Arbete TD9 Bränslecell
|
|
- Gösta Jakobsson
- för 9 år sedan
- Visningar:
Transkript
1 Arbete TD9 Bränslecell 1 INLEDNING Energi- och klimatoron har under 2000-talet ställt välfärdssamhället inför en betydande utmaning: elproduktionen måste bli effektivare och renare. En av de mest lovande metoderna är bränsleceller som har en hög verkningsgrad och vanligen små utsläpp. Bränslecellen är en rätt så gammal uppfinning. År 1839 tillverkade amatörvetenskapsmannen Sir William Grove den första fungerande bränslecellen. Utceklingen av denna fick dock vänta i över hundra år då ångmaskiner och förbränningsmotorer blev populära. Drivna av rymdkapplöpningen lyckades NASA på 1960-talet skicka upp en farkost i omploppsbanan som använde en polymerelektrolytcell. På 2000-talet har polymerceller utvecklats för användning i många tillämpningar som t.ex. bilar och mobiltelefoner. Som bränsle för en bränslecell passar bland annat metanol och vätgas som båda har en hög energidensitet. Båda är dock lättantändliga ämnen och metoderna för att framställa och lagra stora mängder av framför allt vätgas begränsar ännu det slutliga genombrottet. I det här arbetet analyseras polarisationskurvan för en liten polymercell på 600 mw som fungerar på vätgas och dess verkningsgrad räknas ut. Vätet som behövs framställs med en separat elektrolysapparatur. Målsättningen är att så klart som möjligt beskriva grundegenskaperna för en bränslecell och en strömkrets. 2 TEORI Bränslecellen är en elektrokemisk konverter som producerar elektricitet genom en kemisk reaktion mellan ett bränsle och ett oxidationsmedel. Samtidigt frigörs värme och som biprodukt dessutom koldioxid om bränslet innehåller kol. Cellen består av två ledare som fungerar som reaktionsunderlag, en katod och en anod, samt elektrolyten mellan dessa. Vid anoden oxideras bränslet och vid katoden reduceras syret. Då cellens kopplas som en del av en strömkrets kan elektroner som strömmar från den ena elektroden till den andra längs en ledning användas för elektriskt arbete. Elektrolyten 1
2 kompletterar strömkretsen och möjliggör den för cellens funktion nödvändiga strömmen av joner från en elektrod till den andra. Typexemplet för strukturen på en bränslecell är vätebränslecellen. Anoden och katoden är klädda med platina för att katalysera följande elektrodreaktioner: (1) Anod: H2 (g) 2 H e - ; E = 0,00 V (2) Katod: O2 (g) + 4 H + 4 e - 2 H2O; E = 1,23 V Genom att balansera elektronerna i reaktionslikheterna (1) och (2) samt genom att sammanslå dem fås reaktionslikheten för totalreaktionen (3) H2 (g) + ½ O2 (g) H2O; E = 1,23 V Den maximala spänningen man i teorin kan få ur en vätecell är 1,23 V. I praktiken kommer spänningen ändå att vara kring 0,7 V på grund av olika förluster. Genom att koppla celler i serie kan värdet mångdubblas enligt antalet strömkällor som kopplas ihop. I seriekopplade celler kopplas den positiva polen av en cell till den negativa polen av följande cell. Kopplingen utförs i praktiken med bipolära ledarplattor som alltid fungerar som anod i en cell och katod i en annan. Förutom den elektriska kopplingen möjliggör de bipolära plattorna även strömmen av utgångsämnen till elektroderna. Elektroder består typiskt av platinapartiklar som sänkts in i kolgryn. Polymerelektrolyten (Nafion) består av kluster av opolära polytetrafluoretenkedjor (PTFE, handelsnamn: Teflon) där sidokedjor som slutar i polära sulfonsyragrupper har tillsats. Fukt spelar en viktig roll i polymercellers funktion. De polära ändorna på kolkedjorna absorberar vatten som hjälper vätejonernas ledning från anod till katod. Ifall elektroden innehåller för mycket vatten kan porerna täppas vilket förhindrar reaktionen från att starta. Å andra sidan flödar protonerna sämre, ju torrare elektrolyten är. Ofta matas det in mer utgångsämnen än stökiometrin skulle förutsätta. Den stökiometriska koefficienten λ berättar vad förhållande är mellan volymflödet V = ΔV Δt för det reagerande utgångsämnet och det teoretiska volymflöde som reaktionshastigheten kräver. Reaktionshastigheten 2
3 motsvarar den ström som flödar i kretsen, det vill säga antalet laddningar som rör sig per tidsenhet i en elektrokemisk reaktion: (4) It = nzf, där I är strömmen, t är tiden som gått, n är substansmängden utgångsämne som reagerar vid elektroden, z är den den överförda laddningens mängd per mol utgångsämne och F är Faradays konstant As mol Cellspänning och ström Spänningen E som kan fås ur en vätecell beror, förutom den teoretiska cellspänningen, på temperaturen och deltrycken för de olika utgångsämnena. Enligt Nernsts ekvation är p H 2 O (5) E = E RT zf ln ( ), p H2 p O2 Cellsystemets ström beror enligt Faradays lag (4) på utgångsämnenas ström av substansmängd (n ) och antalet seriekopplade celler (N). (6) I = zfn H 2 N Ur ekvation (6) kan man se att ju fler celler som tilläggs, desto större blir substansmängdsströmmen som behövs. Då blir å andra den erhållna sidan strömmen delad med motsvarande faktor. 2.2 Verkningsgrad Den totala verkningsgraden ηtot berättar en hur stor del av den energi eller effekt som matas in i ett system som kan användas. Då man granskar en bränslecell avses en jämförelse mellan den erhållna 3
