Två fall: q Tom sekvens: () q Sekvens av element: (a b c) ; (sum-rec '(2 4 6)) = 12. q Första elementet uppfyller vissa villkor: (2 a b c)

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Två fall: q Tom sekvens: () q Sekvens av element: (a b c) ; (sum-rec '(2 4 6)) = 12. q Första elementet uppfyller vissa villkor: (2 a b c)"

Transkript

1 Programmönster: # Listan som sekvens, Rekursiv process Enkel genomgång av sekvens (element på toppnivån i en lista)) TDDC60 Programmering: abstraktion och modellering Föreläsning 5 Rekursiva och iterativa programmeringsmönster för sekvenser Rekursiva mönster för binära träd och hierarkiska strukturer. Högre ordningens mönster. Sammanfattning rekursiva modeller. Metodik för att utveckla och verifiera rekursiva funktioner. Två fall: q Tom sekvens: () q Sekvens av element: (a b c) (DEFINE(FN SEQ) (IF (NULL? SEQ) <null-resultat> (<operation> (FIRST SEQ) (FN (REST SEQ))))) (define (sum-rec seq-rec); Summera talen i en lista (sekvens) 0 (+ (first seq) (sum-rec (rest seq))))) ; (sum-rec '(2 4 6)) = 2 Programmönster: # Listan som sekvens, Rekursiv process (define (increase-rec seq n) ; Öka alla elementen i en lista (sekvens) med n (cons (+ (first seq) n) (increase-rec (rest seq))))) ; (increase-rec '(3 5 7) 00) = ( ) (define (my-append seq seq2) ; Sätt samman två listor (sekvenser) (if (null? seq) seq2 (cons (first seq) (my-append (rest seq) seq2)))) ; (my-append '( 2 3) '(a b c)) = ( 2 3 a b c) Programmönster: # Listan som sekvens, Iterativ process (DEFINE (FN SEQ) (DEFINE (ITER SEQ RESULT) (IF (NULL? SEQ) RESULT (ITER (REST SEQ) (<operation> (FIRST SEQ) RESULT)))) (ITER SEQ <start-result>)) (define (sum-iter seq) ; Summera talen (define (iter seq result) result (iter (rest seq) (+ result (first seq))))) (iter seq 0)) ; (sum-iter (2 4 6)) = 2 Programmönster: # Listan som sekvens, Iterativ process Observera att resultatet byggs upp framifrån av elementen i listan. Jämför med rekursiv process där vi bygger upp bakifrån. (define (increase-iter seq n) ; summera alla talen i en lista (sekvens) (define (iter seq res) res (iter (cdr seq) (put-last (+ (first seq) n) res)))) (iter seq )) (define (put-last e seq) (append seq (list e))) ; (increase-iter '(3 5 7) 00) = ( ) Programmönster: #2 Som mönster # men särskild bearbetning av enskilda element Tre fall: q Tom sekvens: () q Första elementet uppfyller vissa villkor: (2 a b c) q Generella fallet: (a b c ) (DEFINE (FN SEQ) (COND ((NULL? SEQ) <null-result>) ((<condition> (FIRST SEQ)) <result>))... fler villkor... (ELSE (<operation> (FIRST SEQ) (FN (REST SEQ))))))

