Tentamen i Matematisk statistik Kurskod S0001M

Relevanta dokument
Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Sannolikhetslära och statistik Kurskod S0008M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Sannolikhetslära och statistik Kurskod S0008M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Sannolikhetslära och statistik Kurskod S0008M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Sannolikhetslära och statistik Kurskod S0008M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Ämneskod-linje S0001M. Tentamensdatum Poäng totalt för del 2 30 (3 uppgifter) Skrivtid

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M

Kursboken Vännman: Matematisk statistik Kompletterande kursmaterial till kursen Matematisk statistik (formelblad och kompendiet Regressionsanalys).

Tentamen i Matematisk statistik Kurskod S0001M

Föreläsningsanteckningar till kapitel 8, del 2

Kursboken Vännman: Matematisk statistik Kompletterande kursmaterial till kursen Matematisk statistik (formelblad och kompendiet Regressionsanalys.

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Ämneskod-linje S0001M. Tentamensdatum Poäng totalt för del 2 30 (3 uppgifter) Skrivtid

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

Tentamen i Matematisk statistik Kurskod S0001M

Formel- och tabellsamling i matematisk statistik

Avd. Matematisk statistik

Matematisk statistik, Föreläsning 5

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

0 om x < 0, F X (x) = c x. 1 om x 2.

Tryckfel i K. Vännman, Matematisk Statistik, upplaga 2:13

Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p)

Stockholms Universitet Statistiska institutionen Termeh Shafie

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

TENTAMEN Datum: 14 feb 2011

Lycka till!

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12

Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle

Antal P(ξ = x)

a) Bestäm sannolikheten att en slumpmässigt vald komponent är defekt.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

FACIT: Tentamen L9MA30, LGMA30

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas.

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Tentamen för kursen. Linjära statistiska modeller. 22 augusti

Föreläsning 11: Mer om jämförelser och inferens

Kompletterande kursmaterial till kursen Matematisk statistik.

Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion

EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):

Uppgift 2) Datum: 23 okt TENTAMEN I MATEMATIK OCH MATEMATISK STATISTIK, kurskod 6H3000

Tentamen i Dataanalys och statistik för I den 28 okt 2015

FÖRELÄSNING 7:

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 21 januari 2006, kl

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända

F9 Konfidensintervall

4 Diskret stokastisk variabel

Matematisk statistik, LMA 200, för DAI och EI den 25 aug 2011

LABORATION 3 - Regressionsanalys

TENTAMEN I SF2950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 2010 KL

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004, TEN

Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:...

9. Konfidensintervall vid normalfördelning

Avd. Matematisk statistik

TMS136. Föreläsning 10

Tentamen den 11 april 2007 i Statistik och sannolikhetslära för BI2

Lufttorkat trä Ugnstorkat trä

Läs noggrant informationen nedan innan du börjar skriva tentamen

AMatematiska institutionen avd matematisk statistik

Uppgift 1. f(x) = 2x om 0 x 1

Avd. Matematisk statistik

Transkript:

Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2015-10-23 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Jesper Martinsson, Mykola Shykula, Adam Jonsson Jourhavande lärare: Adam Jonsson Tel: 0920-491948 Tillåtna hjälpmedel: Räknedosa, Kursboken Vännman: Matematisk statistik. I kursboken får anteckningar och post-it lappar finnas, men inte lösta exempel. Kompendium om regressionsanalys Formelblad Tabeller Tentamen består av två delar. På den första delen, som är obligatorisk för att kunna bli godkänd, behöver enbart svar lämnas in, men om korta lösningar bifogas så finns det vid gränsfall möjlighet att få delpoäng på en uppgift. Delpoäng ges i första hand om en uppgift i stort sett behandlats korrekt men slarvfel begåtts. Om kortfattade lösningar ej bifogas så finns inga möjligheter att få delpoäng på en uppgift. För godkänt krävs godkända webbuppgifter och minst 17 poäng på del 1. Svaren för del 1 ska fyllas i på det blad som bifogas tentamen. Det ifyllda svarsbladet skall läggas först om du lämnar in lösningar och bifogas oavsett om du lämnat in lösningar eller ej. Om inte det ifyllda svarsbladet lämnas in bedöms tentamen som underkänd. På den andra delen, som gäller tentamen för överbetyg, ska fullständiga lösningar lämnas in. Tänk på att redovisa dina lösningar på ett klart och tydligt sätt och motivera resonemangen. Vid bedömningen av lösningarna läggs stor vikt vid hur lösningarna är motiverade och redovisade. För betyg 4 krävs godkänt på den första obligatoriska delen samt minst 13 poäng från den andra delen för överbetyg. För betyg 5 krävs godkänt på den första obligatoriska delen samt minst 23 poäng från den andra delen för överbetyg. OBS! Det går inte att kompensera underkänt på den första korta delen av tentamen med poäng på den andra delen. Ange på tentamensomslaget om du har lämnat in lösningar på del 2 genom att kryssa för de sista tre uppgifterna. Om du plussar för överbetyg så skriv detta på tentamensomslaget. LYCKA TILL! 1 (7)

