Fillagring och indexering
|
|
- Hanna Mattsson
- för 8 år sedan
- Visningar:
Transkript
1 Fillagring och indexering Lena Strömbäck Institutionen för datavetenskap (IDA) Databaser Världen Databas Modell Databas- Hanterings- System (DBMS) Queries Svar Queries Svar Användare Anv Updates Queries Svar Updatera. Frågor Svar Anv 4 Updates Anv Updates Processning av frågor och uppdateringar Tillgång till lagrad data Fysisk databas Sida spår Två sektorer En sektor (del av ett spår) Block Ett block är den enhet data man överför mellan disk och primärminne. arm Läs/skrivhuvud spindel diskrotation Diskaccess är,000 till 00,000 gånger mer tidskrävande än processorinstruktioner. cylinder av spår Processorinstruktion Minnesaccess Diskaccess 0 - s 0 - s 0 - s rörelser Figure., p. 46 Sida Sida 4 Terminologi Filer och block En fil är en sekvens av poster (records). En post består av fält. Varje fält är av en specifik datatyp. En stor fil behöver felra block för lagring. Man vill oftast se till att varje post finns i ett block. Unspanned records Vi kommer att förutsätta att posterna har en fix längd. Sida Sida 6
2 Fil och postlagring Fil och postsökning Fil med,000,000 poster (r) Poststorleken (R) är 000 bytes (unspanned) Blockstorleken (B) är 4,06 bytes B Blockfaktorn (bfr) är = = R 000 Block som behövs (b) är r,000,000 = =,000 4 bfr En sekventiell algoritm måste accessa alla,000 block. (Läsa in allt till primärminnet) En binär sökalgoritm behöver accessa log b = log 0000 = Sida Sida Indexering Primärindex Ett index Är en extra struktur som används för att kunna söka poster snabbare Är baserad på en eller flera indexfiler Lagrar fysiska adresser till poster Ett primärindex används till en fil som är sorterad på de värden man vill söka på. Värdet ska vara unikt. Ett primärindex är en ordnad fil av poster med två fält. Ett indexfält och en blockpekare Indexfältet är en kopia av den ordnade nyckeln i datafilen. Blockpekaren är en pekare till blocket i datafilen Vad är relationen mellan primärnyckel och primärindex? Sida Sida 0 Primärindex Indexfil (Andersson, Anne) (Andersson, Mia) (Davidsson, Lina) (Nilsson, Johan) (Svensson, arl) (Andersson, Anne) (Andersson, Leo) (Andersson, Mia) (Bengtsson, Anders) (Davidsson, Lina) (Larsson, Anders) (Nilsson, Johan) (Petersson, Jörgen) Block Block Block Block 4 Exempel Antag en ordnad datafil med,000,000 poster av storlek 000 byte och blockstorleken 4,06 bytes. Antag en indexpoststorlek av bytes. Hur många block behövs för indexet? I medeltal, hur många blockaccesser behövs för att söka på nyckelfältet: Sida Sida
3 Dense vs. sparse index lusterindex Dense index: ett indexentry för varje post. Sparse index: endast indexentry för vissa poster. Som primärindex men används om sorteringsfältet ej är unikt. Indexfilen är en ordnad fil med två fält, ett indexfält och en blockpekare. En indexpost för varje värde i ordningsfältet. lusterindex är alltid sparse. Sida Sida 4 lusterindex I Indexfil Dept# Name ID Salary Andersson 000 Svensson 4000 Block lusterindex II Indexfil Dept# Name ID Salary Andersson 000 Svensson 4000 Block Block Block 4 Block Block Sida Sida 6 Exempel Problem med primär och klusterindex Antag en ordnad datafil med,000,000 poster av storlek 000 byte och blockstorleken 4,06 bytes. Antag en indexpoststorlek av bytes, det finns cirka 00 poster med samma indexvärde. Hur många block behövs för att lagra indexet? I medeltal, hur många blockaccesser behövs för att söka på nyckelfältet? Som med varje ordnad fil blir insättningar och borttagning av poster dyra. Vi kan också behöva flytta poster i datafilen. När datafilen ändras byts också ankarposten. Sida Sida
4 Sekundärindex Ett sekundärindex snabbar upp svarstiderna om det finns frekventa sökningar på ett oordnat fält. Ett sekundärindex snabbar upp sökningen av enstaka poster. Varför? Indexfältet är en ordnad fil med två fält. Ett indexfält och en blockpekare. Det kan finnas många sekundärindex till samma tabell. Sekundärindex på ett unikt attribut Indexfil ID# SSN Dept. Salary Block Block Block Sida Sida 0 Sekundärindex på ett icke unikt attribut Indexfil Andersson Daniels French Hagberg Lancaster Extra nivå med postpekare ID# Name Daniels Lancaster Andersson Andersson Silver Molin French Daniels Andersson Hagberg Yang Miller Exempel Antag en ordnad datafil med,000,000 poster av storlek 000 byte och blockstorleken 4,06 bytes. Antag en indexpoststorlek av bytes. Hur många block behövs för att lagra indexet? I medeltal, hur många blockaccesser behövs för att söka på nyckelfältet? Två fall:. Om indexvärdet är unikt?. Om det finns cirka 00 poster med samma indexvärde? Sida Sida Summering: Indextyper Flernivåindex Primärindex Sparse index på nyckelfältet, unikt fält en ordnad på nyckelfältet lusterindex Sparse index på icke-nyckelfält Filen ordnad på icke nyckel fält Sekundärindex Index på ett fält som filen ej är sorterad på. Index på index Minska mängden att söka igenom att anpassa indexstorleken till ett block. Minskningen bestäms av blockfaktorn. Blockfaktorn kallas också fan-out. Sida Sida 4 4