2 Programmönster #2: Särskild bearbetning av enskilda element. Rekursiv process (define (number-in-list? seq) ; Innehåller en lista ett tal (cond ((null? seq) #f) ((number?(first seq)) #t) (else (number-in-list? (rest seq))))) ; (number-in-list? '(a 3 b)) = #t ; (number-in-list? '(a b c)) = #f (define (rem-numbers seq) ; Tag bort alla tal från en lista (sekvens) (cond ((null? seq)) ((number? (first seq)) (rem-numbers (rest seq))) (else (cons (first seq) (rem-numbers (rest seq)))))) Programmönster #2: Särskild bearbetning av enskilda element. Rekursiv process (define (substitute seq old new) ; ersätt alla av ett givet element med ett nytt element (cond ((null? seq) ) ((eq? (first seq) old) (cons new (substitute (rest seq) old new))) (else (cons (first seq) (substitute (rest seq) old new)))))) ; Ersättt alla a med x ; (substitute '(a b c a d a) 'a 'x) = (x b c x d x) ; (rem-numbers '(a 2 b c 3)) = (a b c) Programmönster: #3 Listan innehåller element som i sin tur kan vara listor. Sekvenser. Hierarkiska strukturer. Tre Fall: q Tomma: () q Första element är inte en lista (atomärt): (a (b) c) q General case: ((a b) (b c) (d)) Ger en sekvenslösning. Brukar benämnas dubbelrekursion (car-cdr rekursion) Programmönster: #3 Listor med listor (define (rem-all-numbers seq) ; Tar bort alla tal på alla nivåer (cond ((null? seq) ) ((atom? (first seq)) (if (number? (first seq)) (rem-all-numbers (rest seq)) (cons (first seq) (rem-all-numbers (rest seq))))) (else (cons (rem-all-numbers (first seq)) (rem-all-numbers (rest seq)))))) ; Ersätt alla a mot x på alla nivåer (rem-all-numbers '(a (3 4) ((a 5 d) e))) = (a () ((a d) e)) (define (atom? obj) (not (list? obj))) Binärt träd. Trädet har noder och bågar. Toppen benämns rot och avslutas i löv. Kan skapas av cons-par: (cons (cons (cons 2) (cons 'a 'b)) 'x) = (((. 2). (a. b)). x) x Programmönster: #4 Binär trädstruktur. Representerat som punkterade par. Två fall: q Löv: a q Generellt fall, nod: (((a. b). (b. c)). d) Tre fall: q Tomt träd: () q Löv: a q Generellt fall, nod: (((a. b). (b. c)). d) 2 a b 2

3 (DEFINE (FN TREE) (COND ; ((EMPTY? TREE) <empty-result>);finns tomt träd? ((LEAF? TREE) <leaf-result>) (ELSE (<operation> (FN (LEFT TREE)) (FN (RIGHT TREE)))))) Med representation av trädet som punkterade par definieras primitiverna: (define (leaf? bt) (not (pair? bt))) (define left car) (define right cdr) (define (leaves bt) ; returnerar antalet löv (if (leaf? bt) (+ (leaves (left bt))) (leaves (right bt))))) (leaves '(((. 2). (a. b)). x) = 5 Med abstraktion kan trädet vara representerat på andra sätt. I stälet för ett punkterat par kan representionen vara en lista med två element, höger resp. vänster delträd. Huvudfunktionen blir samma. (define (leaf? bt) (not (pair? bt?))) (define left car) (define right cadr) (define (leaves bt) ; returnerar antalet löv (if (leaf? bt) (+ (leaves (left bt))) (leaves (right bt))))) (leaves '((( 2) (a b)) x)) = 5 Här representeras ett aritmetiskt uttryck som ett binärt träd. Operatorn lagras i noden. Bearbetningen av uttrycken sker med binär-träd mönstret. Ett aritmetiskt uttryck lagras som: löv - konstant nod - (operand- operator operand-2) * (5 + 6) -> representeras (3 + (4 * (5 + 6))) Selektorer för att komma åt delarna från en nod, dvs vänster resp. höger operand och operatorn. (define oper- first) (define oper-2 third) (define operator second) (define (value expr) ; beräknar värdet av ett aritmetiskt uttryck (cond ((number? expr) expr) ((eq? (operator expr) '+) (+ (value (oper- expr)) (value (oper-2 expr)))) ((eq? (operator expr) '*) (* (value (oper- expr)) (value (oper-2 expr)))))) (value '(3 + (4 * (5 + 6)))) = 47 Programmönster: #5 Generella listor. Listor kan avslutas med punkterat par. Kan innehålla punkterad lista. Listan avslutas ej med tomma listan. (cons 'a (cons 'b 'c)) = (a. (b. c)) = (a b. c) Testas med pair?. (Äkta listor kan testas med list?) CAR och CDR används på sådana listor. Fyra fall: q Tomma listan: () q Icke-lista (atom): a q Första elementet är icke-lista (atomär): (a (b c) (d). e) q Generellt fall: ((a. b) (b c) (d). e) 3