1. Om ett inbrott görs en natt så ringer tjuvlarmet med sannolikhet 0.99. Om inget inbrott görs ringer larmet med sannolikhet 0.02. Antag att sannolikheten att inbrott sker en viss natt är 0.001. En natt ringer larmet. Vad är (den betingade) sannolikheten att det varit inbrott? 2. En församling innehåller 12 socialister och 7 borgerliga. Man väljer slumpmässigt en styrelse bestående av 3 ledamöter från församlingen. Vad är sannolikheten att styrelsen kommer att bestå av 1 borgerlig ledamot och 2 socialister? 3. I planeringen av ett nytt kösystem på bankkontoret har man tyckt sig kunna beskriva antalet personer som kommer in på banken per minut med en Poissonfördelning med väntevärdet 3.2 (kunder/minut). Hur stor är sannolikheten att det under dessa förutsättningar kommer in mer än 4 personer på en minut? 4. Slumpvariabeln ξ 1 är Exp(λ)-fördelad med λ = 0.2. Den diskreta slumpvariabeln ξ 2 har sannolikhetsfunktionen i tabellen nedan. x 1 2 3 P (ξ 2 = x) 0.5 0.3 0.2 Låt ξ = ξ 1 + ξ 2. Bestäm väntevärdet av ξ, dvs bestäm E(ξ). 5. I en viss dator avrundas vid addition varje tal till närmast heltal. Antag att avrundningsfelen är oberoende och R( 0.5, 0.5)-fördelade. Om tio tal adderas, vad är då sannolikheten att högst två av dom 10 avdrundningsfelen får ett absolutbelopp som är mindre än 0.2? 6. Antag att ξ 1, ξ 2,..., ξ 50 är oberoende och har samma fördelning. Dom möjliga värdena på ξ i är 2 och 2, där { 2 med sannolikhet 0.5, ξ i = 2 med sannolikhet 0.5. Använd en lämplig metod för att beräkna (eller snarare approximera) sannolikheten P ( 50 i=1 ξ i 10). 7. Majas och Joels utgifter för kursmaterial (enhet: kr) under en månad kan ses som oberoende stokastiska variabler. Majas utgifter/månad kan antas normalfördelade med väntevärde 410 kr och standardavvikelse 30 kr och Joels utgifter/månad kan antas normalfördelade med väntevärde 340 kr och standardavvikelse 25 kr. Vad är sannolikheten att Joels utgifter överstiger Majas under en månad? 8. På ett sjukhus vill man försöka avgöra om två laboratorier mäter likvärdigt. För att undersöka det tog man prover från 7 olika patienter och delade vart och ett av de 7 proven i två bitar. Provhalvorna skickades sedan till de två laboratorierna för mätning. Man kan 2 (7)