4 eleffekten P = EI och totaleffekten som införts i systemet. Denna kan beräknas med hjälp av det bildade vattnets substansmängdsström och bildningsentalpi: (7) η tot = EI n H 2 O ( Δ f H(H 2 O)). I vätecellens reaktion bildas lika mycket vatten som det förbrukas vätgas. Med hjälp av verkningsgraden som beräknats med hjälp av entalpin kan bränslecellen jämföras jämlikt med värmemaskiner. Bränslecellens energiform baserar sig dock inte endast på överföring av värme utan även på överföring av laddningar. Ur termodynamiken vet vi att förändringen i Gibbs energi beskriver det tillgängliga maximiarbetet som inte kopplar till en volymförändring. Därför rapporteras ibland också Gibbs verkningsgrad ηg som säger en hur stor del av den teoretiska maximala eleffekten som har tagits i bruk: (8) η G = EI n H 2 O ( Δ f G(H 2 O)). 2.3 Polarisationskurva Då ström börjar passera genom en bränslecell börjar dess spänning genast falla från den teoretiska cellspänningen. Spänningsförlustens storlek kallas överpotential. I en bränslecells polarisationskurva (eller (I, E)-kurva) kan man grovt taget se fyra områden i vilka olika förlustmeknismer styr spänningsfallet: Vid låga reaktionshastigheter faller spänningen som en följd av att elektrodreaktionerna aktiveras. Denna aktiveringsöverpotential förhöjs i bränsleceller som fungerar vid låga temperaturer. Om anodreaktionen är oxidation av väte beror spänningsförlusten som orsakas av aktiveringen främst på syrets långsamma reduktion vid katoden. Förlusten kan minskas med samma metoder som även annars används för att snabba upp kemiska reaktioner: effektivare katalysatorer och genom att t.ex. höja temperaturen och/eller förstora reaktionsytan. 4
5 Spänningsfallet vid den nästan lineära delen av kurvan domineras av ohmiska förluster. Detta innefattar krafter som försvårar eller motstår ledningen av ström eller joner i elektrolyten och de bipolära plattorna. Spänning faller enligt den välkända Ohms lag E =RI. Förlusterna i kurvans tredje del kallas för diffusionsöverpotential. Ur Nernsts ekvation vet vi att spänningen beror på reaktanternas tryck och koncentraion. Spänningen börjar falla då reaktanternas ytkoncentrationer vid anoden och katoden närmar sig noll på grund av att reaktionshastigheten stigit så mycket att tillströmningen av utgångsmaterial inte längre är tillräckligt stor. Detta kan bero t.ex. på att den övre gränsen på diffusionshastigheten uppnåtts eller av orenheter som adsorberats på elektrodens yta, dessa täpper till reaktanternas väg till elektrolyten. Framför allt kolmonoxid adsorberas lätt på ytan av platina. I en polymercell kan orsaken också vara för hög eller låg fuktighet. I det fjärde skedet faller spänningen från den spänning Nernsts ekvation ger för en öppen krets. Förlusten kan ofta vara betydande och beror förutom orenheter på att elektrisk ström eller bränsle kan bryta sig genom elektrolyten och flöda direkt från en elektrod till den andra. Detta fenomen har oftast inte en så stor inverkan på cellens effekt men för celler med låg temperatur sänker det spänningen märkbart. 3 MÄTAPPARATUREN Vätgasen som används i arbetet framställs i en skild elektrolysapparatur, varifrån den leds till bränslecellen. Syret får bränslecellen direkt från luften. I bild 1 finns ett schema över apparaturen. I bilden är E = elektrolysapparaturen, R = motstånd, V = spänningsmätare och A = strömmätare. Bränslecellen som används består av fyra seriekopplade celler. 5
6 Bild 1. Schema över den apparatur som används. 4 ARBETETS UTFÖRANDE Fyll elektrolysapparaturens behållare med jonbytt vatten nästan ända upp till strecket så att vatten kan flöda till apparatens celler. Koppla spänningskällan till elektrolysappraturen, tryck på den röda knappen och ställ in den yttre spänningen till mellan tre och fyra volt. (Gå inte över fyra volt!) Nu börjar det på elektroderna bildas vätgas som transporteras till bränslecellen och syre som bubblar ut i rumsluften från vattenbehållaren. Handskas inte med eld nära elektrolysutrustningen! Mätning av totalvolymströmnen av vätgas Mät totalvolymströmmen V (H 2 ) tot vätgas som bildas (i enheten ml s -1 ) genom att följa såpbubblornas flöde i en mätpipett på det sätt du bedömer vara mest lämpligt. För detta bör du fylla den svarta tutten som kopplats till pipetten med tvålvatten, stänga den gren av T-kopplingen som leder till bränslecellen med en tång och klämma in bubblor i pipetten. Om du i något skede av arbetet ändrar den yttre spänningen i systemet bör volymströmmen V (H 2 ) tot alltid mätas på nytt. 6