4 Programmönster: #5 Generella listor. (define (add-one gen-list); Öka varje tal med. (cond ((null? gen-list) ) ((atom? gen-list) (if (number? gen-list) (+ gen-list) gen-list)) ((atom? (car gen-list)) (if (number? (car gen-list)) (cons (+ (car gen-list)) (add-one (cdr gen-list))) (cons (car gen-list) (add-one (cdr gen-list))))) (else (cons (add-one (car gen-list)) (add-one (cdr gen-list)))))) Högre ordningens funktioner för listor n Alla mönster kan omformas till högre ordningens funktioner/procedurer där operationer/funktioner, startvärde mm ges som parametrar. n Speciellt för listan (sekvensen) finns ofta många fördefinierade högra ordningens funktioner. (add-one '(a (b. 2) (c (3)). 4)) = (a 2 (b. 3) (c (4)). 5) Mönster # som högre ordningens funkiton (DEFINE (FN TREE) (if (LEAF? TREE) <leaf-result> (<operation> (FN (LEFT TREE)) (FN (RIGHT TREE))))) Mönster (define (bin-tree node-fn leaf-fn tree) (if (leaf? tree?) (leaf-fn tree) Högre ordningens funktion (node-op (bin-tree node-fn leaf-fn (left tree)) (bin-tree node-fn leaf-fn (right tree))))) Mönster # som högre ordningens funkiton (define (bin-tree node-fn leaf-fn tree) (if (leaf? tree) (leaf-fn tree) (node-fn (bin-tree node-fn leaf-fn (left tree)) (bin-tree node-fn leaf-fn (right tree))))) ; Skapa ett nytt träd där vänster och höger ; deltäd byter plats på alla nivåder (bin-tree (lambda (left right) (cons right left)) (lambda (leaf) leaf) '(((. 2). (a. b)). x) = (x. ((b. a). (2. ))) = (x (b. a) 2. ) Observera att Scheme skriver ut i första hand i listformat. Högre-ordningens procedurer för sekvenser. Exempel på funktioner från kursboken (avs 2.2 I SICP) Map gör något på varje element i en sekvens (define (map proc seq) (cons (proc (first seq)) (map proc (rest seq))))) ; öka varje element med 5 (map (lambda (e)( + e 5)) '(2 6 4)) = ( ) = (7 9) Filter - ta ut vissa element från en lista (define (filter predicate seq) (cond ((null? seq) ) ((predicate (first seq)) (cons (first seq) (filter predicate (rest seq)))) (else (filter predicate (rest seq))))) ; Ta ut alla positiva talen (filter (lambda (x) (> x 0)) '( )) = (3 4 2) 4

5 Enumerate / generate - skapa successiva element i en lista (enumerate 3 0) = ( ) Skapa en lista med nr element där nästföljande element beräknas fram av föregående. (define (my-generate next-proc start nr) (if (= nr 0) (cons start (my-generate next-proc (next-proc start) (- nr ))))) Accumulate ( kallas även Reduce) (define (accumulate op initial sequence) (if (null? sequence) initial (op (first sequence) (accumulate op initial (rest sequence))))) (accumulate + 0 '(2 4 6)) = (+ 2 (+ 4 (+ 6 0))) = 2 accumulate list '( 2 3)) = = (list (list 2 (list 3 ))) = ( (2 (3 ()))) (my-generate (lambda (n) (* n n)) 2 5) = ( ) Problem kan nu lösas genom lämplig kombination av sådana funktioner Vem har mest lön av anställda med lön under med anställningsnummer från 50 till 00? (accumulate max 0 (filter (lambda (salary) (< salary 0000)) (map fetch-salary (enumerate 50 00)))) Antag det finns en funktion fetch-salary som givet ett anställningsnummer ger lönen. 5

n Detta för att kunna koncentrera oss på n Tal: number? n Symboler: symbol? n Strängar: string? n Tecken: char? n Boolskt: boolean?

n Detta för att kunna koncentrera oss på n Tal: number? n Symboler: symbol? n Strängar: string? n Tecken: char? n Boolskt: boolean? Tidigare TDDC74 Programming: Abstraktion och modellering Föreläsning 4 Symboler, Par, Listor Representation av par, Grafisk notation för par Representation av listor mha par Typiska listhanteringsprocedurer

