Dopplerradar. Ljudets böjning och interferens.

Storlek: px
Starta visningen från sidan:

Download "Dopplerradar. Ljudets böjning och interferens."

Transkript

1 Dopplerradar. Ljudets böjning och interferens. Förberedelser Läs i vågläraboken om interferens (sid 60 70), svävning (sid 71 72), dopplereffekt (sid 83 86), ljudreflektioner i ett rum (sid ), böjning i en spalt (sid ), böjning i en cirkulär öppning (sid ), interferens mellan N spaltöppningar (sid ) och dikroism (sid ). Läs igenom hela laborationsinstruktionen. Gör följande uppgifter och lämna lösningarna renskrivna vid laborationens början till handledaren för kontroll: 1. En högtalare med diametern 50 mm är kopplad till en tongenerator. Antag att ljudets utbredningshastighet är 340 m/s. a) Vid vilken frekvens hamnar första böjningsminimum i vinkeln 90? b) Vilken är den högsta frekvens som återges i hela halvsfären, av en bashögtalare med diametern 38,1 cm (15 tum)? Svar: a) 8,3 khz, b) 1,1 khz 2. Två likadana högtalare matas med frekvensen 17,0 khz från en tongenerator och ljudtrycket registreras då mikrofonen i ett ekofritt rum vrids vinkeln θ i förhållande till högtalarnas mittpunktsnormal. Uppställningen visas i figur 1. Figur 1 Försöksuppställning för upptagning av interferensmönster. I figur 2 visas det registrerade interferensmönstret. Ljudhastigheten i luften är 340 m/s. Relativt ljudtryck Figur 2 Ljudtrycket när mikrofonen vrids i förhållande till mittpunktsnormalen. a) Svänger högtalarmembranen i fas eller motfas? b) Hur stort är avståndet mellan högtalarnas mittpunkter? c) Vilken diameter har högtalarna? Ledning: Utnyttja böjningsmönstret som är överlagrat interferensmönstret i figur 2. Svar: b) 0,15 m, c) 4,9 cm 3. Ett tåg är på väg mot en tunnel genom ett berg. a) Loket avger en varningssignal med frekvensen f tåg. Efter reflektion mot bergväggen hör lokföraren en annan frekvens f. Bestäm sambandet mellan de båda frekvenserna. Beteckna tågets fart med och ljudhastigheten i luft med v. (Ledning: Betrakta först bergväggen som mottagare och sedan som sändare.) b) Antag att tågsignalen har frekvensen 1,00 khz och att tågets fart är 216 km/h. Vilken frekvens uppfattar då lokföraren efter reflektionen? v+ Svar: a) f = ftåg, b) 1,43 khz v 4. Längs en väg i en stad har polisen placerat sin dopplerradar. Bredvid sändaren finns en mottagare som registrerar de mikrovågor som reflekterats mot bilar som närmar sig. Beteckna sändarens frekvens med f s, den mottagna frekvensen med f m och bilarnas fart med. a) Ange ett samband mellan f m och f s. b) När en bil närmar sig är skillnaden mellan de båda mikrovågs- Dopplerradar. Ljudets böjning och interferens. 1 Dopplerradar. Ljudets böjning och interferens. 2

2 frekvenserna 2,67 khz och deras summa är 20,0 GHz. Bestäm bilens hastighet. (Ledning: Lös först ut ur sambandet i a uppgiften.) Svar: b) 144 km/h Laborationsuppgifter Laborationen består av två delar: Upptagning av interferens- och böjningsmönster från en respektive flera högtalare. Hastighetsbestämning med hjälp av dopplermetoden. Ljudets böjning och interferens I en ekofri låda finns fem högtalare, som är monterade på en gemensam roterbar axel. Högtalarna kan anslutas var för sig till en tongenerator som vi ska låta avge frekvenserna 5,5 khz respektive 17,5 khz. En mikrofon registrerar ljudet från högtalarna. Se figur 3 och figur 4 nedan. Mikrofonsignalen passerar en förstärkare och ett bandpassfilter som släpper igenom antingen 5,5 khz eller 17,5 khz. Signalen likriktas och registreras på en skrivare. Figur 4 Principskiss över experimentuppställningen till ljudets böjning och interferens. Uppgift 1. Frekvensinställning Ställ in filtrets genomsläppsfrekvens på 5,5 khz och justera frekvensinställningen på tongeneratorn så att maximalt utslag fås på skrivaren då högtalare C är inkopplad och riktad rakt mot mikrofonen. Utför uppgift 2 och uppgift 3 nedan. Ändra därefter filtrets genomsläppsfrekvens till 17,5 khz, justera tongeneratorn enligt ovan och upprepa uppgift 2 och uppgift 3 nedan. Uppgift 2. Upptagning av böjningsmönster För att undvika överstyrning av skrivarutslaget, justera skrivarens maximumutslag då högtalare C är inkopplad och riktad rakt mot mikrofonen. Figur 3 En någorlunda dämpad ljudlåda innehåller en mikrofon och fem högtalare. Låt därefter högtalare C rotera mellan ändlägena medan den avger ljud. Gör en vinkelgradering av upptagningen, och anteckna aktuell frekvens. Uppgift 3. Upptagning av böjnings- och interferensmönster Låt två högtalare (BD eller AE), tre högtalare (BCD eller ACE), och slutligen alla fem högtalarna ljuda under rotationen och registrera det kombinerade böjnings- och interferensmönstret. Justera det maximala skrivarutslaget före varje upptagning. Gör en vinkelgradering av varje upptagning, och anteckna aktuell Dopplerradar. Ljudets böjning och interferens. 3 Dopplerradar. Ljudets böjning och interferens. 4

