pipeline hos ARM Cortex-A53 och ARM Cortex-A73 Kevin Eriksson EITF60 Kursansvarig: Erik Larsson 2017-12-04 Innehållsförteckning Syfte 2 Sammanfattning 2 Jämförelse 3 Pipelinebredd 3 Out

Läs mer

Fetch-Execute. Datorteknik. Pipelining. Pipeline diagram (vid en viss tidpunkt)

Fetch-Execute. Datorteknik. Pipelining. Pipeline diagram (vid en viss tidpunkt) Datorteknik ERIK LRSSON Fetch- Utan pipelining: Tid: 1 2 3 4 5 6 Instruktion 1 Instruktion 2 Instruktion 3 Fetch Fetch Fetch Med pipelining: Tid: 1 2 3 4 Instruktion 1 Instruktion 2 Instruktion 3 Fetch

Läs mer

Hannes Larsson - IDA 2, LTH Campus Helsingborg. NEC V R 4300i. Interlock-handling EDT621

Hannes Larsson - IDA 2, LTH Campus Helsingborg. NEC V R 4300i. Interlock-handling EDT621 Hannes Larsson - IDA 2, LTH Campus Helsingborg NEC V R 4300i Interlock-handling EDT621 Läsperiod 2, 2017 Innehållsförteckning s.2 - Förord s.2 - Inledning s.2 - NEC VR-4305 s.3 - Pipeline s.4 - Interlocks

Läs mer

Arm Cortex-A8 Pipeline

Arm Cortex-A8 Pipeline Marcus Havrell Dahl - 941206 Arm Cortex-A8 Pipeline Sammanfattning Arm Cortex-A8 processorn är en energisnål men samtidigt kraftfull enhet. Beroende på implementationen kan den ha en klockhastighet på

Läs mer

Hur det går att minska effektutvecklingen i en processor genom att ändra pipeline

Hur det går att minska effektutvecklingen i en processor genom att ändra pipeline Hur det går att minska effektutvecklingen i en processor genom att ändra pipeline Linda Wapner HT2018 EITF60 Sammanfattning Effektutvecklingen i en processor har länge ökat genom att klockfrekvensen för

Läs mer

LUNDS UNIVERSITET. Parallell exekvering av Float32 och INT32 operationer

LUNDS UNIVERSITET. Parallell exekvering av Float32 och INT32 operationer LUNDS UNIVERSITET Parallell exekvering av Float32 och INT32 operationer Samuel Molin Kursansvarig: Erik Larsson Datum 2018-12-05 Referat Grafikkort utför många liknande instruktioner parallellt då typiska

Läs mer

Processor pipelining genom historien (Intel i9-intel i7)

Processor pipelining genom historien (Intel i9-intel i7) Processor pipelining genom historien (Intel i9-intel i7) Besnik Redzepi Lunds Universitet Abstrakt/Sammanfattning Syftet med denna uppsats är att jämföra Intels nya generation processorer och deras pipelining.

Läs mer

Jämförelse av skrivtekniker till cacheminne

Jämförelse av skrivtekniker till cacheminne Jämförelse av skrivtekniker till cacheminne 1 Innehåll 1. Sammanfattning 2. Inledning 3. Diskussion 4. Referenslista 1. Sammanfattning En rapport innehållande jämförelser av olika skrivtekniker till minnen

Läs mer

Pipelining i Intel Pentium II

Pipelining i Intel Pentium II Pipelining i Intel Pentium II John Abdulnoor Lund Universitet 04/12/2017 Abstract För att en processor ska fungera måste alla komponenter inuti den samarbeta för att nå en acceptabel nivå av prestanda.