7 Öppna den gren av T-kopplingen som leder till bränslecellen och stäng grenen till pipetten. Koppla strömmätaren parallellt med bränslecellen som i bild 1. Justera mätområdena på universalmätarna så att de är så exakta som möjligt så att de ändå inte belastas över den valda gränsen. (Ur Faradays lag (4) och Nernsts ekvation (5) kan du uppskatta lämpliga övre gränser med hjälp av den nyss uppmätta totalvolymströmmen.) Mät först spänningen i den öppna strömkretsen, strömmätaren visar då noll och spänningmätaren cellens maximala spänning. För att räkna ut cellens verkningsgrad måste du mäta hur mycket väte som flödar genom cellen utan att reagera, V (H 2 ) ut, detta görs med en mätpipett precis som tidigare. Ifall detta värde avviker något från den tidigare uppmätta totala volymströmmen läcker systemet och detta fel bör beaktas i de kommande genomflödesberäkningarna. Mätning av polarisationskurvan Koppla turvis olika motstånd i motståndsställningen börjande från det största för att rita upp polarisationskurvan (I, E). Anteckna värdena som avlästs från spännings- och strömmätaren. Kom också ihåg att mäta genomflödet V (H 2 ) ut skilt för varje motstånd. 5 BEHANDLING AV RESULTATEN Varför måste genomflödet av väte mätas skilt för varje motstånd? Räkna ut det reagerade vätets substansmängd n H 2 med hjälp av idealgaslagen. Bestäm den stökiometriska koefficienten för anoden och katoden vid varje mätpunkt. Hur mycket mer startmaterial än den stökiometriska mängd som anges av cellreaktionen måsta man i medeltal mata in i systemet? En granskning av felkällorna i ord räcker. Svara dessutom på följande frågor: 1. Rita upp fyra grafer: spänning, effekt, Gibbs verkningsgrad η G och totalverkningsgraden η tot som funktion av strömmen. Placera effekten och verkningsgraden på samma graf med två vertikala axlar mitt emot varandra. Du kan använda litteraturvärdena ΔfH (H2O) = -285,83 kj mol -1 och ΔfG (H2O) = -237,14 kj mol Märk i polarisationskurvan du ritat upp ut fyra områden där spänningsfallet domineras av någon av följande förlustmekanismer: diffusion, aktivering, ohmisk förlust och utbrott av 7
8 bränsle och elektroner. Märk i grafen också ut gränsströmmen där utgångsämnenas koncentrationer på elektroderna har fallit till noll. Märk också ut den öppna strömkretsens spänning. Jämför den senare med den teoretiska cellspänningen som ges av Nernsts ekvation (5) då cellen är vid normalt lufttryck och rumstemperatur. Luften innehåller cirka 21 % syre. 3. Jämför bränslecellens maxeffekt med effekten på 600 mw som tillverkaren angett och den totala verkningsgraden med det typiska värdet för en vätecell (50-70 %). Finns effektens och verkningsgradens toppar på samma ställe i polarisationskurvan? Fundera på vilken av dessa det skulle löna sig att optimera på en lång rymdfärd där bränslecellen skulle användas hjälpströmkälla i farkosten. 8
Bränslecell. Av: Petter Andersson Klass:EE1b Kaplanskolan, Skellefteå 2015-02-12
Bränslecell Av: Petter Andersson Klass:EE1b Kaplanskolan, Skellefteå 2015-02-12 Innehållsförteckning S. 2-3 Utvinning av energi S. 4-5 Kort historik S. 6-7 Energiomvandlingar S. 8-9 Miljövänlighet S.
Kemiska beteckningar på de vanligaste atomslagen - känna till jonladdning på de vanligaste olika kemiska jonerna
Elektrokemi Kemiska beteckningar på de vanligaste atomslagen - känna till jonladdning på de vanligaste olika kemiska jonerna Elektrokemiska spänningsserien: Alla metaller i det periodiska systemet finns
Fö 13 - TSFS11 Energitekniska system Batterier
Fö 13 - TSFS11 Energitekniska system Batterier Mattias Krysander 26 maj 2015 Dagens föreläsning 1 Introduktion 2 Grunder i batteri-kemi 3 Cellens elektromotoriska kraft (emk) 4 Teoretisk kapacitet: laddningstäthet,
Arbete TD5 Bestämning av transporttal
Arbete TD5 Bestämning av transporttal 1. INLEDNING Såväl positiva som negativa joner deltar samtidigt i transporten av ström i en elektrolytlösning. Med jonens transporttal avses den andel av den totala
LIKSTRÖM. Spänningsaggregat & Strömaggregat Q=1 C I=1 A. t=1 s. I Q t. I dq dt. Ström
LKSTRÖM Spänningsaggregat & Strömaggregat + Ström Q=1 C =1 A Q t dq dt t=1 s Referensriktning: Strömriktningen är densamma som positiva laddningars rörelseriktning. Ström och spänningskällor Batterier
Kapitel 6. Termokemi. Kapaciteten att utföra arbete eller producera värme. Storhet: E = F s (kraft sträcka) = P t (effekt tid) Enhet: J = Nm = Ws
Kapitel 6 Termokemi Kapitel 6 Innehåll 6.1 6.2 6.3 6.4 Standardbildningsentalpi 6.5 Energikällor 6.6 Förnyelsebara energikällor Copyright Cengage Learning. All rights reserved 2 Energi Kapaciteten att
Kapitel 6. Termokemi
Kapitel 6 Termokemi Kapitel 6 Innehåll 6.1 Energi och omvandling 6.2 Entalpi och kalorimetri 6.3 Hess lag 6.4 Standardbildningsentalpi 6.5 Energikällor 6.6 Förnyelsebara energikällor Copyright Cengage
Kapitel 6. Termokemi. Kapaciteten att utföra arbete eller producera värme. Storhet: E = F s (kraft sträcka) = P t (effekt tid) Enhet: J = Nm = Ws
Kapitel 6 Termokemi Kapitel 6 Innehåll 6.1 6.2 6.3 6.4 Standardbildningsentalpi 6.5 Energikällor 6.6 Förnyelsebara energikällor Copyright Cengage Learning. All rights reserved 2 Energi Kapaciteten att
Bränsleceller. Av: Simon Marklund EE1a Kaplanskolan Skellefteå
Bränsleceller Av: Simon Marklund EE1a Kaplanskolan Skellefteå Innehållsförteckning: Historian bakom bränslecellen...sid 2-3 Hur utvinner man energi från bränsleceller?...sid 4-6 Vilka energiomvandlingar
Kapitel 6. Termokemi
Kapitel 6 Termokemi Kapitel 6 Innehåll 6.1 Energi och omvandling 6.2 Entalpi och kalorimetri 6.3 Hess lag 6.4 Standardbildningsentalpi 6.5 Energikällor 6.6 Förnyelsebara energikällor Copyright Cengage
Kapitel 18. Elektrokemi. oxidation-reduktion (redox): innebär överföring av elektroner från ett reduktionsmedel till ett oxidationsmedel.