5 Flernivåindex Exempel Andra nivån Antag en ordnad datafil med,000,000 poster av storlek 000 byte och blockstorleken 4,06 bytes. Antag en indexpoststorlek av bytes. I medeltal, hur många blockaccesser behövs för att söka på nyckelfältet om jag använder ett flernivåindex? Första nivån Sida Sida 6 Problem med flernivåindex Sökträd Problem med insättning och borttagning av data. Alla nivåer baserade på ordnade filer. Använd en overflow fil och ordna om indexen när filerna ordnas om. Använd ett dynamiskt flernivåindex Om man vänder ett flernivåindex 0 kan det ses som en speciell typ av sökträd. Ett sökträd är en struktur som används för att snabb sökning, i detta fall en post. B-tree = balanserade träd. Ett sökträd p består av noder som har högst p- värden och p pekare. <P,, P,,, P q-, q-, P q > där q p och P i is är en pekare till ett barn (eller en null-pekare) Sida Sida Sökträd Exempel, order p= P i P i i q P q X < < X < i i P i P i i q P q P i P i i q P q P i q < X P i i q P q 6. I varje nod, < < < q-i. För alla värden X i subträden: i- < X < i Sida Sida 0
6 Exempel, order p= B-träd: Ordning 6 Andersson Hagberg French Silver Daniels Young Zhing 6 Baker En nod måste passa i ett block: B+ P p P + ( p ) ( P + ) B p record P + P + record block block record + p P block P record ordning, antal blockpekare storlek på blockpekaren storlek på postpekaren storlek på söknyckeln Sida Sida B+-träd B+-Tree: Example, order p=, p leaf = En variant av B-träd Datapekarna endast sparade i lövnoderna. Vanligaste dynamiska flernivåindexstrukturen Lövnoderna är vanligen länkade för att erbjuda ordnad access. Andersson Hagberg French Silver Daniels Young Zhing 6 Baker 6 Sida Sida 4 B+-träd: interna noder P i Pi i q Pq B+-trees: Interna noder Varje intern nod har högst p nodpekare. Varje intern nod, utom roten har minst ceil(p/) nodpekare. Rotnoden har minst nodpekare om det är en intern nod. En intern nod med q pekare (q p), har q- sökfältsvärden. X < X i i q < X. För varje nod, < < < q-i. För alla värden X i subträdet: i- < X i Sida Sida 6 6
7 B+-träd: Lövnoder B+-träd ordning Varje lövnod har formatet: <<, P>, <, P>,, <q-, Pq->, Pnext> Inom varje lövnod: < < < q-i Varje entry (Pi) är en pekare till posten med motsvarande värde. Varje lövnod (utom roten) har minst ceil(p/) värden. Alla lövnoder är på samma nivå. En intern nod måste få plats i ett block: p P + ( p ) B block En lövnod måste få plats I ett block: p B+ P block + p B P P block ( P + ) + P B p leaf record block leaf record + B p p leaf P block P record blockstorlek ordning, antal pekare I en intern nod antal pekare I en lövnod storlek på blockpekaren storlek på söknyckeln storlek på postpekaren Sida Sida B+-träd B+-träd: Insättning Mycket snabb sökning: log p N f Insättning och borttagning kan vara dyrt. N number of search values p order, number of block pointers per node f fill factor, 0 f När en lövnod är full genereras ett overflow De första p behålls resten flyttas till ett nytt löv. Den nya noden måste sättas in i föräldern. Om föräldern blir fylld genereras ett overflow. Den resulterande splitten kan propagera ända upp till roten. Sida Sida 40 Exempel: Insättning Värde Datapekare Lövnod Lövnodspekare Nodpekare Internnod P i- i q- P i P q Lägg till: Sida 4 Sida 4
8 Overflow skapa en ny nivå Lägg till: Lägg till: Sida 4 Sida 44 Overflow - Splitta Lägg till: Lägg till: Sida 4 Sida 46 Overflow - Splitta Propagerar till nästa nivå Lägg till: Lägg till: Sida 4 Sida 4
9 6 Overflow Splitta Lägg till: 6 Resulterande B+-träd Sida 4 Sida Underflow ordna om Ta bort: Ta bort: Sida Sida Underflow slå ihop Ta bort: Forfarande underflow Ta bort en nivå Sida Sida 4
10 B+-träd 6 6 Många varianter B-trees B+-trees B*-trees Vanliga modifieringar Ändra fyllningsfaktorn 0. till.0 Tillåt en nod att bli tom innan sammanslagning Sida Sida 6 Summering Indexfiler (primär, kluster, sekundär) Sökträd, B+-träd Sida 0
Karlstads Universitet, Datavetenskap 1
DAV B04 - Databasteknik KaU - Datavetenskap - DAV B04 - MGö 151 Lagring av databaser på sekundärminne Att läsa/skriva på sekundärminne (hårddisk) är en långsam process jämfört med operationer i primärminnet
Databaser Design och programmering. Fysisk design av databasen att ta hänsyn till implementationsaspekter: minnesteknik filstrukturer indexering