Läs mer

Tentamen den 14 januari 2016 Datorarkitektur med operativsystem, EDT621

Tentamen den 14 januari 2016 Datorarkitektur med operativsystem, EDT621 Lunds Universitet LTH Tentamen den 14 januari 2016 Datorarkitektur med operativsystem, EDT621 Skrivtid: 08.00-13.00 Tillåtna hjälpmedel: Inga. Maximalt antal poäng: 50 poäng För betyg 3 krävs 20 poäng

Läs mer

Tentamen den 17 mars 2016 Datorteknik, EIT070

Tentamen den 17 mars 2016 Datorteknik, EIT070 Lunds Universitet LTH Tentamen den 17 mars 2016 Datorteknik, EIT070 Skrivtid: 14.00-19.00 Tillåtna hjälpmedel: Inga. Maximalt antal poäng: 50 poäng För betyg 3 krävs 20 poäng För betyg 4 krävs 30 poäng

Läs mer

IBM POWER4, den första flerkärniga processorn och dess pipelines.

IBM POWER4, den första flerkärniga processorn och dess pipelines. IBM POWER4, den första flerkärniga processorn och dess pipelines. 5 DECEMBER 2016 FÖRFATTARE: OSCAR STRANDMARK EXAMINATOR: ERIK LARSSON Abstract Rapporten redovisar IBM:s POWER-serie, generation ett till

Läs mer

Cacheminne Intel Core i7

Cacheminne Intel Core i7 EDT621 Datorarkitekturer med operativsystem 7,5 hp 2015-12-07 Cacheminne i Intel Core i7 Författare: Adnan Karahmetovic Handledare: Erik Larsson Innehåll 1. Inledning... 1 1.1 Syfte... 1 1.2 Frågeställning...

Läs mer

Tentamen den 12 januari 2017 Datorarkitektur med operativsystem, EDT621

Tentamen den 12 januari 2017 Datorarkitektur med operativsystem, EDT621 Lunds Universitet LTH Tentamen den 12 januari 2017 Datorarkitektur med operativsystem, EDT621 Skrivtid: 8.00-13.00 Inga tillåtna hjälpmedel Uppgifterna i tentamen ger maximalt 60 poäng. Uppgifterna är

Läs mer

Hyper-Threading i Intelprocessorer

Hyper-Threading i Intelprocessorer Lunds Tekniska Högskola Campus Helsingborg DATORARKITEKTURER MED OPERATIVSYSTEM EITF60 RAPPORT Hyper-Threading i Intelprocessorer 4 december 2017 Rasmus Hanning IDA2 Sammanfattning Det har sedan den första

Läs mer

Datorarkitekturer med operativsystem ERIK LARSSON

Datorarkitekturer med operativsystem ERIK LARSSON Datorarkitekturer med operativsystem ERIK LARSSON Semantic gap Alltmer avancerade programmeringsspråk tas fram för att göra programvaruutveckling mer kraftfull Dessa programmeringsspråk (Ada, C++, Java)

Läs mer

MESI i Intel Core 2 Duo

MESI i Intel Core 2 Duo MESI i Intel Core 2 Duo Sammanfattning Denna rapport beskriver en processor (Intel Core 2 Duo) vars cache coherence protokoll är MESI. Rapporten beskriver hur processorn är uppbyggd, hur många kärnor den

Läs mer

Cacheminne i en AMD Opteron Processor

Cacheminne i en AMD Opteron Processor Handledare: Erik Larsson Lunds Tekniska Högskola HT15 Cacheminne i en AMD Opteron Processor En rapport om cacheminne och dess struktur, i en 12 kärnig AMD Opteron Magny-Cours processor. Författare: Hamza

Läs mer

Hyper Threading Intels implementation av SMT. Datorarkitekturer med operativsystem - EITF60. Felix Danielsson IDA2

Hyper Threading Intels implementation av SMT. Datorarkitekturer med operativsystem - EITF60. Felix Danielsson IDA2 Hyper Threading Intels implementation av SMT Datorarkitekturer med operativsystem - EITF60 Felix Danielsson IDA2 Sammanfattning Simultaneous multithreading (SMT) är en teknik som används i processorer

Läs mer

HF0010. Introduktionskurs i datateknik 1,5 hp

HF0010. Introduktionskurs i datateknik 1,5 hp HF0010 Introduktionskurs i datateknik 1,5 hp Välkommna - till KTH, Haninge, Datateknik, kursen och till första steget mot att bli programmerare! Er lärare och kursansvarig: Nicklas Brandefelt, bfelt@kth.se