Kapitel 18 Innehåll Kapitel 18 Elektrokemi 18.1 Balansera Redoxreaktionslikheter 18.2 Galvaniska celler 18.3 Standardreduktionspotentialer 18.4 Cellpotentialer, Elektriskt arbete och Fri energi 18.5 Cellpotentialens
Avsnitt 12.1 Reaktionshastigheter Kemisk kinetik Kapitel 12 Kapitel 12 Avsnitt 12.1 Innehåll Reaktionshastigheter Reaktionshastighet = Rate
Avsnitt 2. Kapitel 2 Kemisk kinetik Kemisk kinetik Området inom kemi som berör reaktionshastigheter Copyright Cengage Learning. All rights reserved 2 Kapitel 2 Innehåll 2. 2.2 Hastighetsuttryck: en introduktion
Kapitel 12. Kemisk kinetik
Kapitel 12 Kemisk kinetik Avsnitt 12.1 Reaktionshastigheter Kemisk kinetik Området inom kemi som berör reaktionshastigheter Copyright Cengage Learning. All rights reserved 2 Avsnitt 12.1 Reaktionshastigheter
Elektriska och elektroniska fordonskomponenter. Föreläsning 6
Elektriska och elektroniska fordonskomponenter Föreläsning 6 1 Växelström - komponenter Växelström beskrivs enklast i komplex form Kräver kännedom om komplex analys Grund för signalteori Lösningsmetoder
Fotoelektriska effekten
Fotoelektriska effekten Bakgrund År 1887 upptäckte den tyska fysikern Heinrich Hertz att då man belyser ytan på en metallkropp med ultraviolett ljus avges elektriska laddningar från ytan. Noggrannare undersökningar
Kapitel 18. Elektrokemi
Kapitel 18 Elektrokemi Kapitel 18 Innehåll 18.1 Balansera Redoxreaktionslikheter 18.2 Galvaniska celler 18.3 Standardreduktionspotentialer 18.4 Cellpotentialer, Elektriskt arbete och Fri energi 18.5 Cellpotentialens
Galvaniska element. Niklas Dahrén
Galvaniska element Niklas Dahrén Galvaniska element/celler Olika anordningar som skapar elektrisk energi utifrån kemiska reaktioner (redoxreaktioner) kallas för galvaniska element (eller galvaniska celler).
4:2 Ellära: ström, spänning och energi. Inledning
4:2 Ellära: ström, spänning och energi. Inledning Det samhälle vi lever i hade inte utvecklats till den höga standard som vi ser nu om inte vi hade lärt oss att utnyttja elektricitet. Därför är det viktigt
Kapitel Kapitel 12. Repetition inför delförhör 2. Kemisk kinetik. 2BrNO 2NO + Br 2
Kapitel 1-18 Repetition inför delförhör Kapitel 1 Innehåll Kapitel 1 Kemisk kinetik Redoxjämvikter Kapitel 1 Definition Kapitel 1 Området inom kemi som berör reaktionshastigheter Kemisk kinetik Kapitel
Kapitel Repetition inför delförhör 2
Kapitel 12-18 Repetition inför delförhör 2 Kapitel 1 Innehåll Kapitel 12 Kapitel 13 Kapitel 14 Kapitel 15 Kapitel 16 Kapitel 17 Kapitel 18 Kemisk kinetik Kemisk jämvikt Syror och baser Syra-basjämvikter
Energiuppgifter. 2. Har reaktanterna (de reagerande ämnena) eller reaktionsprodukterna störst entalpi vid en exoterm reaktion? O (s) H 2.
Energiuppgifter Litterarum radices amarae, fructus dulces 1. Ange ett svenskt ord som är synonymt med termen entalpi. 2. Har reaktanterna (de reagerande ämnena) eller reaktionsprodukterna störst entalpi
Energi, katalys och biosyntes (Alberts kap. 3)
Energi, katalys och biosyntes (Alberts kap. 3) Introduktion En cell eller en organism måste syntetisera beståndsdelar, hålla koll på vilka signaler som kommer utifrån, och reparera skador som uppkommit.
Laborationer i miljöfysik. Solcellen
Laborationer i miljöfysik Solcellen Du skall undersöka elektrisk ström, spänning och effekt från en solcellsmodul under olika förhållanden, och ta reda på dess verkningsgrad under olika förutsättningar.
Kap 8 Redox-reaktioner. Reduktion/Oxidation (elektrokemi)
Kap 8 Redox-reaktioner Reduktion/Oxidation (elektrokemi) Zinkbleck (zinkplåt) i en kopparsulfatlösning Zn (s) + CuSO 4 (aq) Zn (s) + Cu 2+ (aq) + SO 4 2+ (aq) Vad händer? Magnesium brinner i luft Vad
Energitransporter Bränsleceller för naturgas, väte och metanol
Energitransporter Bränsleceller för naturgas, väte och metanol Johan Ylikiiskilä johan.ylikiiskila@gmail.com Linnea Rading linnea.rading@telia.com 28 september 2010 Innehåll 1 Inledning 2 2 Frågeställning
FYSIK ELEKTRICITET. Årskurs 7-9
FYSIK ELEKTRICITET Årskurs 7-9 UNDER DETTA AVSNITT FÅR DU LÄRA DIG: Hur utforskandet av elektriska laddningar lett till dagens kunskap om spänning, ström och resistans Hur man ritar och kopplar elektriska
Galvaniska element. Niklas Dahrén
Galvaniska element Niklas Dahrén Galvaniska element/celler ü Olika anordningar som skapar elektrisk energi utifrån kemiska reaktioner (redoxreaktioner) kallas för galvaniska element (eller galvaniska celler).