3 frekvens och högtalarkombination. Uppgift 4. Undersökning av böjningsmönster Var finns 1:a böjningsminimum för upptagningen vid 5,5 khz? Beräkna teoretiskt böjningsminimumens lägen för frekvensen 17,5 khz och markera dessa lägen i upptagningen. Hur väl stämmer minimumens beräknade lägen överens med upptagningens? Utgå från de verkliga böjningsminimumens lägen vid 17,5 khz, och beräkna hur stor effektiv svängningsdiameter högtalaren har. Uppgift 5. Undersökning av böjnings- och interferensmönster Beräkna teoretiskt huvudmaximumens lägen och markera dessa lägen i respektive upptagning. Hur väl stämmer topparnas beräknade lägen överens med upptagningarnas? Figur 5 Försöksuppställning vid hastighetsbestämning Sändaren skickar ut mikrovågor som reflekteras mot ett rörligt föremål R. Den våg som når mottagaren kommer på grund av dopplereffekten att ha en annan frekvens än den utsända. Då föremålet R befinner sig i läge A (se figur 6) reflekteras en del av mikrovågen och ger upphov till punkt 1 hos den reflekterade vågen. En tid senare har föremålet rört sig mot sändaren/mottagaren (endast sändaren är utritad) till läge B och reflektionen ger upphov till punkt 2 hos den reflekterade vågen osv. Observera att punkt 2 ligger närmare punkt 1 än den hade gjort om föremålet hade stått stilla. Eftersom föremålet rör sig mot sändaren/mottagaren får den reflekterade vågen, som når mottagaren, en något kortare våglängd (dvs. högre frekvens) än den utsända vågen. Med hjälp av upptagningarnas utseende kan man direkt avgöra hur många högtalare som varit inkopplade. Förklara hur! Dopplerradar Elektromagnetisk strålning inom frekvensområdet 300 MHz 300 GHz kallas mikrovågor. På laborationen används en Gunn-oscillator för att generera mikrovågor. Den s.k. Gunn-effekten upptäcktes 1963 av engelsmannen Gunn. Hastighetsbestämning Vi utgår från en försöksuppställning där mikrovågssändaren och mikrovågsmottagaren (båda i vila) placeras bredvid varandra enligt figur 5. Figur 6 Det rörliga föremålet reflekterar endast en del av den utsända vågen. Resten reflekteras mot fasta föremål. De båda vågorna interfererar med varandra och ger upphov till svävning. Frekvensskillnaden mellan vågorna är överdriven i figuren. Dopplerradar. Ljudets böjning och interferens. 5 Dopplerradar. Ljudets böjning och interferens. 6

4 Den mottagna signalen ger upphov till en spänning som skickas till ett oscilloskop. Observera att denna spänning har så hög frekvens ( 10 GHz) att oscilloskopet inte kan visa tidsvariationerna. Istället likriktas den mottagna signalen och oscilloskoputslaget blir därmed proportionellt mot spänningens amplitud. Om bara den mot det rörliga föremålet reflekterade vågen träffade mottagaren, så skulle oscilloskopbilden visa en rät linje vars läge över nollnivån bara berodde på det rörliga föremålets avstånd från sändaren/mottagaren (intensiteten ökar ju när avståndet minskar). Det rörliga föremålet reflekterar emellertid endast en del av den utsända vågen. Resten av vågen passerar förbi och reflekteras senare mot fasta föremål i rummet. Resultatet blir att mottagaren träffas av två vågor. En våg med frekvensen f m som reflekterats mot det rörliga föremålet R, och en våg med frekvensen f s som reflekterats mot fasta föremål F (vägg eller andra orörliga föremål). Se figur 6. Sambandet mellan de båda frekvenserna ges av (jämför förberedelseuppgift 4 a) c+ = fs c där är det rörliga föremålets fart och c mikrovågornas fart. På grund av att << c blir f m och f s jämförbart stora. Hos mottagaren interfererar f m och f s och ger upphov till svävning. Studera figur 4.8 på sid 72 i vågläraboken. I figur 7 visar den heldragna kurvan hur mottagarsignalen ser ut på ett oscilloskop då de båda vågorna inte har samma amplitud (vilket är det normala). Om amplituderna är lika stora får oscilloskopkurvans nedre del en spetsigare form (streckad). fs = c f m + f s Eftersom << c och därmed f m f s kan vi skriva fs c 2 fs Observera att svävningsfrekvensen f sväv = f m f s är mätbar trots att den är nära noll jämfört med frekvenserna f m och f s. Uppgift 1. Bestämning av mikrovågornas våglängd och frekvens Ställ in spänningen till mikrovågssändaren (Gunndioden) på det värde som anges på sändaren. Försöksuppställningen visas i figur 8. Figur 8 Försöksuppställning vid mätning av mikrovågors frekvens. Vi får alltid två vågor in till mottagaren. En våg som reflekteras av metallskivan och en våg som reflekteras mot rummets väggar. Fundera på vad som händer med summan av de två vågorna då metallskivan placeras på olika ställen längs med linjalen, och använd detta för att bestämma mikrovågornas våglängd och frekvens. Figur 7 Observera att det bara är amplitudvariationen hos den likriktade spänningen som registreras på oscilloskopskärmen. Uppgift 2. Mätning av hastighet Mät hastigheten hos ett föremål som rör sig med konstant hastighet, dels med dopplermetoden enligt ovan, och dels genom att mäta den tid det tar för det rörliga föremålet att förflytta sig en känd sträcka. Gör mätningarna med båda metoderna för minst tre olika hastigheter. Vi löser nu ut ur sambandet ovan. Det ger Dopplerradar. Ljudets böjning och interferens. 7 Dopplerradar. Ljudets böjning och interferens. 8

5 Uppgift 3. Studium av mikrovågornas egenskaper Placera sändare och mottagare enligt figur 9. Observera att om sändaren och mottagaren placeras för nära varandra, så kan mottagardioden brännas sönder! Figur 9 Försöksuppställning. a Undersök vad som händer med utslaget på oscilloskopet då en masonitskiva placeras mellan sändare och mottagare. Förklara detta! b Undersök vad som händer med utslaget på oscilloskopet då en metallplatta placeras mellan sändare och mottagare. Förklara detta! c Vrid mottagaren (riktad mot sändaren) runt x axeln utan att ha något föremål mellan mottagaren och sändaren. Vad händer med oscilloskoputslaget? Förklara! d Vrid mottagaren runt x axeln (med öppningen riktad mot sändaren) så att utslaget blir maximalt. Sätt ett metallgaller mellan sändare och mottagare och bestäm polarisationsriktningen på mikrovågsstrålningen genom att vrida på metallgallret och studera oscilloskoputslaget. Förklara! Dopplerradar. Ljudets böjning och interferens. 9

Ljudets och ljusets böjning och interferens

Ljudets och ljusets böjning och interferens 1 Föreredelser Läs i vågläraoken om ljudreflektioner i ett rum (sid 138-140), öjning i en spalt (sid 325-329), öjning i en cirkulär öppning och Bainets princip (sid 329-332), Youngs duelspaltförsök (sid

Läs mer

Läs i vågläraboken om interferens (sid 59-71), dopplereffekt (sid 81-84), elektromagnetiska vågor (sid 177-181) och dikroism (sid 413-415).