Läs mer

Rekursiva algoritmer sortering sökning mönstermatchning

Rekursiva algoritmer sortering sökning mönstermatchning Anders Haraldsson 1 Anders Haraldsson 2 Dagens föreläsning Programmering i Lisp Fö 6-7 Rekursiva strukturer rekursiva definitioner rekursiva funktioner rekursiva bevis: induktion - rekursion strukturell

Läs mer

TDDC74 Programmering: Abstraktion och modellering Dugga 2, kl 8 10, 5 mars 2015

TDDC74 Programmering: Abstraktion och modellering Dugga 2, kl 8 10, 5 mars 2015 TDDC74 Programmering: Abstraktion och modellering Dugga 2, kl 8 10, 5 mars 2015 Läs alla frågorna först, och bestäm dig för i vilken ordning du vill lösa uppgifterna. Skriv tydligt och läsligt. Använd

Läs mer

Signalflödesmodellen. Två (gamla) exempel: Kvadratera alla jämna löv.

Signalflödesmodellen. Två (gamla) exempel: Kvadratera alla jämna löv. Strömmar (streams) De sista dagarna objekt med tillstånd modellerades som beräkningsobjekt med tillstånd. Isådana modeller är tiden modelerad (implicit) som en sekvens av tillstånd. För att kunna modellera

Läs mer

Idag: Par och listor. Symboler. Symboler används för att uttrycka icke-numeriska data såsom namn, adress, bilregisternummer, boktitel, osv.

Idag: Par och listor. Symboler. Symboler används för att uttrycka icke-numeriska data såsom namn, adress, bilregisternummer, boktitel, osv. Idag: Par och listor Symboler Hur hanterar man icke-numeriska problem? Hur hanterar man en samling av data? Hur konstruerar man sammansatta datastrukturer? Bra om du har läst följande avsnitt i AS: Pair

Läs mer

TDDC74 Programmering: Abstraktion och modellering Dugga 2, Tid: kl 08-10, Datum:

TDDC74 Programmering: Abstraktion och modellering Dugga 2, Tid: kl 08-10, Datum: TDDC74 Programmering: Abstraktion och modellering Dugga 2, Tid: kl 08-10, Skriv tydligt så att inte dina lösningar missförstås. Använd väl valda namn på parametrar och indentera din kod. Även om det i

Läs mer

Linjärt minne. Sammanhängande minne är ej flexibelt. Effektivt

Linjärt minne. Sammanhängande minne är ej flexibelt. Effektivt Binära träd (forts) Ett binärt träd kan lagras i ett enda sammanhängande minne Roten har index 1 Vänster barn till nod i har index 2*i Höger barn till nod i har index 2*i + 1 Föräldern till nod i har index

Läs mer

Tentamen i. TDDC67 Funktionell programmering och Lisp

Tentamen i. TDDC67 Funktionell programmering och Lisp 1 Linköpings tekniska högskola Institutionen för datavetenskap Anders Haraldsson Tentamen i TDDC67 Funktionell programmering och Lisp och äldre kurser TDDC57 Programmering, Lisp och funktionell programmering

Läs mer

TDDC74 Programmering, abstraktion och modellering DUGGA 2

TDDC74 Programmering, abstraktion och modellering DUGGA 2 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering DUGGA 2 Torsdag 19 feb 2009 8-10 Namn: Personnummer:

Läs mer

Ändringsbar (mutable compound) data. TDDC74 Programmering: abstraktion och modellering. Sätta - samman listor kopiering. Hitta sista cons-cellen

Ändringsbar (mutable compound) data. TDDC74 Programmering: abstraktion och modellering. Sätta - samman listor kopiering. Hitta sista cons-cellen TDDC74 Programmering: abstraktion och modellering Ändringsbar (mutable comound) data Att göra strukturförändringar i listor Ändra car- och cdr-ekare SICP 3 (del ) Föreläsning 8 Anders Haraldsson (set-car!

Läs mer

Tillämpad Programmering (ID1218) :00-13:00

Tillämpad Programmering (ID1218) :00-13:00 ID1218 Johan Montelius Tillämpad Programmering (ID1218) 2014-03-13 09:00-13:00 Förnamn: Efternamn: Regler Du får inte ha något materiel med dig förutom skrivmateriel. Mobiler etc, skall lämnas till tentamensvakten.