Databaser Design och programmering Fysisk design av databasen att ta hänsyn till implementationsaspekter: minnesteknik filstrukturer indexering 2 Programdesign, databasdesign Databasdesign Kravspecifikation
Databaser - Design och programmering. Minnesteknik. Minnesteknik, forts. Hårddisk. Primärminne (kretsteknik) Fysisk design av databasen
Databaser Design och programmering Fysisk design av databasen att ta hänsyn till implementationsaspekter minnesteknik filstrukturer indexering Minnesteknik Primärminne (kretsteknik) Flyktigt Snabbt Dyrt
Databaser Design och programmering Minnesteknik Minnesteknik, forts Utvecklingen Hårddisk Hårddisk, forts
Databaser Design och programmering Fysisk design av databasen att ta hänsyn till implementationsaspekter minnesteknik filstrukturer indexering 1 Minnesteknik Primärminne (kretsteknik) Flyktigt Snabbt Dyrt
Databaser Design och programmering. Fysisk design av databasen att ta hänsyn till implementationsaspekter: minnesteknik filstrukturer indexering
Databaser Design och programmering Fysisk design av databasen att ta hänsyn till implementationsaspekter: minnesteknik filstrukturer indexering 2 Programdesign, databasdesign Databasdesign Kravspecifikation
Minnesteknik. Minnen lämpliga för databaser. Minnesteknik, forts. Databaser design och programmering. temporärt/flyktig Snabbt Dyrt
Databaser design och programmering n Fysisk design av databasen Minnesteknik n Primärminne (kretsteknik) n att ta hänsyn till implementationsaspekter minnesteknik filstrukturer indexering 1 temporärt/flyktig
Datastrukturer. föreläsning 10. Maps 1
Datastrukturer föreläsning 10 Maps 1 AVL-träd 1 2 5 2 0 4 1 8 3 2 1 11 1 7 Lecture 6 2 Insättning i AVL-träd Sätt först in det nya elementet på samma sätt som i ett vanligt BST! Det nya trädet kan bli
Träd Hierarkiska strukturer
Träd Hierarkiska strukturer a 1 a 2 a 3 a 4 a 2 a 5 a 6 a 7 Hierarki: Korta vägar till många Hur korta? Linjär lista: n 2 Träd: Antal element på avståndet m: g m a 1 a 3 a 8 a 12 m = log g n a 9 a 10 Väglängden
TENTAMEN. TDDD12 Databasteknik TDDD46 Databasteknik. 16 augusti 2010, kl 14-18
LiTH, Linköpings tekniska högskola IDA, Institutionen för datavetenskap Jose M. Peña 2010-08-10 Lokal TER1 och TERC. Tillåtna hjälpmedel Lexikon, miniräknare. TENTAMEN TDDD12 Databasteknik TDDD46 Databasteknik
TENTAMEN TDDB77 Databaser och Bioinformatik 19 april 2002, kl 14-18
Institutionen för datavetenskap Linköpings universitet TENTAMEN TDDB77 Databaser och Bioinformatik 19 april 2002, kl 14-18 Jourhavande lärare: Patrick Lambrix, 2605 Poäng: Tentan består ut av 2 delar.
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-27 Idag Balanserade sökträd Splayträd Skipplistor AVL-träd AVL-träd Sökträd Invariant (för varje nod): Vänster och höger delträd har samma
Tentamen DATABASTEKNIK - 1DL116
Uppsala universitet Institutionen för informationsteknologi Kjell Orsborn Tentamen 2003-05-20 DATABASTEKNIK - 1DL116 Datum...Tisdagen den 20 Maj, 2003 Tid...12:00-17:00 Jourhavande lärare...kjell Orsborn,
Innehåll MySQL Intro. Ex på ett index Index typer ISAM Balanserat träd Pk och Fk i MySQL Eget index För o nackdelar med index
Innehåll MySQL Intro Ex på ett index Index typer ISAM Balanserat träd Pk och Fk i MySQL Eget index För o nackdelar med index Institutionen Institutionen för Datavetenskap, för Kommunikation Fysik o och
Datastrukturer. föreläsning 10. Maps 1
Datastrukturer föreläsning 10 Maps 1 Minsta uppspännande träd Maps 2 Minsta uppspännande träd Uppspännande träd till graf fritt delträd innehåller alla noderna Minsta uppspännande träd (MST) är det uppspännande
TDDI60 Tekniska databaser
Lena Strömbäck 2006-10-13 Skriftlig tentamen i kursen TDDI60 Tekniska databaser Datum: 2006-10-13 Tid: 8-12 Lokal: T2, U3 Hjälpmedel: Engelsk ordlista tillåten ej elektronisk Poängränser: Tentamen består
TENTAMEN TDDD12 Databasteknik 7 januari 2010, kl 14-18
Institutionen för datavetenskap Linköpings universitet TENTAMEN TDDD12 Databasteknik 7 januari 2010, kl 14-18 Jourhavande lärare: Jose M. Peña (1651) Poäng: Tentan består av 2 delar. För godkänd krävs
SQLs delar. Idag. Att utplåna en databas. Skapa en databas
Idag SQLs delar Hur skapar vi och underhåller en databas? Hur skapar man tabeller? Hur får man in data i tabellerna? Hur ändrar man innehållet i en tabell? Index? Vad är det och varför behövs de? Behöver
TENTAMEN TDDB77 Databaser och Bioinformatik 12 juni 2007, kl 14-18
Institutionen för datavetenskap Linköpings universitet TENTAMEN TDDB77 Databaser och Bioinformatik 12 juni 2007, kl 14-18 Jourhavande lärare: Patrick Lambrix (013/28 26 05) Poäng: Tentan består av 2 delar.