Läs i vågläraboken om interferens (sid 59-71), dopplereffekt (sid 81-84), elektromagnetiska vågor (sid 177-181) och dikroism (sid 413-415). Dopplerradar Förberedeler Lä i vågläraboken om interferen (id 59-71), dopplereffekt (id 81-84), elektromagnetika vågor (id 177-181) och dikroim (id 413-415). Lä igenom hela laborationintruktionen. Gör

Läs mer

Läs i vågläraboken om interferens (sid 59-71), dopplereffekt (sid 81-84), elektromagnetiska vågor (sid 177-181) och dikroism (sid 413-415).

Läs i vågläraboken om interferens (sid 59-71), dopplereffekt (sid 81-84), elektromagnetiska vågor (sid 177-181) och dikroism (sid 413-415). Dopplerradar Förberedeler Lä i vågläraboken om interferen (id 59-71), dopplereffekt (id 81-84), elektromagnetika vågor (id 177-181) och dikroim (id 413-415). Lä igenom hela laborationintruktionen. Gör

Läs mer

Laboration 1 Fysik

Laboration 1 Fysik Laboration 1 Fysik 2 2015 : Fysik 2 för tekniskt/naturvetenskapligt basår Laboration 1 Förberedelseuppgifter 1. För en våg med frekvens f och våglängd λ kan utbredningshastigheten skrivas: 2. Färgen på

Läs mer

Handledning laboration 1

Handledning laboration 1 : Fysik 2 för tekniskt/naturvetenskapligt basår Handledning laboration 1 VT 2017 Laboration 1 Förberedelseuppgifter 1. För en våg med frekvens f och våglängd λ kan utbredningshastigheten skrivas: 2. Färgen

Läs mer

Upp gifter. c. Hjälp Bengt att förklara varför det uppstår en stående våg.

Upp gifter. c. Hjälp Bengt att förklara varför det uppstår en stående våg. 1. Bengt ska just demonstrera stående vågor för sin bror genom att skaka en slinkyfjäder. Han lägger fjädern på golvet och ber sin bror hålla i andra änden. Sen spänner han fjädern genom att backa lite

Läs mer

1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick.

1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick. 10 Vågrörelse Vågor 1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick. y (m) 0,15 0,1 0,05 0-0,05 0 0,5 1 1,5 2 x (m) -0,1-0,15

Läs mer

Ljusets böjning & interferens

Ljusets böjning & interferens ... Laboration Innehåll 1 Förberedelseuppgifter 2 Laborationsuppgifter Ljusets böjning & interferens Ljusets vågegenskaper Ljus kan liksom ljud beskrivas som vågrörelser och i den här laborationen ska

Läs mer

Kundts rör - ljudhastigheten i luft

Kundts rör - ljudhastigheten i luft Kundts rör - ljudhastigheten i luft Laboration 4, FyL VT00 Sten Hellman FyL 3 00-03-1 Laborationen utförd 00-03-0 i par med Sune Svensson Assisten: Jörgen Sjölin 1. Inledning Syftet med försöket är att

Läs mer

Ljusets böjning & interferens

Ljusets böjning & interferens Ljusets böjning & interferens Laboration Innehåll 1 Förberedelseuppgifter 2 Laborationsuppgifter 3 Appendix Ljusets vågegenskaper Ljus kan liksom ljud beskrivas som vågrörelser och i den här laborationen

Läs mer

Observera att uppgifterna inte är ordnade efter svårighetsgrad!

Observera att uppgifterna inte är ordnade efter svårighetsgrad! TENTAMEN I FYSIK FÖR n1, 9 JANUARI 2004 Skrivtid: 08.00-13.00 Hjälpmedel: Formelblad och godkänd räknare. Obs. Inga lösblad! Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och

Läs mer

för M Skrivtid i hela (1,0 p) 3 cm man bryningsindex i glaset på ett 2. två spalter (3,0 p)

för M Skrivtid i hela (1,0 p) 3 cm man bryningsindex i glaset på ett 2. två spalter (3,0 p) Tentamen i tillämpad Våglära FAF260, 2016 06 01 för M Skrivtid 08.00 13.00 Hjälpmedel: Formelblad och miniräknare Uppgifterna är inte sorteradee i svårighetsgrad Börja varje ny uppgift på ett nytt blad

Läs mer

Fartbestämning med Dopplerradar

Fartbestämning med Dopplerradar Vågrörelselära, 5 poäng 007 03 14 Uppsala Universitet Projektarbete Fartbestämning med Dopplerradar Per Mattsson, FA Olov Rosén, FA 1 1. Innehållsförteckning. Sammanfattning......3 3. Inledning......3

Läs mer

Assistent: Cecilia Askman Laborationen utfördes: 7 februari 2000

Assistent: Cecilia Askman Laborationen utfördes: 7 februari 2000 Assistent: Cecilia Askman Laborationen utfördes: 7 februari 2000 21 februari 2000 Inledning Denna laboration innefattade fyra delmoment. Bestämning av ultraljudvågors hastighet i aluminium Undersökning

Läs mer

3. Mekaniska vågor i 2 (eller 3) dimensioner

3. Mekaniska vågor i 2 (eller 3) dimensioner 3. Mekaniska vågor i 2 (eller 3) dimensioner Brytning av vågor som passerar gränsen mellan två material Eftersom utbredningshastigheten för en mekanisk våg med största sannolikhet ändras då den passerar

Läs mer

Observera att uppgifterna inte är ordnade efter svårighetsgrad!