betrakta resultaten som observationer på oberoende normalfördelade stokastiska variabler. Resultat (i kodade enheter) ges nedan. Prov 1 2 3 4 5 6 7 Lab 1 3.3 1.2 0.4 1.3 3.1 2.5 1.8 Lab 2 3.2 1.7 0.6 1.8 4.4 3.3 2.0 Kan man utgående från dessa mätningar påstå att det är en genomsnittlig systematisk skillnad mellan de båda laboratorierna? Du ska besvara frågan genom att beräkna och tolka ett lämpligt 95 % konfidensintervall under rimliga normalfördelningsantaganden. Rätt intervall och rätt svar (JA eller NEJ) krävs för 2p. 9. Antag att mätvärdena i tabellen nedan kan betraktas som observerade värden på ξ 1,..., ξ 5, där ξ i N(µ, 1.25), i = 1, 2,..., 5. 1.5 2.3 2.0 0.2 0.7 Man vill testa H 0 : µ = 0 mot H 1 : µ > 0. (a) Antag att σ är känd och att man bestämt sig för en beslutsregel som innebär att H 0 förkastas då z > k, där ξ z = 1.25/ 5 och där k är en konstant. Vilket värde ska k ha om man vill ha ett test med 1% signifikansnivå? (b) Om standardavvikelsen σ är okänd så måste man välja en annan testvariabel än variabeln z i (a) för att testa H 0 mot H 1 med hjälp av datamaterialet ovan. Antag att σ är okänd. Vilken av följande procentsatser ger den minsta signifikansnivå på vilken H 0 kan förkastas: 0.1%, 0.5%, 1%, 2.5%, 5% eller 10%? Ange ett alternativ på svarsbladet. 10. Eva säljer glass på stranden. Hon är intresserad av en enkel modell för sin försäljning. Utifrån försäljningssiffror från de senaste 28 dagarna skattar hon en regressionsmodell där Y =intäkt (enhet: kr per dag) beror av X 1 =utomhustemperatur (enhet: C o ) och X 2, där X 2 är en dummyvariabel som antar värdet 0 om det är en veckodag och 1 om det är helg. Tabellen nedan innehåller minsta-kvadrat skattningarna av regressionskoefficienterna samt deras skattade standardavvikelser: b 0 = 528 s b0 = 307 b 1 = 78.0 s b1 = 11.4 b 2 = 269 s b2 = 116 Regressionskvadratsumman och residualkvadratsumman är 28 i=1 (Ŷi Ȳ )2 = 3245886 respektive 28 i=1 (Y i Ŷi) 2 = 1734117. 3 (7)

(a) Bestäm den justerade förklaringsgraden. (b) Den första dagen under 28-dagarsperioden var en måndag då det var 23 grader varmt och Eva sålde för 2535 kr. Beräkna residualen för denna första dag. (c) Låt beteckna den förväntade skillnaden mellan försäljningen en vardag och försäljningen en helgdag. Beräkna ett konfidensintervall för med 98% konfidensgrad. (1p) Slut på del 1. Glöm inte att bifoga svarsbladet med tentan! 4 (7)

Tabell för svar till del 1 Riv ut och lägg svarsbladet först i tentamen Namn:................................................................... Personnummer:.......................................................... Sannolikheter skall anges som ett tal mellan 0 och 1 i decimalform. Fråga Svar Poäng 1 Sannolikhet, fyra decimaler 0.0472 2 2 Sannolikhet, tre decimaler 0.477 2 3 Sannolikhet, fyra decimaler 0.2194 2 4 Väntevärde, tre decimaler 6.700 2 5 Sannolikhet, fyra decimaler 0.1673 2 6 Sannolikhet, fyra decimaler 0.7611 (Φ(0.71)) 2 7 Sannolikhet, fyra decimaler 0.0367 2 8 Undre och övre gräns, tre decimaler [0.060,0.911] eller [- 0.911,-0.060] JA eller NEJ JA 2 9 a värdet på k, fyra decimaler 2.3263 2 b 0.1%, 0.5%, 1%, 2.5%, 5% eller 10% 2.5% 2 10 a justerad förklaringsgrad i %, fyra decimaler 62.3927 1 b residual, tre decimaler 213.000 2 c undre och övre gräns, fyra decimaler [ 19.2600, 557.2600] 2 Totalt antal poäng 25 5 (7)