Läs mer

Föreläsning 9 Exempel

Föreläsning 9 Exempel Föreläsning 9 Exempel Intervallhalveringsmetoden DA2001 (Föreläsning 9) Datalogi 1 Hösten 2013 1 / 24 Föreläsning 9 Exempel Intervallhalveringsmetoden Newton-Raphsons metod DA2001 (Föreläsning 9) Datalogi

Läs mer

TDDC74 Programmering, abstraktion och modellering DUGGA 3

TDDC74 Programmering, abstraktion och modellering DUGGA 3 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering DUGGA 3 Torsdag 4 mars 2010 kl 8-10 Namn: Personnummer:

Läs mer

Våra enkla funktioner eller procedurer

Våra enkla funktioner eller procedurer Föreläsning 3 Våra enkla funktioner eller procedurer Programmönster 1. Repetition 2. Högre-ordningens procedurer/programmönster - Procedurer som argument - Procedurer som returnerade värden 3. Scope och

Läs mer

Dagens föreläsning Programmering i Lisp Fö 7. Sammanfattning funktionell programmering Exempel på funktionella programspråk

Dagens föreläsning Programmering i Lisp Fö 7. Sammanfattning funktionell programmering Exempel på funktionella programspråk 1 Dagens föreläsning Programmering i Lisp Fö 7 Kopplingen funktionella programmering och diskret matematik. Jämför vad ni hittills gjort i denna kurs och i den diskreta matematiken, med referenser in i

Läs mer

Föreläsning 9 Innehåll

Föreläsning 9 Innehåll Föreläsning 9 Innehåll Träd, speciellt binära träd egenskaper användningsområden implementering Datavetenskap (LTH) Föreläsning 9 HT 2017 1 / 31 Inlämningsuppgiften De föreläsningar som inlämningsuppgiften

Läs mer

Sökning och sortering. Sökning och sortering - definitioner. Sökning i oordnad lista. Sökning med vaktpost i oordnad lista

Sökning och sortering. Sökning och sortering - definitioner. Sökning i oordnad lista. Sökning med vaktpost i oordnad lista Sökning och sortering Sökning och sortering - definitioner Att söka efter data man lagrat undan för senare användning är vanligt Egentligen har man ingen annan anledning för att lagra undan data Har man

Läs mer

Sökning och sortering

Sökning och sortering Sökning och sortering Att söka efter data man lagrat undan för senare användning är vanligt Egentligen har man ingen annan anledning för att lagra undan data Har man mycket data och många sökningar måste

Läs mer

Lösningar Datastrukturer TDA

Lösningar Datastrukturer TDA Lösningar Datastrukturer TDA416 2016 12 21 roblem 1. roblem 2. a) Falskt. Urvalssortering gör alltid samma mängd av jobb. b) Sant. Genom att ha en referens till sista och första elementet, kan man nå både

Läs mer

Programmeringsmetodik DV1 Programkonstruktion 1. Moment 8 Om abstrakta datatyper och binära sökträd

Programmeringsmetodik DV1 Programkonstruktion 1. Moment 8 Om abstrakta datatyper och binära sökträd Programmeringsmetodik DV1 Programkonstruktion 1 Moment 8 Om abstrakta datatyper och binära sökträd PK1&PM1 HT-06 moment 8 Sida 1 Uppdaterad 2005-09-22 Tabeller En viktig tillämpning är tabellen att ifrån

Läs mer

Föreläsning Datastrukturer (DAT036)

Föreläsning Datastrukturer (DAT036) Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-25 Idag Starkt sammanhängande komponenter Duggaresultat Sökträd Starkt sammanhängande komponenter Uppspännande skog Graf, och en möjlig

Läs mer

Institutionen för datavetenskap, DAT060, Laboration 2 2 För denna enkla simulerings skull kommer handen att representeras som ett par tal μ värdet på

Institutionen för datavetenskap, DAT060, Laboration 2 2 För denna enkla simulerings skull kommer handen att representeras som ett par tal μ värdet på DAT 060 Laboration 2 I Malmös kasino Institutionen för datavetenskap 17 juni 2002 Per tänkte dryga ut sitt magra studielån genom att jobba som labbassistent på sommarkursen. Tyvärr fanns det redan tillräckligt