Observera att uppgifterna inte är ordnade efter svårighetsgrad! TENTAMEN I FYSIK FÖR n1, 19 DECEMBER 2003 Skrivtid: 14.00-19.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t s(x,t) =s 0 sin 2π T x. v = fλ =3 5 m/s = 15 m/s

TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t s(x,t) =s 0 sin 2π T x. v = fλ =3 5 m/s = 15 m/s 140528: TFEI02 1 TFEI02: Vågfysik Tentamen 140528: Svar och anvisningar Uppgift 1 a) En fortskridande våg kan skrivas på formen: t s(x,t) =s 0 sin 2π T x λ Vi ser att periodtiden är T =1/3 s, vilket ger

Läs mer

Observera att uppgifterna inte är ordnade efter svårighetsgrad!

Observera att uppgifterna inte är ordnade efter svårighetsgrad! TENTAMEN I FYSIK FÖR n, 14 JANUARI 2010 Skrivtid: 8.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt

Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt Kursavsnitt Böjning och interferens Böjning i en spalt bsin m m 1,... 8 9 Böjning i en spalt Böjning i cirkulär öppning med diameter D Böjningsminimum då =m Första min: Dsin 1. 10 11 Vinkelupplösning,

Läs mer

Fysik (TFYA14) Fö 5 1. Fö 5

Fysik (TFYA14) Fö 5 1. Fö 5 Fysik (TFYA14) Fö 5 1 Fö 5 Kap. 35 Interferens Interferens betyder samverkan och i detta fall samverkan mellan elektromagnetiska vågor. Samverkan bygger (precis som för mekaniska vågor) på superpositionsprincipen

Läs mer

Uppgift 1. Bestämning av luftens viskositet vid rumstemperatur

Uppgift 1. Bestämning av luftens viskositet vid rumstemperatur Skolornas fysiktävling 1998 Finalens experimentella del Uppgift 1. Bestämning av luftens viskositet vid rumstemperatur Materiel: Heliumfylld ballong, stoppur, snörstump, små brickor med kända massor, brickor

Läs mer

Elektromagnetiska vågor (Ljus)

Elektromagnetiska vågor (Ljus) Föreläsning 4-5 Elektromagnetiska vågor (Ljus) Ljus kan beskrivas som bestående av elektromagnetiska vågrörelser, d.v.s. ett tids- och rumsvarierande elektriskt och magnetiskt fält. Dessa ljusvågor följer

Läs mer

Laborationer i OPTIK och AKUSTIK (NMK10) Augusti 2003

Laborationer i OPTIK och AKUSTIK (NMK10) Augusti 2003 TEKNISKA HÖGSKOLAN I LINKÖPING Institutionen för teknik och naturvetenskap Campus Norrköping Igor Zozoulenko Laborationer i OPTIK och AKUSTIK (NMK10) Augusti 2003 Laboration 1: Ljudhastigheten i luft;

Läs mer

TFEI02: Vågfysik. Tentamen : Lösningsförslag

TFEI02: Vågfysik. Tentamen : Lösningsförslag 160530: TFEI0 1 Uppgift 1 TFEI0: Vågfysik Tentamen 016-05-30: Lösningsförslag a) Ljudintensiteten, I, är ett mått på hur stor effekt, P eff, som transporteras per area. Om vi vet amplituden på vågen kan

Läs mer

Miniräknare, formelsamling

Miniräknare, formelsamling Umeå Universitet TENTAMEN Linje: Kurs: Hjälpmedel: Fysik B Miniräknare, formelsamling Lärare: Joakim Lundin Datum: 09-10-29 Tid: 9.00-15.00 Kod:... Grupp:... Poäng:... Betyg U G VG... Tentamen i Fysik

Läs mer

Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt

Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt Kursavsnitt Böjning och interferens Böjning i en spalt bsin m m 1,... 8 9 Böjning i en spalt Böjning i cirkulär öppning med diameter D Böjningsminimum då =m Första min: Dsin 1. 10 11 Vinkelupplösning,

Läs mer

1. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (1p)

1. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (1p) Problem Energi. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (p) b) Ge en tydlig förklaring av hur frekvens, period, våglängd och våghastighet hänger

Läs mer

Ultraljudsfysik. Falun

Ultraljudsfysik. Falun Ultraljudsfysik Falun 161108 Historik Det första försöken att använda ultraljud inom medicin gjordes på 1940- och 1950-talet. 1953 lyckades två kardiolger i Lund (Edler och Hertz) med hjälp av en lånad

Läs mer

Ljusets böjning och interferens

Ljusets böjning och interferens Ljus kan liksom ljud beskrivas som vågrörelser och i den här laborationen ska du studera två centrala vågfenomen: interferens och böjning. Du kommer bl.a. att studera hur ljusvågor böjs när de passerar

Läs mer

Tentamen i Fysik för K1, 000818

Tentamen i Fysik för K1, 000818 Tentamen i Fysik för K1, 000818 TID: 8.00-13.00. HJÄLPMEDEL: LÄROBÖCKER (3 ST), RÄKNETABELL, GODKÄND RÄKNARE. ANTAL UPPGIFTER: VÅGLÄRA OCH OPTIK: 5 ST, ELLÄRA: 3 ST. LÖSNINGAR: LÖSNINGARNA SKA VARA MOTIVERADE

Läs mer

! = 0. !!!"ä !"! +!!!"##$%

! = 0. !!!ä !! +!!!##$% TENTAMEN I FYSIK FÖR n1 3 MAJ 2011 Skrivtid: 08.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och för- sedda med svar. Kladdblad

Läs mer

BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik mars :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik mars :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng. Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm BFL12/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik 2 22 mars 216 8: 12: Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

Läs mer

Polarisation Laboration 2 för 2010v

Polarisation Laboration 2 för 2010v Polarisation Laboration 2 för 2010v Stockholms Universitet 2007 Innehåll 1 Vad är polariserat ljus? 2 Teoretisk beskrivning av polariserat ljus 2.1 Linjärpolariserat ljus 2.2 Cirkulärpolariserat ljus