Dagens föreläsning. KTH & SU, CSC Databasteknik Föreläsning 10 sid 1
Dagens föreläsning Vad du skall komma ihåg från tidigare föreläsningar Optimering av frågor Algebraisk omformulering Kostnadsberäkningar Evaluering av frågor Algoritmer för relationsoperatorer Beräkning
Vad du skall komma ihåg från tidigare föreläsningar. Dagens föreläsning. Evaluering av frågor. Data dictionary
Dagens föreläsning Vad du skall komma ihåg från tidigare föreläsningar Vad du skall komma ihåg från tidigare föreläsningar Optimering av frågor Algebraisk omformulering Kostnadsberäkningar Evaluering av
Tommy Färnqvist, IDA, Linköpings universitet. 1 ADT Map/Dictionary 1 1.1 Definitioner... 1 1.2 Implementation... 2
Föreläsning 4 ADT Map/Dictionary, hashtabeller, skip-listor TDDC91: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 9 september 2015 Tommy Färnqvist, IDA, Linköpings universitet 4.1
Innehåll. Föreläsning 12. Binärt sökträd. Binära sökträd. Flervägs sökträd. Balanserade binära sökträd. Sökträd Sökning. Sökning och Sökträd
Innehåll Föreläsning 12 Sökträd Sökning Sökning och Sökträd 383 384 Binärt sökträd Används för sökning i linjära samlingar av dataobjekt, specifikt för att konstruera tabeller och lexikon. Organisation:
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Prioritetskö Heap Representation som
Idag. Hur skapar vi och underhåller en databas? DD1370 (Föreläsning 4) Databasteknik och informationssystem 7,5 hp Hösten / 20
Idag Hur skapar vi och underhåller en databas? DD1370 (Föreläsning 4) Databasteknik och informationssystem 7,5 hp Hösten 2009 1 / 20 Idag Hur skapar vi och underhåller en databas? Hur skapar man tabeller?
Ett generellt träd är. Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn
Träd allmänt Träd allmänt Ett generellt träd är Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn där t1,..., tn i sin tur är träd och kallas subträd, vars rotnoder kallas
Tabeller. Programkonstruktion. Moment 8 Om abstrakta datatyper och binära sökträd. Implementering av tabellen. Operationer på tabellen
Programkonstruktion Moment 8 Om abstrakta datatyper och binära sökträd Tabeller En viktig tillämpning är tabellen att ifrån en nyckel kunna ta fram ett tabellvärde. Ett typiskt exempel är en telefonkatalog:
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU På denna föreläsning: Träd Traversering Insättning, borttagning
Föreläsning 7. Träd och binära sökträd
Föreläsning 7 Träd och binära sökträd Föreläsning 7 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Det är extra mycket
Abstrakta datatyper. Primitiva vektorer. Deklarera en vektor
Abstrakta datatyper 1 Primitiva vektorer Vektorer kan skapas av primitiva datatyper, objektreferenser eller andra vektorer. Vektorer indexeras liksom i C från 0. För att referera en vektor används hakparenteser.
Ännu mera träd: 2-3-träd, B-träd, rödsvarta träd, träd Weiss, avsnitt 4.7, 11.5, 12.2, etc.
Ännu mera träd: 2-3-träd, B-träd, rödsvarta träd, 2-3-4-träd Weiss, avsnitt 4.7, 11.5, 12.2, etc. Peter Ljunglöf DAT036, Datastrukturer 30 nov 2012 1 2-3-träd [inte i kursboken] Ett 2-3-träd har två sorters
TENTAMEN TDDB77 Databaser och Bioinformatik 22 augusti 2006, kl 14-18
Institutionen för datavetenskap Linköpings universitet TETAME TDDB77 Databaser och Bioinformatik 22 augusti 2006, kl 14-18 Jourhavande lärare: Lena Strömbäck (Patrick Lambrix, 0703-492066) Poäng: Tentan
13 Prioritetsköer, heapar
Prioritetsköer, heapar 31 13 Prioritetsköer, heapar U 101. En prioritetskö är en samling element där varje element har en prioritet (som används för att jämföra elementen med). Elementen plockas ut i prioritetsordning
Datastrukturer och algoritmer. Innehåll. Tabell. Tabell - exempel. Gränsyta till Tabell. Tabell. Modell. Hashtabell Relation, lexikon.
Datastrukturer och algoritmer Föreläsning 7 Tabell, hashtabell Relation & lexikon Innehåll Tabell Tabell Hashtabell Relation, lexikon Modell Uppslagsbok Organisation Ändlig avbildning av argument på värden
Tentamen i. Databasteknik
Tentamen i Databasteknik Torsdagen den 10/3 2005 14.00-19.00 Tillåtna hjälpmedel: Allt tänkbart material Använd bara framsidan på varje blad Skriv max en uppgift per blad. Skriv tydligt. Motivera allt.