Läs mer

IT för personligt arbete F5

IT för personligt arbete F5 IT för personligt arbete F5 Datalogi del 1 DSV Peter Mozelius 1 En dators beståndsdelar 1) Minne 2) Processor 3) Inmatningsenheter 1) tangentbord 2) scanner 3) mus 4) Utmatningsenheter 1) bildskärm 2)

Läs mer

Datorarkitektur I. Tentamen Lördag 10 April Ekonomikum, B:154, klockan 09:00 14:00. Följande gäller: Skrivningstid: Fråga

Datorarkitektur I. Tentamen Lördag 10 April Ekonomikum, B:154, klockan 09:00 14:00. Följande gäller: Skrivningstid: Fråga Datorarkitektur I Tentamen Lördag 10 April 2010 Ekonomikum, B:154, klockan 09:00 14:00 Examinator: Karl Marklund 0704 73 32 17 karl.marklund@it.uu.se Tillåtna hjälpmedel: Penna Radergummi Linjal Följande

Läs mer

Datorteknik ERIK LARSSON

Datorteknik ERIK LARSSON Datorteknik ERIK LARSSON Inledning Ken Thompson och Dennis M. Ritchie utvecklade C Turingpriset( Nobelpris i datavetenskap ), 1983 Alan Turing (1912-1954) För deras utveckling av generell OS teori och

Läs mer

TSEA28 Datorteknik Y (och U)

TSEA28 Datorteknik Y (och U) Praktiska kommentarer TSEA8 Datorteknik Y (och U) Föreläsning Kent Palmkvist, ISY Dagens föreläsning RISC Mer information om hur arkitekturen fungerar Begränsningar Lab extra tillfälle för redovisning

Läs mer

Pipelining i RISC-processorn. Joakim Lindström Institutionen för informationsbehandling Åbo Akademi E-post: jolindst@abo.fi

Pipelining i RISC-processorn. Joakim Lindström Institutionen för informationsbehandling Åbo Akademi E-post: jolindst@abo.fi Pipelining i RISC-processorn Joakim Lindström Institutionen för informationsbehandling Åbo Akademi E-post: jolindst@abo.fi Innehållsförteckning 1. Inledning 2. Historia: Intel 8086 (1978) till Pentium

Läs mer

En Von Neumann-arkitektur ( Von Neumann-principen i föreläsning 1) innebär:

En Von Neumann-arkitektur ( Von Neumann-principen i föreläsning 1) innebär: Lösningsförslag för 725G45-tentan 3/11-10 1. Vad menas med Von Neumann-arkitektur? (2p) En Von Neumann-arkitektur ( Von Neumann-principen i föreläsning 1) innebär: Data och instruktioner lagras i samma

Läs mer

Spekulativ exekvering i CPU pipelining

Spekulativ exekvering i CPU pipelining Spekulativ exekvering i CPU pipelining Max Faxälv Datum: 2018-12-05 1 Abstrakt Speculative execution is an optimisation technique used by modern-day CPU's to guess which path a computer code will take,

Läs mer

Exempeltentamen Datorteknik, EIT070,

Exempeltentamen Datorteknik, EIT070, Lunds Universitet LTH Exempeltentamen Datorteknik, EIT070, Skrivtid: xx.00-xx.00 Tillåtna hjälpmedel: Inga. Maximalt antal poäng: 50 poäng För betyg 3 krävs 20 poäng För betyg 4 krävs 30 poäng För betyg

Läs mer

System S. Datorarkitektur - en inledning. Organisation av datorsystem: olika abstraktionsnivåer. den mest abstrakta synen på systemet

System S. Datorarkitektur - en inledning. Organisation av datorsystem: olika abstraktionsnivåer. den mest abstrakta synen på systemet Datorarkitektur - en inledning Organisation av datorsystem: olika abstraktionsnivåer System S den mest abstrakta synen på systemet A B C Ett högnivåperspektiv på systemet a1 b1 c1 a2 b3 b2 c2 c3 En mera

Läs mer

Öka prestanda i Shared-Cache multi-core processorer

Öka prestanda i Shared-Cache multi-core processorer Öka prestanda i Shared-Cache multi-core processorer 1. Abstract Många processorer har nuförtiden flera kärnor. Det är även vanligt att dessa kärnor delar på högsta nivås cachen för att förbättra prestandan.