Läs mer

5. Elektromagnetiska vågor - interferens

5. Elektromagnetiska vågor - interferens Interferens i dubbelspalt A λ/2 λ/2 Dal för ena vågen möter topp för den andra och vice versa => mörkt (amplitud = 0). Dal möter dal och topp möter topp => ljust (stor amplitud). B λ/2 Fig. 5.1 För ljusvågor

Läs mer

Diffraktion och interferens

Diffraktion och interferens Diffraktion och interferens Syfte och mål När ljus avviker från en rätlinjig rörelse kallas det för diffraktion och sker då en våg passerar en öppning eller en kant. Det är just detta fenomen som gör att

Läs mer

Vågor. En våg är en störning som utbreder sig En våg överför energi från en plats till en annan. Det sker ingen masstransport

Vågor. En våg är en störning som utbreder sig En våg överför energi från en plats till en annan. Det sker ingen masstransport Vågor En våg är en störning som utbreder sig En våg överför energi från en plats till en annan. Det sker ingen masstransport Vågtyper Transversella Mediets partiklar rör sig vinkelrätt mot vågens riktning.

Läs mer

Kaströrelse. 3,3 m. 1,1 m

Kaströrelse. 3,3 m. 1,1 m Kaströrelse 1. En liten kula, som vi kallar kula 1, släpps ifrån en höjd över marken. Exakt samtidigt skjuts kula 2 parallellt med marken ifrån samma höjd som kula 1. Luftmotståndet som verkar på kulorna

Läs mer

Böjning. Tillämpad vågrörelselära. Föreläsningar. Vad är optik? Huygens princip. Böjning vs. interferens FAF260. Lars Rippe, Atomfysik/LTH 1

Böjning. Tillämpad vågrörelselära. Föreläsningar. Vad är optik? Huygens princip. Böjning vs. interferens FAF260. Lars Rippe, Atomfysik/LTH 1 Tillämpad vågrörelselära 2 Föreläsningar Vad är optik? F10 och upplösning (kap 16) F11 Interferens och böjning (kap 17) F12 Multipelinterferens (kap 18) F13 Polariserat ljus (kap 20) F14 Reserv / Repetition

Läs mer

Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad rättas inte!

Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad rättas inte! DUGGA I FYSIK FÖR BME1 DEN 28 Nov 2015 Skrivtid: 08.00-12.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

4. Allmänt Elektromagnetiska vågor

4. Allmänt Elektromagnetiska vågor Det är ett välkänt faktum att det runt en ledare som det flyter en viss ström i bildas ett magnetiskt fält, där styrkan hos det magnetiska fältet beror på hur mycket ström som flyter i ledaren. Om strömmen

Läs mer

Svar och anvisningar

Svar och anvisningar 160322 BFL102 1 Tenta 160322 Fysik 2: BFL102 Svar och anvisningar Uppgift 1 a) Centripetalkraften ligger i horisontalplanet, riktad in mot cirkelbanans mitt vid B. A B b) En centripetalkraft kan tecknas:

Läs mer

Materiel: Kaffeburk med hål i botten, stoppur, linjal, vatten, mm-papper.

Materiel: Kaffeburk med hål i botten, stoppur, linjal, vatten, mm-papper. Uppgift 1 Materiel: Kaffeburk med hål i botten, stoppur, linjal, vatten, mm-papper. Uppgift: Gör lämpliga mätningar för att utröna hur mycket längre tid det skulle ta att tömma burken genom hålet i botten

Läs mer

Laborationshandledning Fysik för n

Laborationshandledning Fysik för n Laborationshandledning Fysik för n Termodynamik, våglära, optik och atomfysik höstterminen 2011 Kurslaboratoriet, fysik LTH Innehållsförteckning Laborationsregler 2 Experimentell metodik 4 Svängande stavar

Läs mer

Repetitionsuppgifter i vågrörelselära

Repetitionsuppgifter i vågrörelselära Repetitionsuppgifter i vågrörelselära 1. En harmonisk vågrörelse med frekvensen 6, Hz och utbredningshastigheten 1 m/s har amplituden a. I en viss punkt och vid en viss tid är elongationen +,5a. Hur stor

Läs mer

Polarisation Stockholms Universitet 2011

Polarisation Stockholms Universitet 2011 Polarisation Stockholms Universitet 2011 Innehåll 1 Vad är polariserat ljus? 2 Teoretisk beskrivning av polariserat ljus 2.1 Linjärpolariserat ljus 2.2 Cirkulärpolariserat ljus 2.3 Elliptiskt polariserat

Läs mer

a) Ljud infalier fran luft mot ett tatare material. Ar stralarna A och B i fas elier ur fas precis vid gransytan?

a) Ljud infalier fran luft mot ett tatare material. Ar stralarna A och B i fas elier ur fas precis vid gransytan? / TENT AMEN I TILLAMPAD VAGLARA FOR M Skrivtid: 08.00-13.00 Hjalpmedel: Formelblad och raknedosa. Uppgifterna ar inte ordnade efter svarighetsgrad. Borja varje ny uppgift pa ett nytt blad och skriv bara

Läs mer

FAFA55 HT2016 Laboration 1: Interferens av ljus Nicklas Anttu och August Bjälemark, 2012, Malin Nilsson och David Göransson, 2015, 2016

FAFA55 HT2016 Laboration 1: Interferens av ljus Nicklas Anttu och August Bjälemark, 2012, Malin Nilsson och David Göransson, 2015, 2016 Inför Laborationen Laborationen sker i två lokaler: K204 (datorsal) och H226. I början av laborationen samlas ni i H212. Laborationen börjar 15 minuter efter heltimmen som är utsatt på schemat. Ta med

Läs mer

Diffraktion och interferens

Diffraktion och interferens Institutionen för Fysik 005-10-17 Diffraktion och interferens Syfte och mål När ljus avviker från en rätlinjig rörelse kallas det för diffraktion och sker då en våg passerar en öppning eller en kant. Det

Läs mer

Mäta ljudnivåer och beräkna vägt reduktionstal för skiljevägg i byggnad

Mäta ljudnivåer och beräkna vägt reduktionstal för skiljevägg i byggnad UMEÅ UNIVERSITET Tillämpad fysik och elektronik Laborationer i byggnadsakustik Osama Hassan 2010-09-07 Byggnadsakustik: Luftljudisolering Mäta ljudnivåer och beräkna vägt reduktionstal för skiljevägg i