Datastrukturer. föreläsning 9. Maps 1
Datastrukturer föreläsning 9 Maps 1 Minsta uppspännande träd Maps 2 Minsta uppspännande träd Uppspännande träd till graf fritt delträd innehåller alla noderna Minsta uppspännande träd (MST) är det uppspännande
Sökning. Översikt. Binärt sökträd. Linjär sökning. Binär sökning. Sorterad array. Linjär sökning. Binär sökning Hashtabeller
Översikt Linjär sökning Sökning Binär sökning Hashtabeller Programmering tillämpningar och datastrukturer 2 Linjär sökning Binärt sökträd Undersök ett element i taget tills du hittar det sökta Komplexitet
Operativsystem - Filsystem
Operativsystem - Filsystem Mats Björkman 2015-03-09 Administrativt n Extraföreläsning istället för den inställda: torsdag 12/3 kl 8-10 i Pi n Seminarier preliminärt schema ute n 15 minuter per grupp lämna
TDDI16 Datastrukturer och algoritmer. Prioritetsköer, heapar, Union/Find
TDDI16 Datastrukturer och algoritmer Prioritetsköer, heapar, Union/Find Prioritetsköer En vanligt förekommande situation: Väntelista (jobbhantering på skrivare, simulering av händelser) Om en resurs blir
Föreläsning 9 Innehåll
Föreläsning 9 Innehåll Binära sökträd algoritmer för sökning, insättning och borttagning, implementering effektivitet balanserade binära sökträd, AVL-träd Abstrakta datatyperna mängd (eng. Set) och lexikon
Programmeringsmetodik DV1 Programkonstruktion 1. Moment 8 Om abstrakta datatyper och binära sökträd
Programmeringsmetodik DV1 Programkonstruktion 1 Moment 8 Om abstrakta datatyper och binära sökträd PK1&PM1 HT-06 moment 8 Sida 1 Uppdaterad 2005-09-22 Tabeller En viktig tillämpning är tabellen att ifrån
Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5
Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5? FORTSÄTTNING TRÄD RECAP (förra föreläsningen) RECAP (förra föreläsningen) Träd är icke-linjära datastrukturer som ofta
Tentamen Datastrukturer D DAT 035/INN960
Tentamen Datastrukturer D DAT 035/INN960 22 december 2006 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.) Betygsgränser,
Seminarium 13 Innehåll
Seminarium 13 Innehåll Prioritetsköer och heapar Prioritetsköer ADTn Klassen PriorityQueue i java.util Implementering med lista Heapar ADTn För implementering av prioritetskö För sortering Efter seminariet
TENTAMEN TDDB77 Databaser och Bioinformatik 24 april 2004, kl 14-18
Institutionen för datavetenskap Linköpings universitet TENTAMEN TDDB77 Databaser och Bioinformatik 24 april 2004, kl 14-18 Jourhavande lärare: Pawel Pietrzak (013/28 24 10, 013/21 01 17) Poäng: Tentan
Föreläsning 2. AVL-träd, Multi-Way -sökträd, B-träd TDDD71: DALG. Innehåll. Innehåll. 1 Binära sökträd
Föreläsning AVL-träd, Multi-Wa -sökträd, B-träd DDD7: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer november 5 omm Färnqvist, IDA, Linköpings universitet. Innehåll Innehåll Binära
Föreläsning 13. Träd
Föreläsning 13 Träd Träd Ett träd är en datastruktur som tillåter oss att modellera sådant som vi inte kan modellera med linjära datastrukturer. Ett datavetenskapligt träd består av noder med pilar emellan.
Normalisering. Christer Stuxberg Institutionen för Informatik och Media
Normalisering Christer Stuxberg christer.stuxberg@im.uu.se Institutionen för Informatik och Media Översikt Normalisering Dataredundans och Uppdateringsanomalier Anomalier vid insättning Anomalier vid borttagning
Föreläsning 10 Innehåll. Prioritetsköer och heapar. ADT Prioritetskö. Interface för Prioritetskö. Exempel på vad du ska kunna
Föreläsning Innehåll Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util Implementering med lista ar Implementering av prioritetskö med heap Sortering
ADT Prioritetskö. Föreläsning 13 Innehåll. Prioritetskö vs FIFO-kö. Prioritetskö Exempel på användning. Prioritetsköer och heapar
Föreläsning 1 Innehåll ADT Prioritetskö Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util ar Implementering av prioritetskö med heap Sortering med hjälp
Tentamen Datastrukturer D DAT 036/INN960
Tentamen Datastrukturer D DAT 036/INN960 18 december 2009 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. Betygsgränser, CTH: 3 = 24 p, 4 = 36 p, 5 = 48 p, GU:
Algoritmer och datastrukturer 2012, fo rela sning 8
lgoritmer och datastrukturer 01, fo rela sning 8 Komplexitet för binära sökträd De viktigaste operationerna på binära sökträd är insert, find och remove Tiden det tar att utföra en operation bestäms till
Datastrukturer. föreläsning 6. Maps 1
Datastrukturer föreläsning 6 Maps 1 Avbildningar och lexika Maps 2 Vad är ett lexikon? Namn Telefonnummer Peter 031-405937 Peter 0736-341482 Paul 031-405937 Paul 0737-305459 Hannah 031-405937 Hannah 0730-732100
Föreläsning 5. Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning
Föreläsning 5 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Terminologi - träd Ett träd i datalogi består av en rotnod
Föreläsning 13 Innehåll
Föreläsning 13 Innehåll Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Heapar Implementering av prioritetskö med heap Klassen PriorityQueue i java.util Programexempel LPT-algoritmen
Tentamen Datastrukturer för D2 DAT 035
Tentamen Datastrukturer för D2 DAT 035 17 december 2005 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.) Betygsgränser:
Magnus Nielsen, IDA, Linköpings universitet
Föreläsning ADT Map/Dictionary, hashtabeller TDDC9,TDDE22,725G97: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 7 september 208 Magnus Nielsen, IDA, Linköpings universitet. ADT Map/Dictionary.