Läs mer

DEC Alpha instruktions Arkitektur

DEC Alpha instruktions Arkitektur DEC Alpha instruktions Arkitektur David Ekberg December 4, 2017 Innehållsförteckning 1 Sammanfattning...3 2 Bakgrund...3 3 Syfte...3 4 Pipeline...4 4.1 Datatyper...4 4.2 Instruktions arkitektur...5 5 Slutsats...6

Läs mer

Datorhistorik. Föreläsning 3 Datorns hårdvara EDSAC. Eniac. I think there is a world market for maybe five computers. Thomas Watson, IBM, 1943

Datorhistorik. Föreläsning 3 Datorns hårdvara EDSAC. Eniac. I think there is a world market for maybe five computers. Thomas Watson, IBM, 1943 Datorhistorik Föreläsning 3 Datorhistorik Datorns uppbyggnad, komponenter Processor, primärminne, sekundärminne Minneshierarkier Inbyggda system, stora datorer I think there is a world market for maybe

Läs mer

Superscalar Bra: Hårdvaran löser allt: Hårdvara detekterar poten6ell parallellism av instruk6oner Hårdvara försöker starta exekvering (issue) av så

Superscalar Bra: Hårdvaran löser allt: Hårdvara detekterar poten6ell parallellism av instruk6oner Hårdvara försöker starta exekvering (issue) av så 1 Superscalar Bra: Hårdvaran löser allt: Hårdvara detekterar poten6ell parallellism av instruk6oner Hårdvara försöker starta exekvering (issue) av så många instruk6oner som möjligt parallellt Hårdvara

Läs mer

Parallellism i NVIDIAs Fermi GPU

Parallellism i NVIDIAs Fermi GPU Parallellism i NVIDIAs Fermi GPU Thien Lai Phu IDA2 Abstract This report investigates what kind of computer architecture, based on Flynn s taxonomy, is used on NVIDIAs Fermi-based GPU to achieve parallellism

Läs mer

Effektivitetsmätning av multitrådning på ARM Cortex-A53 mikroarkitektur

Effektivitetsmätning av multitrådning på ARM Cortex-A53 mikroarkitektur Lunds universitet Effektivitetsmätning av multitrådning på ARM Cortex-A53 mikroarkitektur Johan Hermansson EITF60 Kursansvarig: Erik Larsson 4 december 2017 Sammanfattning I projektet utvecklades multitrådad

Läs mer

Fö 7: Operativsystem. Vad är ett operativsystem? Målsättning med operativsystem. Styr operativsystemet datorn?

Fö 7: Operativsystem. Vad är ett operativsystem? Målsättning med operativsystem. Styr operativsystemet datorn? Fö 7: Operativsystem Introduktion. Klassificering. Vad är ett operativsystem? Program som kontrollerar andra andra program. Gränssnitt mellan användare och hårdvaran. Kärnan. Historisk översikt. Typeset

Läs mer

4. Pipelining. 4. Pipelining

4. Pipelining. 4. Pipelining 4. Pipelining 4. Pipelining Det finns en pipelinad biltvätt i Linköping spoltvätttork spoltvätt tork spolning tvätt tork De tre momenten tar lika lång tid Alla bilar går igenom samma program Väntetid 1/3

Läs mer

Program kan beskrivas på olika abstrak3onsnivåer. Högnivåprogram: läsbart (för människor), hög abstrak3onsnivå, enkelt a> porta (fly>a 3ll en annan ar

Program kan beskrivas på olika abstrak3onsnivåer. Högnivåprogram: läsbart (för människor), hög abstrak3onsnivå, enkelt a> porta (fly>a 3ll en annan ar 1 Program kan beskrivas på olika abstrak3onsnivåer. Högnivåprogram: läsbart (för människor), hög abstrak3onsnivå, enkelt a> porta (fly>a 3ll en annan arkitektur), hårdvara osynlig Assembly- och maskinprogram:

Läs mer

Hantering av hazards i multi-pipelines

Hantering av hazards i multi-pipelines Campus Helsingborg IDA2 Hantering av hazards i multi-pipelines Av: Mounir Salam Abstract Det finns tre olika problem som kan uppstå när vi kör en pipeline med flera steg. De tre problemen även så kallade

Läs mer

Datorarkitektur. Informationsteknologi sommarkurs 5p, Agenda. Slideset 3

Datorarkitektur. Informationsteknologi sommarkurs 5p, Agenda. Slideset 3 Informationsteknologi sommarkurs 5p, 2004 Mattias Wiggberg Dept. of Information Technology Box 337 SE751 05 Uppsala +46 18471 31 76 Collaboration Jakob Carlström Datorarkitektur Slideset 3 Agenda Datorns

Läs mer

TSEA28 Datorteknik Y (och U)

TSEA28 Datorteknik Y (och U) Praktiska kommentarer TSEA8 Datorteknik Y (och U) Föreläsning Kent Palmkvist, ISY Dagens föreläsning Latens/genomströmning Pipelining Laboration tips Sorteringsalgoritm använder A > B i flödesschemat Exemplet

Läs mer

Emil Kristiansson Kurs: EDT621 Delmoment: Rapport. En introduktion till Smart cache

Emil Kristiansson Kurs: EDT621 Delmoment: Rapport. En introduktion till Smart cache En introduktion till Smart cache 1 Sammanfattning Syftet med den här rapporten är att ge en introduktion till tekniken smart cache för läsaren. Smart cache är en teknik som låter de olika cacheminnena

Läs mer

Program Datorteknik. Kontrollenhet. Exekvering av en instruktion. Abstraktionsnivå: Högnivåspråk. Assemblyspråk. Maskinspråk.

Program Datorteknik. Kontrollenhet. Exekvering av en instruktion. Abstraktionsnivå: Högnivåspråk. Assemblyspråk. Maskinspråk. Program Datorteknik Abstraktionsnivå: Högnivåspråk ERIK LARSSON» t ex C, C++ Assemblyspråk» t ex ADD R, R Maskinspråk» t ex 000.0 Exekvering av en instruktion Kontrollenhet () Hämta instruktion på 0000000

Läs mer

Datorteknik ERIK LARSSON

Datorteknik ERIK LARSSON Datorteknik ERIK LARSSON Program Abstraktionsnivå: Högnivåspråk» t ex C, C++ Assemblyspråk» t ex ADD R1, R2 Maskinspråk» t ex 001101.101 Exekvering av en instruktion (1) Hämta instruktion på 00001000 (där

Läs mer

LABORATION DATORTEKNIK D. Pipelining. Namn och personnummer. Version: (OS,OVA,AN)

LABORATION DATORTEKNIK D. Pipelining. Namn och personnummer. Version: (OS,OVA,AN) LABORATION DATORTEKNIK D Pipelining Version: 1.4 2016 (OS,OVA,AN) Namn och personnummer Godkänd 1 blank sida 2 Innehåll 1 Inledning 5 1.1 Syfte................................. 5 1.2 Förberedelser............................

Läs mer

Tentamen. Datorteknik Y, TSEA28

Tentamen. Datorteknik Y, TSEA28 Tentamen Datorteknik Y, TSEA28 Datum 2017-10-26 Lokal TER1, TER3 Tid 8-12 Kurskod TSEA28 Provkod TEN1 Kursnamn Provnamn Datorteknik Y Skriftlig tentamen Institution ISY Antal frågor 6 Antal sidor (inklusive

Läs mer

F2: Motorola Arkitektur. Assembler vs. Maskinkod Exekvering av instruktioner i Instruktionsformat MOVE instruktionen

F2: Motorola Arkitektur. Assembler vs. Maskinkod Exekvering av instruktioner i Instruktionsformat MOVE instruktionen 68000 Arkitektur F2: Motorola 68000 I/O signaler Processor arkitektur Programmeringsmodell Assembler vs. Maskinkod Exekvering av instruktioner i 68000 Instruktionsformat MOVE instruktionen Adresseringsmoder