Läs mer

Lösningsförslag - tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111

Lösningsförslag - tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag - tentamen Torsdagen den 27:e maj 2010, kl 08:00 12:00 Fysik del B2 för

Läs mer

OSCILLOSKOPET. Syftet med laborationen. Mål. Utrustning. Institutionen för fysik, Umeå universitet Robert Röding 2004-06-17

OSCILLOSKOPET. Syftet med laborationen. Mål. Utrustning. Institutionen för fysik, Umeå universitet Robert Röding 2004-06-17 Institutionen för fysik, Umeå universitet Robert Röding 2004-06-17 OSCILLOSKOPET Syftet med laborationen Syftet med denna laboration är att du ska få lära dig principerna för hur ett oscilloskop fungerar,

Läs mer

Vågrörelselära och Optik VT14 Lab 3 - Polarisation

Vågrörelselära och Optik VT14 Lab 3 - Polarisation Vågrörelselära och Optik VT14 Lab 3 - Polarisation Stockholms Universitet 2014 Kontakt: olga.bylund@fysik.su.se Instruktioner för redogörelse för Laboration 3 Denna laboration består utav fyra experiment

Läs mer

2. Ljud. 2.1 Ljudets uppkomst

2. Ljud. 2.1 Ljudets uppkomst 2. Ljud 2.1 Ljudets uppkomst Ljud är en mekanisk vågrörelse som fortskrider i ett medium (t.ex. luft, vatten...) Någon typ av medium är ett krav; I vakuum kan ljudet inte fortskrida. I vätskor och gaser

Läs mer

Ljusets böjning & interferens

Ljusets böjning & interferens ... Laboration Innehåll 1 Förberedelseuppgifter 2 Laborationsuppgifter Ljusets böjning & interferens Ljusets vågegenskaper Ljus kan liksom ljud beskrivas som vågrörelser och i den här laborationen ska

Läs mer

Aalto-Universitetet Högskolan för ingenjörsvetenskaper. KON-C3004 Maskin- och byggnadsteknikens laboratoriearbeten DOPPLEREFFEKTEN.

Aalto-Universitetet Högskolan för ingenjörsvetenskaper. KON-C3004 Maskin- och byggnadsteknikens laboratoriearbeten DOPPLEREFFEKTEN. Aalto-Universitetet Högskolan för ingenjörsvetenskaper KON-C3004 Maskin- och byggnadsteknikens laboratoriearbeten DOPPLEREFFEKTEN Försöksplan Grupp 8 Malin Emet, 525048 Vivi Dahlberg, 528524 Petter Selänniemi,

Läs mer

Tentamen i Fotonik - 2013-04-03, kl. 08.00-13.00

Tentamen i Fotonik - 2013-04-03, kl. 08.00-13.00 FAFF25-2013-04-03 Tentamen i Fotonik - 2013-04-03, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

2. Mekaniska vågrörelser i en dimension

2. Mekaniska vågrörelser i en dimension 2. Mekaniska vågrörelser i en dimension Reflexion Även om alla vågrörelser kan beskrivas med begreppen och, för de flesta naturligt förekommande vågorna, de matematiska uttrycken introducerade i kapitel

Läs mer

1. Ge en tydlig förklaring av Dopplereffekt. Härled formeln för frekvens som funktion av källans hastighet i stillastående luft.

1. Ge en tydlig förklaring av Dopplereffekt. Härled formeln för frekvens som funktion av källans hastighet i stillastående luft. Problem. Ge en tydlig förklaring av Dopplereffekt. Härled formeln för frekvens som funktion av källans hastighet i stillastående luft. (p) Det finns många förklaringar, till exempel Hewitt med insekten

Läs mer

Mätning av högtalarens tonkurva

Mätning av högtalarens tonkurva Mätning av högtalarens tonkurva Svante Granqvist 2008-10-21 16:20 Laboration i DT242V Högtalarkonstruktion Mätning av högtalarens tonkurva Under denna mätning ska du prova på några olika metoder för att

Läs mer

1. Elektromagnetisk strålning

1. Elektromagnetisk strålning 1. Elektromagnetisk strålning Kursens första del behandlar olika aspekter av den elektromagnetiska strålningen. James Clerk Maxwell formulerade lagarnas som beskriver strålningen år 1864. 1.1 Uppkomst

Läs mer

Ljudhastighet (vätska & gas) RT v M Intensitet från en punktkälla P I medel 2 4 r Ljudintensitetsnivå I 12 2 LI 10lg med Io 1,0 10 W/m Io Dopplereffek

Ljudhastighet (vätska & gas) RT v M Intensitet från en punktkälla P I medel 2 4 r Ljudintensitetsnivå I 12 2 LI 10lg med Io 1,0 10 W/m Io Dopplereffek Ljudhastighet (vätska & gas) RT v M Intensitet från en punktkälla P I medel 4 r Ljudintensitetsnivå I 1 LI 10lg med Io 1,0 10 W/m Io Dopplereffekt, ljud v v f m m fs v v s Relativistisk Dopplereffekt,

Läs mer

Optik, F2 FFY091 TENTAKIT

Optik, F2 FFY091 TENTAKIT Optik, F2 FFY091 TENTAKIT Datum Tenta Lösning Svar 2005-01-11 X X 2004-08-27 X X 2004-03-11 X X 2004-01-13 X 2003-08-29 X 2003-03-14 X 2003-01-14 X X 2002-08-30 X X 2002-03-15 X X 2002-01-15 X X 2001-08-31

Läs mer

Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111

Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Tentamen Tisdagen den 27:e maj 2008, kl 08:00 12:00 Fysik del B2 för tekniskt

Läs mer

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Tisdagen den 17 juni 2008 kl 9-15

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Tisdagen den 17 juni 2008 kl 9-15 FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 1,5 högskolepoäng, FK49 Tisdagen den 17 juni 28 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 35-1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1

Läs mer

Gauss Linsformel (härledning)

Gauss Linsformel (härledning) α α β β S S h h f f ' ' S h S h f S h f h ' ' S S h h ' ' f f S h h ' ' 1 ' ' ' f S f f S S S ' 1 1 1 S f S f S S 1 ' 1 1 Gauss Linsformel (härledning) Avbilding med lins a f f b Gauss linsformel: 1 a

Läs mer

Prov i vågrörelselära vt06 Lösningsförslag

Prov i vågrörelselära vt06 Lösningsförslag Prov i vågrörelselära vt06 Lösningsförslag Hjälpmedel: Formelsamling, fysikbok, miniräknare, linjal, sunt förnuft. 7 uppgifter vilka inlämnas på separat papper snyggt och välstrukturerat! Låt oss spela

Läs mer

Uppgift 1: När går en glödlampa sönder?