Objektorienterad programmering
Objektorienterad programmering Föreläsning 22 Copyright Mahmud Al Hakim mahmud@dynamicos.se www.webacademy.se Agenda Rekursion Samlingar Listor Mängder Avbildningstabeller 1 Rekursion För att förstå rekursion
Lösningar Datastrukturer TDA
Lösningar Datastrukturer TDA416 2016 12 21 roblem 1. roblem 2. a) Falskt. Urvalssortering gör alltid samma mängd av jobb. b) Sant. Genom att ha en referens till sista och första elementet, kan man nå både
Övningar i SQL. SQLAccess.doc Ove Lundgren 2000-11-14
Övningar i SQL Övningar i SQL Använd Access för att öva SQL (= Structured Query Language) Skapa tabeller med SQL 1. Ny databas: SQLÖVNING Klicka: Frågor > Ny > Design > OK >Stäng > SQL Radera ordet SELECT.
Innehåll. F7: Tabell, hashtabell, relation & lexikon. Gränsyta till Tabell. Tabell. Tabell Hashtabell Relation Lexikon.
Innehåll F7: Tabell, hashtabell, relation & lexikon Niclas Börlin 5DV49 Datastrukturer och algoritmer Tabell Hashtabell Relation Lexikon Tabell Gränsyta till Tabell Modell Uppslagsbok Organisation Ändlig
Programkonstruktion och. Datastrukturer
Programkonstruktion och Datastrukturer Repetitionskurs, sommaren 2011 Datastrukturer (Listor, Träd, Sökträd och AVL-träd) Elias Castegren elias.castegren.7381@student.uu.se Datastrukturer Vad är en datastruktur?
Tentamen i Databasteknik
Tentamen i Databasteknik Tisdagen den 15 mars 2010 Tillåtna hjälpmedel: Allt skrivet material och räknedosa Använd bara framsidan på varje blad. Skriv max en uppgift per blad. Motivera allt, dokumentera
An English version of the questions is found at the back of each page.
Lena Strömbäck Pawel Pietrzak 2004-06-02 Skriftlig tentamen i kursen TDDB48 Databasteknik Datum: 2003-06-02 Tid: 14-18 Lokal: GAR Hjälpmedel: Engelsk ordlista tillåten ej elektronisk iniräknare ej programmerbar
Tentamen 2003-08-22 DATABASTEKNIK - 1DL116
Uppsala universitet Institutionen för informationsteknologi Kjell Orsborn Tentamen 2003-08-22 DATABASTEKNIK - 1DL116 Datum...Fredagen den 22 Augusti, 2003 Tid...8:00-13:00 Jourhavande lärare...kjell Orsborn,
DIG IN TO Dator och nätverksteknik
DIG IN TO Dator och nätverksteknik CCNA 1 MBR och GPT partitionstabeller Agenda Hårddisktyp och hårddiskonfigurationer Standard och dynamiska hårddiskar Master Boot Record MBR GUID Partitionstabell GPT
Uppstart Inloggning SSMS Skapa Databas Skapa Tabell Skapa Diagram, Fk, RI Hantering av Index, Pk, Fk, Ix Constraints Beräknande fält Några funktioner
INNEHÅLL Uppstart Inloggning SSMS Skapa Databas Skapa Tabell Skapa Diagram, Fk, RI Hantering av Index, Pk, Fk, Ix Constraints Beräknande fält Några funktioner Kapitel 5 och 6. Beginning SQL Server 008
Optimala koder. Övre gräns för optimala koder. Gränser. Övre gräns för optimala koder, forts.
Datakompression fö 3 p.3 Datakompression fö 3 p.4 Optimala koder Övre gräns för optimala koder En prefixkod kallas optimal om det inte existerar någon annan kod (för samma alfabet och sannolikhetsfördelning)
Optimala koder. Det existerar förstås flera koder som har samma kodordsmedellängd. Enklaste fallet är att bara byta 0:or mot 1:or.