Bränslecell. Kaplanskolan Klass: EE1B 2015-02-12. Av: Hannes Laestander
Bränslecell Kaplanskolan Klass: EE1B 2015-02-12 Av: Hannes Laestander Innehållsförteckning * Kort Historik * Hur man utvinner energi från energikällan * Energiomvandlingar * Miljö * Användning * Framtid
Material föreläsning 7. HT2 7,5 p halvfart Janne Färm
Material föreläsning 7 HT2 7,5 p halvfart Janne Färm Fredag 11:e December 10:15 12:00 PPU105 Material Förmiddagens agenda Hållbarhet: oxidation och korrosion ch 17 Paus Processers egenskaper ch 18 2 Hållbarhet:
4. Kemisk jämvikt när motsatta reaktioner balanserar varandra
4. Kemisk jämvikt när motsatta reaktioner balanserar varandra 4.1. Skriv fullständiga formler för följande reaktioner som kan gå i båda riktningarna (alla ämnen är i gasform): a) Kolmonoxid + kvävedioxid
Spänning, ström och energi!
Spänning, ström och energi! Vi lever i ett samhälle som inte hade haft den höga standard som vi har nu om inte vi hade lärt oss att utnyttja elektricitet. Därför är det viktigt att lära sig förstå några
Framsida (Rubrik) Namn: Anders Esping. Klass: TE14B. Datum: 2/3-15
Namn: Anders Esping Framsida (Rubrik) Klass: TE14B Datum: 2/3-15 Abstract I chose to write about fuel cells because I m interested in the environment and fuel cells seemed like a great option for the future
Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar
Kapitel: 25 Ström, motstånd och emf (Nu lämnar vi elektrostatiken) Visa under vilka villkor det kan finnas E-fält i ledare Införa begreppet emf (electromotoric force) Beskriva laddningars rörelse i ledare
rep NP genomgång.notebook March 31, 2014 Om du har samma volym av två olika ämnen så kan de väga helt olika. Det beror på ämnets densitet.
1. Materia 2. Ellära 3. Energi MATERIA Densitet = Hur tätt atomerna sitter i ett ämne Om du har samma volym av två olika ämnen så kan de väga helt olika. Det beror på ämnets densitet. Vattnets densitet
Uppgiften Materiel Brunn nummer Metall eller metallkombination
Hemlaboration 5 B (Härnösand) Korrosions och korrosionsskydd Teori En galvanisk cell består av två elektroder (anod och katod), en förbindelse mellan dessa och en elektrolyt.. Galvanisk korrosion kan liknas
Statisk elektricitet och elektrisk ström
Statisk elektricitet och elektrisk ström 1 Elektricitet...2 Statisk elektricitet...2 Elektrisk ström...4 Seriekoppling...4 Parallellkoppling...5 Repetera kopplingar...6 Elektricitet Det finns två sorters
Nya begrepp i elektrokemi
Nya begrepp i elektrokemi 1 Elektrolys och elektroly4ska processer Laddningsmängd i elektrokemiska processer Rening av råkoppar Galvanisering av järn (elförzinkning) Energiförbrukning Klor- alkaliprocessen
***** Testa laddbara batterier
***** Testa laddbara batterier Kort version Ett laddbart batteri laddar man upp med energi från solceller eller från elnätet. Men får man tillbaka lika mycket energi som man stoppar in? Så här kan du göra
Fortbildning i elektrokemi för lärare i grundskolan och gymnasiet. KRC, SU, 160406
Fortbildning i elektrokemi för lärare i grundskolan och gymnasiet. KRC, SU, 160406 Lars Eriksson, Vivi-Ann Långvik Lars.eriksson@mmk.su.se viviann@krc.su.se Aproximativt schema (gammalt) 09.30 10.00 Introduktion,
Lösning till dugga för Grundläggande kemi Duggauppgifter enligt lottning; nr X, Y och Z.
till dugga för Grundläggande kemi 2013-11-29 Duggauppgifter enligt lottning; nr X, Y och Z. 1. a) Ange kvalitativt buffertkapacitetens storlek (stor eller liten, med motivering, dock inga beräkningar)
Fortbildning i elektrokemi för lärare i grundskolan och gymnasiet. KRC, SU,
Fortbildning i elektrokemi för lärare i grundskolan och gymnasiet. KRC, SU, 171031 Lars Eriksson, Jenny Olander Lars.eriksson@mmk.su.se Jenny.olander@krc.su.se Aproximativt schema (gammalt) 09.30 10.00
Q I t. Ellära 2 Elektrisk ström, kap 23. Eleonora Lorek. Ström. Ström är flöde av laddade partiklar.
Ellära 2 Elektrisk ström, kap 23 Eleonora Lorek Ström Ström är flöde av laddade partiklar. Om vi har en potentialskillnad, U, mellan två punkter och det finns en lämplig väg rör sig laddade partiklar i
Alla papper, även kladdpapper lämnas tillbaka.
Maxpoäng 66 g 13 vg 28 varav 4 p av uppg. 18,19,20,21 mvg 40 varav 9 p av uppg. 18,19,20,21 Alla papper, även kladdpapper lämnas tillbaka. 1 (2p) En oladdad atom innehåller 121 neutroner och 80 elektroner.