Uppgift 1: När går en glödlampa sönder? Uppgift 1: När går en glödlampa sönder? Materiel: Glödlampa, strömkälla, motstånd samt dator försedd med analog/digital omvandlare och tillhörande programvara för datainsamling. Beskrivning: Kanske tycker

Läs mer

räknedosa. Lösningarna ska Kladdblad rättas. vissa (1,0 p) frånkopplad. (3,0 p) 3. Uppgiften går. Faskonstanten: 0

räknedosa. Lösningarna ska Kladdblad rättas. vissa (1,0 p) frånkopplad. (3,0 p) 3. Uppgiften går. Faskonstanten: 0 TENTAMEN I TILLÄMPAD VÅGLÄRA FÖR M Skrivtid: 8.00 13.00 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ettt nytt blad och skriv bara på

Läs mer

Tentamen i Fysik för π,

Tentamen i Fysik för π, KURSLABORATORET FYSK, LTH Tentamen i Fysik för π, 386 SKRVTD: 8 3 HJÄLPMEDEL: UTDELAT FORMELBLAD, GODKÄND RÄKNARE. LÖSNNGAR: BÖRJA VARJE NY UPPGFT PÅ NYTT BLAD OCH SKRV BARA PÅ EN SDA. LÖSNNGARNA SKA VARA

Läs mer

Tentamen i Fotonik , kl

Tentamen i Fotonik , kl FAFF25-2015-05-04 Tentamen i Fotonik - 2015-05-04, kl. 14.00-19.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

Elektroteknikens grunder Laboration 1

Elektroteknikens grunder Laboration 1 Elektroteknikens grunder Laboration 1 Grundläggande ellära Elektrisk mätteknik Elektroteknikens grunder Laboration 1 1 Mål Du skall i denna laboration få träning i att koppla elektriska kretsar och att

Läs mer

Studieanvisning i Optik, Fysik A enligt boken Quanta A

Studieanvisning i Optik, Fysik A enligt boken Quanta A Detta är en något omarbetad version av Studiehandledningen som användes i tryckta kursen på SSVN. Sidhänvisningar hänför sig till Quanta A 2000, ISBN 91-27-60500-0 Där det har varit möjligt har motsvarande

Läs mer

RealSimPLE: Pipor. Laborationsanvisningar till SimPLEKs pipa

RealSimPLE: Pipor. Laborationsanvisningar till SimPLEKs pipa RealSimPLE: Pipor Laborationsanvisningar till SimPLEKs pipa Vad händer när ljudvågor färdas genom ett rör? Hur kan man härma ljudet av en flöjt? I detta experiment får du lära dig mer om detta! RealSimPLE

Läs mer

4:4 Mätinstrument. Inledning

4:4 Mätinstrument. Inledning 4:4 Mätinstrument. Inledning För att studera elektriska signaler, strömmar och spänningar måste man ha lämpliga instrument. I detta avsnitt kommer vi att gå igenom de viktigaste, och som vi kommer att

Läs mer

för gymnasiet Polarisation

för gymnasiet Polarisation Chalmers tekniska högskola och November 2006 Göteborgs universitet 9 sidor + bilaga Rikard Bergman 1992 Christian Karlsson, Jan Lagerwall 2002 Emma Eriksson 2006 O4 för gymnasiet Polarisation Foton taget

Läs mer

Formelsamling finns sist i tentamensformuläret. Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7,5hp Kurskod: HÖ1004 Tentamenstillfälle 1

Formelsamling finns sist i tentamensformuläret. Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7,5hp Kurskod: HÖ1004 Tentamenstillfälle 1 Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7,5hp Kurskod: HÖ1004 Tentamenstillfälle 1 Datum 2011-06-01 Tid 4 timmar Kursansvarig Åsa Skagerstrand Tillåtna hjälpmedel Övrig information Resultat:

Läs mer

Övningar Arbete, Energi, Effekt och vridmoment

Övningar Arbete, Energi, Effekt och vridmoment Övningar Arbete, Energi, Effekt och vridmoment G1. Ett föremål med massan 1 kg lyfts upp till en nivå 1,3 m ovanför golvet. Bestäm föremålets lägesenergi om golvets nivå motsvarar nollnivån. G10. En kropp,

Läs mer

I 1 I 2 I 3. Tentamen i Fotonik , kl Här kommer först några inledande frågor.

I 1 I 2 I 3. Tentamen i Fotonik , kl Här kommer först några inledande frågor. FAFF25-2014-03-14 Tentamen i Fotonik - 2014-03-14, kl. 14.00-19.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t 2π T x. s(x,t) = 2 cos [2π (0,4x/π t/π)+π/3]

TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t 2π T x. s(x,t) = 2 cos [2π (0,4x/π t/π)+π/3] TFEI0: Vågfysik Tentamen 14100: Svar och anvisningar Uppgift 1 a) Vågen kan skrivas på formen: vilket i vårt fall blir: s(x,t) =s 0 sin t π T x + α λ s(x,t) = cos [π (0,4x/π t/π)+π/3] Vi ser att periodtiden

Läs mer

Trådlös kommunikation

Trådlös kommunikation HT 2009 Akademin för Innovation, Design och Teknik Trådlös kommunikation Individuell inlämningsuppgift, Produktutveckling 3 1,5 poäng, D-nivå Produkt- och processutveckling Högskoleingenjörsprogrammet

Läs mer

Tentamen i Vågor och Optik 5hp F, Q, kandfys, gylärfys-programm, den 15. mars 2010