Läs mer

Datorarkitekturer med operativsystem ERIK LARSSON

Datorarkitekturer med operativsystem ERIK LARSSON Datorarkitekturer med operativsystem ERIK LARSSON Översikt Reduced instruction set computers (RISC) Superscalar processors Semantic gap Alltmer avancerade programmeringsspråk tas fram för att göra programvaruutveckling

Läs mer

Datorsystemteknik DVGA03 Föreläsning 8

Datorsystemteknik DVGA03 Föreläsning 8 Datorsystemteknik DVGA03 Föreläsning 8 Processorns uppbyggnad Pipelining Större delen av materialet framtaget av :Jan Eric Larsson, Mats Brorsson och Mirec Novak IT-inst LTH Innehåll Repetition av instruktionsformat

Läs mer

Datorarkitekturer med operativsystem ERIK LARSSON

Datorarkitekturer med operativsystem ERIK LARSSON Datorarkitekturer med operativsystem ERIK LARSSON Översikt Processorn Maskininstruktioner Dator Primärminne Data/instruktioner Kontroll Central processing unit (CPU) Fetch instruction Execute instruction

Läs mer

Digitala System: Datorteknik ERIK LARSSON

Digitala System: Datorteknik ERIK LARSSON Digitala System: Datorteknik ERIK LARSSON Huvudled (H) Trafikljus för övergångsställe Trafikljus för huvudled (H) Trafikljus: Sväng vänster (H->T) Gående - vänta Trafikljus för tvärgata (T) Tvärgata (T)

Läs mer

Vad är en dator? Introduktion till datorer och nätverk. Pontus Haglund Institutionen för datavetenskap (IDA) 21 augusti 2018

Vad är en dator? Introduktion till datorer och nätverk. Pontus Haglund Institutionen för datavetenskap (IDA) 21 augusti 2018 . Vad är en dator? Introduktion till datorer och nätverk Pontus Haglund Institutionen för datavetenskap (IDA) 21 augusti 2018 Översikt 2/23 Datorns historia von Neumann-arkitekturen Operativsystem Datornät

Läs mer

Datorteknik. Tomas Nordström. Föreläsning 2. För utveckling av verksamhet, produkter och livskvalitet.

Datorteknik. Tomas Nordström. Föreläsning 2. För utveckling av verksamhet, produkter och livskvalitet. Datorteknik Tomas Nordström Föreläsning 2 För utveckling av verksamhet, produkter och livskvalitet. Föreläsning 2 Check av övningar Von Neumann arkitekturen Minne, CPU, I/O Instruktioner och instruktionscykeln

Läs mer

Tentamen i Digitala system - EDI610 15hp varav denna tentamen 4,5hp

Tentamen i Digitala system - EDI610 15hp varav denna tentamen 4,5hp Tentamen i Digitala system - EDI610 15hp varav denna tentamen 4,5hp Institutionen för elektro- och informationsteknik Campus Helsingborg, LTH 2016-12-22 8.00-13.00 Uppgifterna i tentamen ger totalt 60

Läs mer

Tentamen. Datorteknik Y, TSEA28

Tentamen. Datorteknik Y, TSEA28 Tentamen Datorteknik Y, TSEA28 Datum 2015-06-01 Lokal Tid 14-18 Kurskod Provkod Kursnamn Provnamn Institution Antal frågor 6 Antal sidor (inklusive denna sida) 6 Kursansvarig Lärare som besöker skrivsalen

Läs mer

Cacheminne i en Intel Core 2 Duo-processor

Cacheminne i en Intel Core 2 Duo-processor Peter Hesslow EDT621 Cacheminne i en Intel Core 2 Duo-processor Abstrakt Det finns många olika sätt att bygga upp ett datorminne på, och med en flerkärnig processor så blir alternativen ännu fler. Denna

Läs mer

Datorsystem. Tentamen 2011-10-29

Datorsystem. Tentamen 2011-10-29 Datorsystem Tentamen 2011-10-29 Instruktioner Samtliga svar skall vara motiverade och läsbara. Eventuella tabeller och beräkningar som används för att nå svaret ska också finnas med i lösningen. Ett svar

Läs mer

Digitalteknik och Datorarkitektur 5hp

Digitalteknik och Datorarkitektur 5hp Digitalteknik och Datorarkitektur 5hp Minnes-hierarkier och Cache 12 maj 2008 karl.marklund@it.uu.se issa saker använder vi ofta Dessa saker vill vi ha nära till hands Storleken har betydelse Litet är

Läs mer

Datorsystem. Exempeltentamen 2011-10-18

Datorsystem. Exempeltentamen 2011-10-18 Datorsystem Exempeltentamen 2011-10-18 Instruktioner Samtliga svar skall vara motiverade och läsbara. Eventuella tabeller och beräkningar som används för att nå svaret ska också finnas med i lösningen.