** Bil med bränslecell
** Bil med bränslecell Kort version Bränslecellsbilen demonstreras av personalen Prova att köra bilen direkt med solcell Hur går det när ljuset blir svagt Kör bilen med hjälp av bränslecellen. Följ anvisningarna
Faktablad TeliaSoneras prov av bränsleceller som alternativ till traditionell reservkraft
Faktablad TeliaSoneras prov av bränsleceller som alternativ till traditionell reservkraft Vad är en bränslecell? En bränslecell kan liknas vid ett batteri. Till bränslecellens poler kan man ansluta en
Elektrolysvatten. Miljövänlig teknologi för vattenrening,desinfektion och sterilisering
Elektrolysvatten Miljövänlig teknologi för vattenrening,desinfektion och sterilisering 1 Aquacode AB har specialiserat sig på att erbjuda kostnadseffektiva, miljövänliga och hälsoofarliga lösningar för
Elektrokemi. KEMA02 VT2012, Kemiska Institutionen LU /KEBergquist F9
Elektrokemi 1 anod (oxida0on) och katod (reduk0on) halvcellsreak0on cellreak0on cellpoten0al a8 teckna cellschema standard- vätgascellen och standardpoten0aler galvaniskt element vs. elektroly0sk cell
Bestämning av hastighetskonstant för reaktionen mellan väteperoxid och jodidjon
Bestämning av hastighetskonstant för reaktionen mellan väteperoxid och jodidjon Jesper Hagberg Simon Pedersen 28 november 2011 Chalmers Tekniska Högskola Institutionen för Kemi och Bioteknik Fysikalisk
ELEKTRICITET. http://www.youtube.com/watch?v=fg0ftkaqz5g
ELEKTRICITET ELEKTRICITET http://www.youtube.com/watch?v=fg0ftkaqz5g ELEKTRICITET Är något vi använder dagligen.! Med elektricitet kan man flytta energi från en plats till en annan. (Energi produceras
Aggregationstillstånd
4. Gaser Aggregationstillstånd 4.1 Förbränning En kemisk reaktion mellan ett ämne och syre. Fullständig förbränning (om syre finns i överskott), t.ex. etanol + syre C2H6OH (l) +3O2 (g) 3H2O (g) + 2CO2
Resistansen i en tråd
Resistansen i en tråd Inledning Varför finns det trådar av koppar inuti sladdar? Går det inte lika bra med någon annan tråd? Bakgrund Resistans är detsamma som motstånd och alla material har resistans,
Kemiska reaktioner och reaktionshastigheter. Niklas Dahrén
Kemiska reaktioner och reaktionshastigheter Niklas Dahrén Kemiska reaktioner När två partiklar (atomer, molekyler, joner etc.) kolliderar med varandra kan ibland en kemisk reaktion ske. De kolliderande
============================================================================
Konstantström på konstant spänning trafo Postad av Sebastian Andersson - 04 jan 2018 17:52 Har bara en teoretisk fråga om man skulle kunna köra en 350mA 5 watts konstantström led armatur parallellkopplat
3.4 RLC kretsen. 3.4.1 Impedans, Z
3.4 RLC kretsen L 11 Växelströmskretsar kan ha olika utsende, men en av de mest använda är RLC kretsen. Den heter så eftersom den har ett motstånd, en spole och en kondensator i serie. De tre komponenterna
Extralab fo r basterminen: Elektriska kretsar
Extralab fo r basterminen: Elektriska kretsar I denna laboration får du träna att koppla upp kretsar baserat på kretsscheman, göra mätningar med multimetern samt beräkna strömmar och spänningar i en krets.
Extrauppgifter Elektricitet
Extrauppgifter Elektricitet 701 a) Strömmen genom en ledning är 2,50 A Hur många elektroner passerar varje sekund genom ett tvärsnitt av ledningen? b) I en blixt kan strömmen vara 20 ka och pågå i 0,90
Polymerer för avancerade teknologier: Jon- och protonledande polymerer. Begränsad och avtagande tillgång på fossila bränslen...
Polymerer för avancerade teknologier: Jon- och protonledande polymerer Ett globalt problem... Begränsad och avtagande tillgång på fossila bränslen... Kraftig ökning av antalet bilar.. Global reduktion
Lågstadieelevernas inlärningsmaterial för utställningen. Elköping
Lågstadieelevernas inlärningsmaterial för utställningen Elköping Efter uppgiftsnumret har vi angett det utställningsobjekt, där man hittar mer information om frågan eller där man kan fördjupa sin kunskap.
Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-6)
Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-6) Kapitel 1: sid 1 37 Definitioner om vad laddning, spänning, ström, effekt och energi är och vad dess enheterna är: Laddningsmängd
KEM A02 Allmän- och oorganisk kemi. KINETIK 2(2) A: Kap
KEM A02 Allmän- och oorganisk kemi KINETIK 2(2) A: Kap 14.6 14.16 14.6 Andra ordningens kinetik Typiskt för bimolekylära reaktioner EXEMPEL: 2 HI H 2 + I 2 v = k [HI] 2 Typiskt för 2:a ordningens reaktion:
Högstadieelevernas inlärningsmaterial för utställningen. Elköping
Högstadieelevernas inlärningsmaterial för utställningen Elköping Efter uppgiftsnumret har vi angett det utställningsobjekt, där man hittar mer information om frågan eller där man kan fördjupa sin kunskap.