Tentamen i Vågor och Optik 5hp F, Q, kandfys, gylärfys-programm, den 15. mars 2010 Uppsala Universitet Fysiska Institutionen Laurent Duda Tentamen i Vågor och Optik 5hp Skrivtid kl. 14-19 Hjälpmedel: Räknedosa, Physics Handbook eller motsvarande (även Mathematical Handbook är tillåten)

Läs mer

Fysik. Laboration 3. Ljusets vågnatur

Fysik. Laboration 3. Ljusets vågnatur Fysik Laboration 3 Ljusets vågnatur Laborationens syfte: att hjälpa dig att förstå ljusfenomen diffraktion och interferens och att förstå hur olika typer av spektra uppstår Utförande: laborationen skall

Läs mer

Elektronik grundkurs Laboration 6: Logikkretsar

Elektronik grundkurs Laboration 6: Logikkretsar Elektronik grundkurs Laboration 6: Logikkretsar Förberedelseuppgifter: 1. Förklara vad som menas med logiskt sving. 2. Förklara vad som menas med störmarginal. 3. Förklara vad som menas med stegfördröjning.

Läs mer

OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten.

OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten. Speed of light OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten. 1.0 Inledning Experiment med en laseravståndsmätare

Läs mer

Institutionen för Fysik 2013-10-17. Polarisation

Institutionen för Fysik 2013-10-17. Polarisation Polarisation Syfte Syftet med denna laboration är att lära sig om ljusets polarisation. Du kommer att se exempel på opolariserat, linjär- och cirkulärpolariserat ljus. Exempel på komponenter som kan ändra

Läs mer

1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter):

1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter): FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Måndagen den 5 maj 2008 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare.

Läs mer

Laboration Svängningar

Laboration Svängningar Laboration Svängningar Laboranter: Fredrik Olsen Roger Persson Utförande datum: 2007-11-22 Inlämningsdatum: 2007-11-29 Fjäder Högtalarmembran Stativ Fjäder Ultraljudssensor Försökets avsikt Syftet med

Läs mer

Laboration 2: Buller och akustik

Laboration 2: Buller och akustik Fysiska institutionen, UDIF Laboration 2: Buller och akustik Illustration av en stående våg. Olika tillfällen visas med olika ljusa kurvor. Simulerad amplitud nära enkelspalt respektive trippelspalt. Högst

Läs mer

Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7 hp Kurskod: HÖ1015 Tentamenstillfälle 1

Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7 hp Kurskod: HÖ1015 Tentamenstillfälle 1 Hälsoakademin Kod: Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7 hp Kurskod: HÖ115 Tentamenstillfälle 1 Datum 211 11 3 Tid 4 timmar Kursansvarig Susanne Köbler Tillåtna hjälpmedel Miniräknare

Läs mer

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER I detta experiment ska du mäta graden av dubbelbrytning hos glimmer (en kristall som ofta används i polariserande optiska komponenter). UTRUSTNING Förutom

Läs mer

Radiovågor. Tillämpad vågrörelselära FAF260. Astronomi. Mikrovågor. Mekaniska svängingar FAF260. Lars Rippe, Atomfysik/LTH 1. Lars Rippe Atomfysik

Radiovågor. Tillämpad vågrörelselära FAF260. Astronomi. Mikrovågor. Mekaniska svängingar FAF260. Lars Rippe, Atomfysik/LTH 1. Lars Rippe Atomfysik Radiovågor Tillämpad vågrörelselära FAF260 Lars Rippe Atomfysik ALMA-Atacama Large Millimeter Array Chajnantor platån i Atacama öknen i Chile på 5,000 m höjd Våglängder mellan 0.3 mm och 9.6 mm Astronomi

Läs mer

Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi

Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi Ljusets vågnatur Ljus är elektromagnetiska vågor som rör sig framåt. När vi ritar strålar så

Läs mer

Labbrapport svängande skivor

Labbrapport svängande skivor Labbrapport svängande skivor Erik Andersson Johan Schött Olof Berglund 11th October 008 Sammanfattning Grunden för att finna matematiska samband i fysiken kan vara lite svårt att förstå och hur man kan

Läs mer

Elektroakustik Laboration B1, mikrofoner

Elektroakustik Laboration B1, mikrofoner Elektroakustik Laboration B1, mikrofoner 2008-09-18 14:25:00 Svante Granqvist 2000-2008 OBS! Du måste ha gjort förberedelseuppgifterna för att få labba! Namn: Laborationen/förberedelseuppgifterna godkända

Läs mer

Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända!

Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända! Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända! Sista dag för godkännande av laborationer är torsdagen den 10/6 2015 Räknestuga Förra veckan kapitel

Läs mer

WALLENBERGS FYSIKPRIS 2013

WALLENBERGS FYSIKPRIS 2013 WALLENBERGS FYSIKPRIS 2013 Tävlingsuppgifter (Kvalificeringstävlingen) Riv loss detta blad och häfta ihop det med de lösta tävlingsuppgifterna. Resten av detta uppgiftshäfte får du behålla. Fyll i uppgifterna

Läs mer

Tillämpad vågrörelselära FAF260. Svängningar genererar vågor - Om en svängande partikel är kopplad till andra partiklar uppkommer vågor

Tillämpad vågrörelselära FAF260. Svängningar genererar vågor - Om en svängande partikel är kopplad till andra partiklar uppkommer vågor FF60 Tillämpad vågrörelselära FF60 Karaktäristiskt för periodiska svängningar är att det finns en återförande kraft riktad mot jämviktsläget y 0 F F F k y F m a 4 Svängningar genererar vågor - Om en svängande

Läs mer

PROV I FYSIK KURS B FRÅN NATIONELLA PROVBANKEN

PROV I FYSIK KURS B FRÅN NATIONELLA PROVBANKEN Enheten för Pedagogiska Mätningar PBFyB 02-05 Umeå universitet PROV I FYSIK KURS B FRÅN NATIONELLA PROVBANKEN Del II: Kortsvars- och flervalsfrågor. Uppgift 1-5 Del III: Långsvarsfrågor. Uppgift 6-15 Anvisningar

Läs mer