Datakompression fö 3 p.1 Optimala koder En prefixkod kallas optimal om det inte existerar någon annan kod (för samma alfabet och sannolikhetsfördelning) som har lägre kodordsmedellängd. Det existerar förstås
Skriftlig tentamen i kurserna TDDD12 och TDDB48 Databasteknik 2008-08-11 kl. 14 18
LiTH, Tekniska högskolan vid Linköpings universitet 1(5) IDA, Institutionen för datavetenskap Juha Takkinen Skriftlig tentamen i kurserna TDDD12 och TDDB48 Databasteknik 2008-08-11 kl. 14 18 Lokal T2 och
Binära sökträd. Seminarium 9 Binära sökträd Innehåll. Traversering av binära sökträd. Binära sökträd Definition. Exempel på vad du ska kunna
Seminarium inära sökträd Innehåll inära sökträd inära sökträd Definition Implementering lgoritmer Sökning Insättning orttagning Effektivitet alanserade binära sökträd Eempel på vad du ska kunna Förklara
Avbildningar och hashtabeller. Koffman & Wolfgang kapitel 7, mestadels avsnitt 2 4
Avbildningar och hashtabeller Koffman & Wolfgang kapitel 7, mestadels avsnitt 2 4 1 2 Mängder i Java 3 Mängd-gränssnittet Set vs. List Mängder får endast innehålla unika element: Metoden.add(E) returnerar
Informationsteknologi Tom Smedsaas 19 augusti 2016
Informationsteknologi Tom Smedsaas 19 augusti 016 VL-träd Definition Ett VL-träd är ett binärt sökträd där det för varje nod gäller att skillnaden i höjd mellan nodens vänster och höger subträd är högst
Datastrukturer. Föreläsning 5. Maps 1
Datastrukturer Föreläsning 5 Maps 1 Traversering av träd Maps 2 Preordningstraversering Traversera = genomlöpa alla noderna i ett träd Varje nod besöks innan sina delträd Preordning = djupet först Exempel:
Transaktioner och samtidighet
Databases Transaktioner och samtidighet Real World Model User 4 Updates User Queries 3 Answers Updates User Queries 2 Answers Updates UserQueries 1 Answers Updates Queries Answers Database management system
Filsystem. Varför? Hur? För att kunna lagra data mer permanent än i RAM. Vettig organisation Vettiga namn
Varför? För att kunna lagra data mer permanent än i RAM Hur? Vettig organisation Vettiga namn Stora/små bokstäver 8-bitars tecken (teckenkodning) File extensions Längd Struktur på filerna Byte efter byte,
Föreläsning 9 Innehåll
Föreläsning 9 Innehåll Träd, speciellt binära träd egenskaper användningsområden implementering Datavetenskap (LTH) Föreläsning 9 HT 2017 1 / 31 Inlämningsuppgiften De föreläsningar som inlämningsuppgiften
Självbalanserande träd AVL-träd. Koffman & Wolfgang kapitel 9, avsnitt 1 2
Självbalanserande träd AVL-träd Koffman & Wolfgang kapitel 9, avsnitt 1 2 1 Balanserade träd Nodbalanserat träd: skillnaden i antalet noder mellan vänster och höger delträd är högst 1 Höjdbalanserat träd:
Föreläsning 6. Sökträd: AVL-träd, Multi-Way -sökträd, B-träd TDDC70/91: DALG. Innehåll. Innehåll. 1 AVL-träd
Föreläsning 6 Sökträd: AVL-träd, Multi-Wa -sökträd, B-träd DDC7/9: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer september omm Färnqvist, IDA, Linköpings universitet 6. Innehåll
Tentamen Datastrukturer D DAT 036/INN960
Tentamen Datastrukturer D DAT 036/INN960 18 december 2009 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. Betygsgränser, CTH: 3 = 24 p, 4 = 36 p, 5 = 48 p, GU:
Vad har vi pratat om i kursen?
Vad har vi pratat om i kursen? Föreläsning 1 & 2 Systemminnet och systemstacken Rekursion Abstrakta datatyper Föreläsning 3 ADT:n Länkad lista Föreläsning 4 ADT:n Kö ADT:n Stack Föreläsning 5 Komplexitet
Föreläsning 9. Sortering
Föreläsning 9 Sortering Föreläsning 9 Sortering Sortering och Java API Urvalssortering Instickssortering Söndra och härska Shellsort Mergesort Heapsort Quicksort Bucketsort Radixsort Läsanvisningar och
3. Toppkvinnor på hög Låt lådan och de två kvinnornas famnar utgöra stackarna L, K1 respektive K2. Från början finns alla kort i L.
KTH, Nada, Erik Forslin 2D1343, LÖSNING TILL TENTAMEN I DATALOGI FÖR ELEKTRO Lördagen den 8 mars 2003 kl 14 19 Maxpoäng tenta+bonus = 50+7. Betygsgränser: 25 poäng ger trea, 35 ger fyra, 45 ger femma.