Tentamen i Matematisk statistik, S0001M, del 2 2015-10-23 Till uppgifterna på del 2 krävs fullständiga lösningar 11. (a) Hastigheten i en viss riktning för en partikel som diffunderar i ett material kan betraktas som en slumpvariabel ξ N(0, σ), där σ är en konstant. Partikelns rörelse-energi i den aktuella riktningen, som betecknas ζ, ges av ζ = mξ2 2, där m är partikelns massa. Bestäm väntevärdet E(ζ). (b) Antag att ξ 1, ξ 2,..., ξ 1000 är oberoende och har samma fördelning där dom möjliga värdena är 1 och 1 och { 1 med sannolikhet 0.5, ξ i = 1 med sannolikhet 0.5. Lösning: Låt ξ = 1000 i=1 ξ i och låt ζ = ξ 2. Bestäm väntevärdet av ζ, dvs bestäm E(ζ). (5p) (5p) (a) Eftersom ξ N(0, σ) har vi E(ξ) = 0 och V (ξ) = σ 2. Sats 4C ger E(ξ 2 ) = V (ξ) = σ 2. Sats Sats 5A ger Alltså har vi E(ζ) = mσ 2 /2. E( mξ2 2 ) = m 2 E(ξ2 ) = m 2 σ2. (b) Direkt uträkning från definitionen av väntevärde och varians ger E(ξ i ) = 0, V (ξ i ) = 1. Sats 5A ger E(ξ) = 0 och V (ξ) = 1000 eftersom variablerna är oberoende. Sats 4C ger V (ξ) = E(ξ 2 ). Alltså har vi E(ζ) = 1000. 12. Antag att mävärdena i tabellen nedan kan betraktas som ett observerat stickprov från R(θ 0.5, θ + 0.5), där parametern θ är okänd. Beräkna ett konfidensintervall för θ med konfidensgrad 0.96. 3.60 3.55 2.80 3.65 3.40 3.00 3.50 3.30 3.05 Lösning: Det gäller att θ är medianen i R(θ 0.5, θ+0.5)-fördelningen. Eftersom rektangelfördelningen är kontinuerlig så kan vi använda metoden med teckenintervall för att bestämma ett konfidensintervall för θ. Låt ξ(1),..., ξ(9) beteckna det ordnade stickprovet och x(1),..., x(9) de observerade värdena. Vi bestämmer konfidensgradern för I k = [ξ(1+k), ξ(9 k)], k = 0, 1, 2,..., 4. Konfidensgraden för I 0 är P (ξ(1) < m < ξ(9)) = (10p) 1 P (alla ξ i < θ eller alla ξ i > θ) = 1 (0.5 9 + 0.5 9 ) = 0.996. Inför η =antal variabler som är < θ. Vi har att I 1 innehåller θ precis då 2 η 7. Vi har η Bin(9, 0.5), så P (2 η 7) = 0.9609. Så [x(2), x(8)] ger ett konfidensintervall med konfidensgrad nära 0.96. Numeriskt får vi intervallet [3.0, 3.6]. 6 (7)

Tentamen i Matematisk statistik, S0001M, del 2 2015-10-23 13. Tänk dig att du fått i uppdrag att studera förekomsten av har-pest bland harar i en stor skog. Det är av intresse att veta om mer än 5 procent av alla harar i skogen har har-pest. I en undersökning av 60 slumpmässigt utvalda harar visade sig 5 stycken ha har-pest. Anser du att det finns anledning att tro att andelen harar i skogen som bär på har-pest är större än 5 procent? Lösning: Låt p vara andelen harar i skogen som bär på har-pest. För att avgöra om p är större än 0.05 ställer vi upp H 0 : p = 0.05 mot H 1 : p > 0.05. Lämplig beslutsregeln är: förkasta H 0 om ξ k, där ξ är antalet harar som har har-pest bland dom 60 utvalda hararna och där k bestäms av risknivån α. Här är α inte angivet, så vi skulle kunna prova några vanligt förekommande risknivåer. Vi beräknar istället P-värdet α 0, vilket direkt ger på villka risknivåer H 0 kan förkastas. Genom att använda approximationen Bin(60, 0.05) P o(3) får vi (10p) α 0 = P (ξ 5 H 0 ) = P (ξ 5 ξ Bin(60, 0.05)) 0.18. Så H 0 kan inte förkastas på dom vanligt förekommande risknivåerna. 7 (7)