Läs mer

Tabeller. Programkonstruktion. Moment 8 Om abstrakta datatyper och binära sökträd. Implementering av tabellen. Operationer på tabellen

Tabeller. Programkonstruktion. Moment 8 Om abstrakta datatyper och binära sökträd. Implementering av tabellen. Operationer på tabellen Programkonstruktion Moment 8 Om abstrakta datatyper och binära sökträd Tabeller En viktig tillämpning är tabellen att ifrån en nyckel kunna ta fram ett tabellvärde. Ett typiskt exempel är en telefonkatalog:

Läs mer

Datalogi, grundkurs 1

Datalogi, grundkurs 1 Datalogi, grundkurs 1 Tentamen 10 december 2008 konverterad till Python Hjälpmedel: Kommer att finnas i skrivsalarna, bl.a. Revised 6 Report on the Algorithmic Language Scheme och två olika s.k. Cheat

Läs mer

Imperativ programmering. Imperativ programmering konstruktioner i Lisp. Datastrukturer (kap ) arraystruktur poststruktur

Imperativ programmering. Imperativ programmering konstruktioner i Lisp. Datastrukturer (kap ) arraystruktur poststruktur Imperativ programmering konstruktioner i Lisp Imperativ programmering I den imperativa programmeringen skriver vi program satsvist. Datastrukturer (kap.-.) aystruktur poststruktur Iterativa uttryck (avs.)

Läs mer

Datastrukturer i kursen. Föreläsning 8 Innehåll. Träd rekursiv definition. Träd

Datastrukturer i kursen. Föreläsning 8 Innehåll. Träd rekursiv definition. Träd Föreläsning 8 Innehåll Datastrukturer i kursen Träd, speciellt binära träd egenskaper användningsområden implementering Undervisningsmoment: föreläsning 8, övningsuppgifter 8, lab 4 Avsnitt i läroboken:

Läs mer

TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.

TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. 1 (8) TENTMEN: lgoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. örja varje uppgift på ett nytt blad. Skriv inga lösningar i tesen. Skriv ditt idnummer

Läs mer

729G74 IT och programmering, grundkurs. Tema 3. Föreläsning 2 Jody Foo,

729G74 IT och programmering, grundkurs. Tema 3. Föreläsning 2 Jody Foo, 729G74 IT och programmering, grundkurs Tema 3. Föreläsning 2 Jody Foo, jody.foo@liu.se Föreläsningsöversikt Repetition: syntax-quiz Fler for-loopar (över listor och dictionaries) range() Nästlade strukturer

Läs mer

Självbalanserande träd AVL-träd. Koffman & Wolfgang kapitel 9, avsnitt 1 2

Självbalanserande träd AVL-träd. Koffman & Wolfgang kapitel 9, avsnitt 1 2 Självbalanserande träd AVL-träd Koffman & Wolfgang kapitel 9, avsnitt 1 2 1 Balanserade träd Nodbalanserat träd: skillnaden i antalet noder mellan vänster och höger delträd är högst 1 Höjdbalanserat träd:

Läs mer

Träd. Rot. Förgrening. Löv

Träd. Rot. Förgrening. Löv Träd Träd Rot Förgrening Löv Exempel: Organisationsschema Rot Överkucku Förgrening Underhuggare Underhuggare Administativ chef Kanslichef Knegare Knegare Knegare Byråchef Löv Intendent Avd. chef Intendent

Läs mer

Ett generellt träd är. Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn

Ett generellt träd är. Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn Träd allmänt Träd allmänt Ett generellt träd är Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn där t1,..., tn i sin tur är träd och kallas subträd, vars rotnoder kallas

Läs mer

Föreläsning 13. Träd

Föreläsning 13. Träd Föreläsning 13 Träd Träd Ett träd är en datastruktur som tillåter oss att modellera sådant som vi inte kan modellera med linjära datastrukturer. Ett datavetenskapligt träd består av noder med pilar emellan.