Att uppgradera från Informix 7.31 och kanske lite annat. Johan Backlund
Att uppgradera från Informix 7.31 och kanske lite annat Johan Backlund Innehållsförteckning Introduktion Uppgradering av ett system från 7.31 till 10 High Performance Loader B-tree Scanner och andra upptäckter
Tentamen, Algoritmer och datastrukturer
UNDS TEKNISKA ÖGSKOA (6) Institutionen för datavetenskap Tentamen, Algoritmer och datastrukturer 23 8 29, 8. 3. Anvisningar: Denna tentamen består av fem uppgifter. Totalt är skrivningen på 36 poäng och
Objektorienterad programmering E. Algoritmer. Telefonboken, påminnelse (och litet tillägg), 1. Telefonboken, påminnelse (och litet tillägg), 2
Objektorienterad programmering E Algoritmer Linjär sökning Binär sökning Tidsuppskattningar Föreläsning 9 Vad behöver en programmerare kunna? (Minst) ett programspråk; dess syntax och semantik, bibliotek
Tommy Färnqvist, IDA, Linköpings universitet. 1 ADT Map/Dictionary 1 1.1 Definitioner... 1 1.2 Implementation... 2
Föreläsning 5 ADT Map/Dictionary, hashtabeller TDDI16: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 16 september 2015 Tommy Färnqvist, IDA, Linköpings universitet 5.1 Innehåll Innehåll
Tentamen TEN1 HI
Tentamen TEN1 HI1029 2015-03-17 Skrivtid: 8.15-13.00 Hjälpmedel: Referensblad (utdelas), papper (tomma), penna Logga in med tentamenskontot ni får av skrivvakten. Det kommer att ta tid att logga in ha
TDIU01 - Programmering i C++, grundkurs
TDIU01 - Programmering i C++, grundkurs Pekare och Listor Eric Elfving Institutionen för datavetenskap 31 oktober 2014 Översikt 2/41 Internminne Pekare Dynamiska datastrukturer (Enkellänkade) listor Arbeta
Förändringsdata via DRK-Platsen
KFF Beskrivning av KFF-handläggningsprocessen 1 (9) Förändringsdata via DRK-Platsen KFF Beskrivning av KFF-handläggningsprocessen 2 (9) Innehållsförteckning 1 Viktiga begrepp i DRK-Platsen och RegisterKarte-GML.
ADT Prioritetskö. Föreläsning 12 Innehåll. Prioritetskö. Interface för Prioritetskö. Prioritetsköer och heapar
Föreläsning 1 Innehåll Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util Heapar Implementering av prioritetskö med heap Sortering med hjälp av heap
Laboration 2, MS SQL. Observera. Tips. Förberedelse. Genomförande
Observera Det är fullt tillåtet att göra laborationen innan laborationstillfället. Observera dock att alla uppgifter måste kunna redovisas på redovisningstillfället. Laborationen ska genomföras individuellt,
Programmering för Språkteknologer II. Innehåll. Associativa datastrukturer. Associativa datastrukturer. Binär sökning.
Programmering för Språkteknologer II Markus Saers markus.saers@lingfil.uu.se Rum -040 stp.lingfil.uu.se/~markuss/ht0/pst Innehåll Associativa datastrukturer Hashtabeller Sökträd Implementationsdetaljer
Tentamen Datastrukturer (DAT036/DAT037/DIT960)
Tentamen Datastrukturer (DAT036/DAT037/DIT960) Datum och tid för tentamen: 2016-04-07, 14:00 18:00. Författare: Nils Anders Danielsson. (Tack till Per Hallgren och Nick Smallbone för feedback.) Ansvarig:
Träd - C&P kap. 10 speciellt binära sökträd sid. 452
Föreläsning 10 Träd - C&P kap. 10 speciellt binära sökträd sid. 452 Dessa bilder finns i PDF-format på http://dsv.su.se/courses/pm2/f10/index.html Jozef Swiatycki DSV Bild 1 förälder Träd allmänt Binär-länkad
Karlstads Universitet, Datavetenskap 1
2003-01-20 DAV B04 - Databasteknik 2003-01-20 KaU - Datavetenskap - DAV B04 - MGö 26 Relationsmodellen En formell teori som baserar sig på (främst) mängdlära predikatlogik Föreslogs av E.F Codd 1970 i
Tabeller. Programkonstruktion. Moment 8 Om abstrakta datatyper och binära sökträd. Specifikationer för tabellfunktionerna. Operationer på tabellen
Programkonstruktion Moment 8 Om abstrakta datatyper och binära sökträd Tabeller En viktig tillämpning är tabeller att ifrån en nyckel kunna ta fram ett tabellvärde. Ett typiskt exempel är en telefonkatalog:
Upplägg. Binära träd. Träd. Binära träd. Binära träd. Antal löv på ett träd. Binära träd (9) Binära sökträd (10.1)
Binära träd Algoritmer och Datastrukturer Markus Saers markus.saers@lingfil.uu.se Upplägg Binära träd (9) Binära sökträd (0.) Träd Många botaniska termer Träd, rot, löv, gren, Trädets rot kan ha ett antal
Hashtabeller. TDA416, lp3 2016
Hashtabeller TDA416, lp3 2016 Mängder och avbildningar (Sets and Maps) I den abstrakta datatypen avbildning/uppslagstabell (Map) lagras nyckelvärde-par. Grundläggande operationerna är insättning, borttagning
Föreläsning 11 Innehåll
Föreläsning 11 Innehåll Hashtabeller implementering, effektivitet Metoden hashcode i Java Abstrakta datatyperna mängd (eng. Set) och lexikon (eng. Map) Interfacen Set och Map i Java Datavetenskap (LTH)
Tentamen i Databasteknik
Tentamen i Onsdagen den 7 mars 2007 Tillåtna hjälpmedel: Allt skrivet material Använd bara framsidan på varje blad. Skriv max en uppgift per blad. Motivera allt, dokumentera egna antaganden. Oläslig/obegriplig