Vad är vatten? Ytspänning
Vad är vatten? Vatten är livsviktigt för att det ska finnas liv på jorden. I vatten finns något som kallas molekyler. Dessa molekyler går inte att se med ögat, utan måste ses med mikroskop. Molekylerna
Partiell Skuggning i solpaneler
Partiell Skuggning i solpaneler Amir Baranzahi Solar Lab Sweden 60222 Norrköping Introduktion Spänningen över en solcell av kristallint kisel är cirka 0,5V (vid belastning) och cirka 0,6V i tomgång. För
Kemi och energi. Exoterma och endoterma reaktioner
Kemi och energi Exoterma och endoterma reaktioner Energiprincipen Energi kan inte skapas eller förstöras bara omvandlas mellan olika energiformer (energiprincipen) Ex på energiformer: strålningsenergi
Korrosion laboration 1KB201 Grundläggande Materialkemi
Korrosion laboration 1KB201 Grundläggande Materialkemi Utförs av: William Sjöström (SENSUR) Rapport skriven av: William Sjöström Sammanfattning Om en metall inte är stabil i den omgivande miljön så kan
Cellens metabolism (ämnesomsättning) Kap8 Sidor i boken Enzymer: Metabolism: , , ,257,
Cellens metabolism (ämnesomsättning) Kap8 Sidor i boken Enzymer: 223-230 Metabolism: 230-232, 243-249,252-253,257,259-261 Cellens ämnesomsättning (metabolism) Anabola reaktioner (uppbyggande) Katabola
1. INLEDNING 2. TEORI. Arbete TD1 Bestämning av förbränningsentalpin med en bombkalorimeter
1. INLEDNING Arbete TD1 Bestämning av förbränningsentalpin med en bombkalorimeter Ett ämnes standardförbränningsentalpi är den förändring i entalpi där ett ämne reagerar med den mängd syrgas som krävs
Kapitel 5. Gaser. är kompressibel, är helt löslig i andra gaser, upptar jämt fördelat volymen av en behållare, och utövar tryck på sin omgivning.
Kapitel 5 Gaser Kapitel 5 Innehåll 5.1 5. 5.3 Den ideala gaslagen 5.4 5.5 Daltons lag för partialtryck 5.6 5.7 Effusion och Diffusion 5.8 5.9 Egenskaper hos några verkliga gaser 5.10 Atmosfärens kemi Copyright
Strömdelning. och spänningsdelning. Strömdelning
elab005a Strömdelning och spänningsdelning Namn Datum Handledarens sign Laboration I den här laborationen kommer du omväxlande att mäta ström och spänning samt även använda metoden för indirekt strömmätning
Elektriska signaler finns i våra kroppar.
Ellärans grunder Elektriska signaler finns i våra kroppar. Från örat till hjärnan när vi hör Från ögonen till hjärnan när vi ser När vi tänker och gör saker sänds elektriska signaler från hjärnan till
Gaser: ett av tre aggregationstillstånd hos ämnen. Flytande fas Gasfas
Kapitel 5 Gaser Kapitel 5 Innehåll 5.1 Tryck 5.2 Gaslagarna från Boyle, Charles och Avogadro 5.3 Den ideala gaslagen 5.4 Stökiometri för gasfasreaktioner 5.5 Daltons lag för partialtryck 5.6 Den kinetiska
Mät resistans med en multimeter
elab003a Mät resistans med en multimeter Namn Datum Handledarens sign Laboration Resistans och hur man mäter resistans Olika ämnen har olika förmåga att leda den elektriska strömmen Om det finns gott om
Inhibitorer Kylvattenkonferens Solna 3/5 2017
Inhibitorer Kylvattenkonferens Solna 3/5 2017 Niklas Dahlberg 1 Varför behövs vattenbehandling? Fokus på problemen: MIKROBIO KORROSION Vad orsakar scaling? Faktorer som påverkar bildandet av scaling: Suspenderande
Facit till Testa dig själv 3.1
Facit till Testa dig själv 3.1 1. En atom består av en positivt laddad atomkärna och negativt laddade elektroner. 2. a) Negativ laddning b) Positiv laddning 3. a) De stöter bort, repellerar, varandra.
Den elektrokemiska spänningsserien. Niklas Dahrén
Den elektrokemiska spänningsserien Niklas Dahrén Metaller som reduktionsmedel ü Metaller avger gärna sina valenselektroner till andra ämnen p.g.a. låg elektronegativitet och eftersom de metalljoner som
aa + bb cc + dd gäller Q = a c d
Jämviktslära begrepp och samband För en jämviktsreaktion vid ett visst tryck och temperatur så blir riktningen för processen, (dvs. höger eller vänster i reaktionsformeln), framåt, åt höger, om den ger
Gaser: ett av tre aggregationstillstånd hos ämnen. Fast fas Flytande fas Gasfas
Kapitel 5 Gaser Kapitel 5 Innehåll 5.1 Tryck 5.2 Gaslagarna från Boyle, Charles och Avogadro 5.3 Den ideala gaslagen 5.4 Stökiometri för gasfasreaktioner 5.5 Daltons lag för partialtryck 5.6 Den kinetiska
Laborationer i miljöfysik. Solcellen
Laborationer i miljöfysik Solcellen Du skall undersöka elektrisk ström, spänning och effekt från en solcellsmodul under olika förhållanden, och ta reda på dess verkningsgrad under olika förutsättningar.
6. Likströmskretsar. 6.1 Elektrisk ström, I
6. Likströmskretsar 6.1 Elektrisk ström, I Elektrisk ström har definierats som laddade partiklars rörelse mer specifikt som den laddningsmängd som rör sig genom en area på en viss tid. Elström kan bestå
PROV ELLÄRA 27 oktober 2011
PRO EÄR 27 oktober 2011 Tips för att det ska gå bra på provet. Skriv ÖSNINGR på uppgifterna, glöm inte ENHETER och skriv lämpligt antal ÄRDESIFFROR. ycka till! Max 27p G 15p 1. (addning - G) Två laddningar
Cellens metabolism (ämnesomsättning)
Cellens metabolism (ämnesomsättning) Kap8 Sidor i boken: Enzymer: s223-230 Metabolism: s230-232, 243-261 (prio pdf) samf. s264, (262-263) Cellens ämnesomsättning (metabolism) Anabola reaktioner (uppbyggande)
Biobränsle. Biogas. Effekt. Elektricitet. Energi
Biobränsle X är bränslen som har organiskt ursprung, biomassa, och kommer från de växter som lever på vår jord just nu. Exempel på X är ved, rapsolja, biogas och vissa typer av avfall. Biogas Gas som består
Kapitel 4. Reaktioner i vattenlösningar
Kapitel 4 Reaktioner i vattenlösningar Kapitel 4 Innehåll 4.1 Vatten, ett lösningsmedel 4.2 Starka och svaga elektrolyter 4.3 Lösningskoncentrationer 4.4 Olika slags kemiska reaktioner 4.5 Fällningsreaktioner
en titt på lärarmaterial och elevtexter
en titt på lärarmaterial och elevtexter Ord och begrepp som lärarna antog vara svåra, ellära, åk 7 elektrisk laddning, elektroner, protoner, neutroner, atomkärna, attrahera, repellera, underskott/överskott,
Övningar Homogena Jämvikter
Övningar Homogena Jämvikter 1 Tiocyanatjoner, SCN -, och järn(iii)joner, Fe 3+, reagerar med varandra enligt formeln SCN - + Fe 3+ FeSCN + färglös svagt gul röd Vid ett försök sätter man en liten mängd
Elektricitet studieuppgifter med lösning.