Läs mer

SIMD i Intel s P5- baserade Pentium MMX

SIMD i Intel s P5- baserade Pentium MMX SIMD i Intel s P5- baserade Pentium MMX Maurits Gabriel Johansson - IDA2 Datorarkitekturer med operativsystem - 4 december 2016 SIMD I INTEL S P5-BASERADE PENTIUM MMX 1 Abstrakt Moderna CPU s (Central

Läs mer

Datormodell. Datorns uppgifter -Utföra program (instruktioner) Göra beräkningar på data Flytta data Interagera med omvärlden

Datormodell. Datorns uppgifter -Utföra program (instruktioner) Göra beräkningar på data Flytta data Interagera med omvärlden Datormodell Datorns uppgifter -Utföra program (instruktioner) Göra beräkningar på data Flytta data Interagera med omvärlden Intel 4004 från 1971 Maximum clock speed is 740 khz Separate program and data

Läs mer

Minnet från processorns sida Datorteknik

Minnet från processorns sida Datorteknik Minnet från processorns sida Datorteknik ERIK LARSSON Processorn ger kommandon/instruktioner med en adress och förväntar sig data. Exempel: READ(ADR) -> DATA Fysisk adress Logisk adress READ 00001000 READ

Läs mer

Prestandapåverkan på databashanterare av flertrådiga processorer. Jesper Dahlgren

Prestandapåverkan på databashanterare av flertrådiga processorer. Jesper Dahlgren Prestandapåverkan på databashanterare av flertrådiga processorer av Sammanfattning Behandling av information bli vanligare i dagens samhälle och för att klara denna uppgiften används ofta en databashanterare

Läs mer

Program som ska exekveras ligger i primärminnet. Processorn hämtar instruk7on för instruk7on. Varje instruk7on, som är e= antal 1:or och 0:or, tolkas

Program som ska exekveras ligger i primärminnet. Processorn hämtar instruk7on för instruk7on. Varje instruk7on, som är e= antal 1:or och 0:or, tolkas 1 2 Program som ska exekveras ligger i primärminnet. Processorn hämtar instruk7on för instruk7on. Varje instruk7on, som är e= antal 1:or och 0:or, tolkas och instruk7onen exekveras. 3 4 Program kan beskrivas

Läs mer

Tentamen. Datorteknik Y, TSEA28

Tentamen. Datorteknik Y, TSEA28 Tentamen Datorteknik Y, TSEA28 Datum 2016-05-31 Lokal Kåra, T1, T2, U1, U15 Tid 14-18 Kurskod TSEA28 Provkod TEN1 Kursnamn Provnamn Datorteknik Y Skriftlig tentamen Institution ISY Antal frågor 6 Antal

Läs mer

Operativsystem. Informationsteknologi sommarkurs 5p, 2004. Agenda. Slideset 7. Exempel på operativsystem. Operativsystem

Operativsystem. Informationsteknologi sommarkurs 5p, 2004. Agenda. Slideset 7. Exempel på operativsystem. Operativsystem Informationsteknologi sommarkurs 5p, 2004 Mattias Wiggberg Dept. of Information Technology Box 337 SE751 05 Uppsala +46 18471 31 76 Collaboration Jakob Carlström Slideset 7 Agenda Exempel på operativsystem

Läs mer

Schemaläggnings metoderna AMP & SMP i en Multiprocessor

Schemaläggnings metoderna AMP & SMP i en Multiprocessor EDT621 Datorarkitekturer med operativsystem 7,5 HP 2015-12-05 Schemaläggnings metoderna AMP & SMP i en Multiprocessor Författare: Simon Plato Sammanfattning Rapporten beskriver två schemaläggnings metoder.