Läs mer

Hur man programmerar. TDDC66 Datorsystem och programmering Föreläsning 3. Peter Dalenius Institutionen för datavetenskap

Hur man programmerar. TDDC66 Datorsystem och programmering Föreläsning 3. Peter Dalenius Institutionen för datavetenskap Hur man programmerar TDDC66 Datorsystem och programmering Föreläsning 3 Peter Dalenius Institutionen för datavetenskap 2014-09-05 Översikt Problemlösning: Hur ska man tänka? Datatyper Listor (forsätter

Läs mer

Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5

Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5 Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5? FORTSÄTTNING TRÄD RECAP (förra föreläsningen) RECAP (förra föreläsningen) Träd är icke-linjära datastrukturer som ofta

Läs mer

Föreläsning 9 Innehåll

Föreläsning 9 Innehåll Föreläsning 9 Innehåll Binära sökträd algoritmer för sökning, insättning och borttagning, implementering effektivitet balanserade binära sökträd, AVL-träd Abstrakta datatyperna mängd (eng. Set) och lexikon

Läs mer

allt.cl Page 1 of 17 Date: torsdag 7 december 2006

allt.cl Page 1 of 17 Date: torsdag 7 december 2006 allt.cl Page 1 of 17 Slumpspelaren Väljer slumpvis en flytt ur möjliga flyttar. (defun skapa-slump-spelare (namn bricktyp) "lisp-sträng x bricka -> spelare" (skapa-spelare #'slump-gör-flytt namn bricktyp))

Läs mer

Tentamen, Algoritmer och datastrukturer

Tentamen, Algoritmer och datastrukturer UNDS TEKNISKA ÖGSKOA (6) Institutionen för datavetenskap Tentamen, Algoritmer och datastrukturer 23 8 29, 8. 3. Anvisningar: Denna tentamen består av fem uppgifter. Totalt är skrivningen på 36 poäng och

Läs mer

TDDC74 Programmering: Abstraktion och modellering Dugga 3, kl 14 16, 25 mars 2015

TDDC74 Programmering: Abstraktion och modellering Dugga 3, kl 14 16, 25 mars 2015 TDDC74 Programmering: Abstraktion och modellering Dugga 3, kl 14 16, 25 mars 2015 Läs alla frågorna först, och bestäm dig för i vilken ordning du vill lösa uppgifterna. Skriv tydligt och läsligt. Använd

Läs mer

Dataabstraktion. TDDD73 Funktionell och impterativ programmering i Python Föreläsning 12. Peter Dalenius Institutionen för datavetenskap

Dataabstraktion. TDDD73 Funktionell och impterativ programmering i Python Föreläsning 12. Peter Dalenius Institutionen för datavetenskap Dataabstraktion TDDD73 Funktionell och impterativ programmering i Python Föreläsning 12 Peter Dalenius Institutionen för datavetenskap 2013-11-12 Översikt Vad är abstraktion? Vad är en abstrakt datatyp?

Läs mer

Träd Hierarkiska strukturer

Träd Hierarkiska strukturer Träd Hierarkiska strukturer a 1 a 2 a 3 a 4 a 2 a 5 a 6 a 7 Hierarki: Korta vägar till många Hur korta? Linjär lista: n 2 Träd: Antal element på avståndet m: g m a 1 a 3 a 8 a 12 m = log g n a 9 a 10 Väglängden

Läs mer

Binära sökträd. Seminarium 9 Binära sökträd Innehåll. Traversering av binära sökträd. Binära sökträd Definition. Exempel på vad du ska kunna

Binära sökträd. Seminarium 9 Binära sökträd Innehåll. Traversering av binära sökträd. Binära sökträd Definition. Exempel på vad du ska kunna Seminarium inära sökträd Innehåll inära sökträd inära sökträd Definition Implementering lgoritmer Sökning Insättning orttagning Effektivitet alanserade binära sökträd Eempel på vad du ska kunna Förklara

Läs mer

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU På denna föreläsning: Träd Traversering Insättning, borttagning

Läs mer

Abstrakta datatyper. Dagens föreläsning. Abstract data types (ADT)

Abstrakta datatyper. Dagens föreläsning. Abstract data types (ADT) 1 2 Dagens föreläsning TDDC67 Funktionell programmering och Lisp Fö 8 och 9 Dataabstraktion - Abstrakta datatyper - datatypbeskrivning - datatyplikhet - sammansättningar av datatyper med sekvens, tupel,

Läs mer

Dagens föreläsning. Diverse Common Lisp. Konstanter, parametrar, globala variabler