Elektricitet studieuppgifter med lösning. 1. Vad behöver man minst för att tillverka ett batteri? Två olika metaller och en syra eller saltlösning. 2. Vad var det som gjorde batteriet till en så banbrytande
Selektiv och katalytisk hydrogenering av 4-vinylcyklohexen
Selektiv och katalytisk hydrogenering av 4-vinylcyklohexen Simon Pedersen 27 februari 2012 Chalmers Tekniska Högskola Institutionen för Kemi och Bioteknik Oorganisk och Organisk Kemi Handledare Andreas
Elektricitet och magnetism
Elektricitet och magnetism Eldistribution Laddning Ett grundläggande begrepp inom elektricitetslära är laddning. Under 1700-talet fann forskarna två sorters laddning POSITIV laddning och NEGATIV laddning
Elektriska komponenter och kretsar. Emma Björk
Elektriska komponenter och kretsar Emma Björk Elektromotorisk kraft Den mekanism som alstrar det E-fält som driver runt laddningarna i en sluten krets kallas emf(electro Motoric Force trots att det ej
Mät elektrisk ström med en multimeter
elab001a Mät elektrisk ström med en multimeter Namn Datum Handledarens sign Elektrisk ström och hur den mäts Den elektriska strömmen består av laddningar som går inne i en ledare en ledare av koppar är
Kap 6: Termokemi. Energi:
Kap 6: Termokemi Energi: Definition: Kapacitet att utföra arbete eller producera värme Termodynamikens första huvudsats: Energi är oförstörbar kan omvandlas från en form till en annan men kan ej förstöras.
Laboration 1 Elektriska kretsar Online fjärrstyrd laborationsplats Blekinge Tekniska Högskola (BTH)
Laboration 1 Elektriska kretsar Online fjärrstyrd laborationsplats Blekinge Tekniska Högskola (BTH) Likspänningsexperiment Namn: Elektriska kretsar Online fjärrstyrd laborationsplats Blekinge Tekniska
Laboration Photovoltic Effect Diode IV -Characteristics Solide State Physics. 16 maj 2005
Laboration Photovoltic Effect Diode I -Characteristics Solide State Physics Farid Bonawiede Michael Litton Johan Mörtberg fabo2@kth.se litton@kth.se jmor2@kth.se 16 maj 25 1 I denna laboration ska vi förklara
Fysik 1 kapitel 6 och framåt, olika begrepp.
Fysik 1 kapitel 6 och framåt, olika begrepp. Pronpimol Pompom Khumkhong TE12C Laddningar som repellerar varandra Samma sorters laddningar stöter bort varandra detta innebär att de repellerar varandra.
Sven-Bertil Kronkvist. Elteknik. Tvåpolssatsen. Revma utbildning
Sven-Bertil Kronkvist Elteknik Tvåpolssatsen Revma utbildning TVÅPOLSSATSEN Tvåpolssatsen används vid analys, för att ersätta komplicerade linjära kretsar med enkla seriekretsar. INTRODUKTION Anta att
Arbete A3 Bestämning av syrakoefficienten för metylrött
Arbete A3 Bestämning av syrakoefficienten för metylrött 1. INLEDNING Elektromagnetisk strålning, t.ex. ljus, kan växelverka med materia på många olika sätt. Ljuset kan spridas, reflekteras, brytas, passera
WORKSHOP: EFFEKTIVITET OCH ENERGIOMVANDLING
WORKSHOP: EFFEKTIVITET OCH ENERGIOMVANDLING Energin i vinden som blåser, vattnet som strömmar, eller i solens strålar, måste omvandlas till en mera användbar form innan vi kan använda den. Tyvärr finns
Kemisk Dynamik för K2, I och Bio2
Kemisk Dynamik för K2, I och Bio2 Fredagen den 11 mars 2005 kl 8-13 Uppgifterna märkta (GKII) efter uppgiftens nummer är avsedda både för tentan i Kemisk Dynamik och för dem som deltenterar den utgångna
Gaser: ett av tre aggregationstillstånd hos ämnen. Flytande fas Gasfas
Kapitel 5 Gaser Kapitel 5 Innehåll 5.1 Tryck 5.2 Gaslagarna från Boyle, Charles och Avogadro 5.3 Den ideala gaslagen 5.4 Stökiometri för gasfasreaktioner 5.5 Daltons lag för partialtryck 5.6 Den kinetiska
F1 F d un t amen l a s KEMA00
F1 F d t l F1 Fundamentals KEMA00 A Materia och Energi SI-enheter Mätosäkerhet Potentiell energi Ep = mgh Coulombs lag q1 q2 4 r E p 0 B Grundämnen och atomer Atomnummer z (antal atomer i kärnan) Masstal