Läs mer

Datorarkitekturer med operativsystem ERIK LARSSON

Datorarkitekturer med operativsystem ERIK LARSSON Datorarkitekturer med operativsystem ERIK LARSSON Personal Examinator: Erik Larsson 0462224654 Erik.Larsson@eit.lth.se (använd ämne/subject: EDT621) Dimitar Nikolov Dimitar.Nikolov@eit.lth.se Kursmoment

Läs mer

Digitalteknik och Datorarkitektur

Digitalteknik och Datorarkitektur Digitalteknik och Datorarkitektur Tentamen Tisdag 12 Januari 2010 Pollacksbackens skrivsal, klockan 08:00 13:00 Examinator: Karl Marklund 018 471 10 49 0704 73 32 17 karl.marklund@it.uu.se Tillåtna hjälpmedel:

Läs mer

Aktivitetsschemaläggning för flerkärninga processorer

Aktivitetsschemaläggning för flerkärninga processorer Lunds Tekniska Högskola Datorarkitekturer med Operativsystem EDT621 Aktivitetsschemaläggning för flerkärninga processorer Tobias Lilja 5 december 2016 Innehåll 1 Inledning 3 1.1 Syfte................................

Läs mer

Datorarkitekturer med operativsystem ERIK LARSSON

Datorarkitekturer med operativsystem ERIK LARSSON Datorarkitekturer med operativsystem ERIK LARSSON Personal Examinator: Erik Larsson 0462224654 Erik.Larsson@eit.lth.se (använd ämne/subject: EITF60) Christoffer Cederberg christoffer.ceder@gmail.com Nyheter

Läs mer

Uppgift 1: a) u= a c + a bc+ ab d +b cd

Uppgift 1: a) u= a c + a bc+ ab d +b cd Uppgift 1: a) u= a c a bc ab d b cd b) a b c d u 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1

Läs mer

Intel Pentium. Intel khz. 32 million 2600MHz. Copyright 2005 Benny Thörnberg, Mattias O Nils

Intel Pentium. Intel khz. 32 million 2600MHz. Copyright 2005 Benny Thörnberg, Mattias O Nils Intel Pentium Intel 4004 2300 transistors @ 108 khz 32 million transistors @ 2600MHz 1 Målsättning med kursen Förstå funktionen hos en processor, samt förstå olika processorarkitekturer Utifrån en specifikation

Läs mer

Målsättning med kursen

Målsättning med kursen 1 Intel Pentium Intel 4004 2300 transistors @ 108 khz 32 million transistors @ 2600MHz 1 Målsättning med kursen Förstå funktionen hos en processor, samt förstå olika processorarkitekturer Utifrån en specifikation

Läs mer

Omtentamen i CDT204 - Datorarkitektur

Omtentamen i CDT204 - Datorarkitektur Omtentamen i CDT204 - Datorarkitektur 2012-11-05 Skrivtid: 08.10-12.30 Hjälpmedel: Miniräknare och valfritt skriftligt (ej digitalt) material. Lärare: Stefan Bygde, kan nås på 070-619 52 83. Tentamen är

Läs mer

IT-GUIDE Version 1.0 Författare: Juha Söderqvist

IT-GUIDE Version 1.0 Författare: Juha Söderqvist IT-GUIDE Version 1.0 Författare: Juha Söderqvist Innehåll INTRODUKTION... 3 DATOR... 3 persondator... 3 Tablet... 4 Laptop... 4 Telefoner... 4 MODERKORT... 5 PROCESSORN... 5 inbäddade system... 6 RAM-MINNE...

Läs mer

Tentamen PC-teknik 5 p Lösningar och kommentarer

Tentamen PC-teknik 5 p Lösningar och kommentarer Tentamen PC-teknik 5 p Lösningar och kommentarer Program: Di2, Em3, Et3 Datum: 04-08-10 Tid: 13:30-18:30 Lokal E171 Hjälpmedel: Linjal, miniräknare, Instruktionsrepertoar för 8086 (utdelas), Lathund, Pacific

Läs mer