Dagens föreläsning. Diverse Common Lisp. Konstanter, parametrar, globala variabler 21-1-2 1 Dagens föreläsning Hur fungerar ett Lisp system intern struktur av symbolen, tal, listan pekare - delade strukturer - eq minneshantering fri lista - sophämtning/garbage collection stack Diverse

Läs mer

Upplägg. Binära träd. Träd. Binära träd. Binära träd. Antal löv på ett träd. Binära träd (9) Binära sökträd (10.1)

Upplägg. Binära träd. Träd. Binära träd. Binära träd. Antal löv på ett träd. Binära träd (9) Binära sökträd (10.1) Binära träd Algoritmer och Datastrukturer Markus Saers markus.saers@lingfil.uu.se Upplägg Binära träd (9) Binära sökträd (0.) Träd Många botaniska termer Träd, rot, löv, gren, Trädets rot kan ha ett antal

Läs mer

Föreläsning 3 Datastrukturer (DAT037)

Föreläsning 3 Datastrukturer (DAT037) Föreläsning 3 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-07 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra

Läs mer

Föreläsning 7. Träd och binära sökträd

Föreläsning 7. Träd och binära sökträd Föreläsning 7 Träd och binära sökträd Föreläsning 7 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Det är extra mycket

Läs mer

Trädstrukturer och grafer

Trädstrukturer och grafer Översikt Trädstrukturer och grafer Trädstrukturer Grundbegrepp Binära träd Sökning i träd Grafer Sökning i grafer Programmering tillämpningar och datastrukturer Varför olika datastrukturer? Olika datastrukturer

Läs mer

Tentamen Datastrukturer (DAT036/DAT037/DIT960)

Tentamen Datastrukturer (DAT036/DAT037/DIT960) Tentamen Datastrukturer (DAT036/DAT037/DIT960) Datum och tid för tentamen: 2016-04-07, 14:00 18:00. Författare: Nils Anders Danielsson. (Tack till Per Hallgren och Nick Smallbone för feedback.) Ansvarig:

Läs mer

Tabeller. Programkonstruktion. Moment 8 Om abstrakta datatyper och binära sökträd. Specifikationer för tabellfunktionerna. Operationer på tabellen

Tabeller. Programkonstruktion. Moment 8 Om abstrakta datatyper och binära sökträd. Specifikationer för tabellfunktionerna. Operationer på tabellen Programkonstruktion Moment 8 Om abstrakta datatyper och binära sökträd Tabeller En viktig tillämpning är tabeller att ifrån en nyckel kunna ta fram ett tabellvärde. Ett typiskt exempel är en telefonkatalog:

Läs mer

BINÄRA TRÄD. (X = pekarvärdet NULL): struct int_bt_node *pivot, *ny; X X X 12 X X 12 X X -3 X X

BINÄRA TRÄD. (X = pekarvärdet NULL): struct int_bt_node *pivot, *ny; X X X 12 X X 12 X X -3 X X Algoritmer och Datastrukturer Kary FRÄMLING/Göran PULKKIS (v23) Kap. 7, Sid 1 BINÄRA TRÄD Träd används för att representera olika slags hierarkier som ordnats på något sätt. Den mest använda trädstrukturen

Läs mer

Innehåll. Föreläsning 12. Binärt sökträd. Binära sökträd. Flervägs sökträd. Balanserade binära sökträd. Sökträd Sökning. Sökning och Sökträd

Innehåll. Föreläsning 12. Binärt sökträd. Binära sökträd. Flervägs sökträd. Balanserade binära sökträd. Sökträd Sökning. Sökning och Sökträd Innehåll Föreläsning 12 Sökträd Sökning Sökning och Sökträd 383 384 Binärt sökträd Används för sökning i linjära samlingar av dataobjekt, specifikt för att konstruera tabeller och lexikon. Organisation:

Läs mer

Föreläsning 4 Datastrukturer (DAT037)

Föreläsning 4 Datastrukturer (DAT037) Föreläsning 4 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-10 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra

Läs mer

Inom datalogin brukar man använda träd för att beskriva vissa typer av problem. Om man begränsar sig till träd där varje nod förgrenar sig högst två

Inom datalogin brukar man använda träd för att beskriva vissa typer av problem. Om man begränsar sig till träd där varje nod förgrenar sig högst två Binära träd Inom datalogin brukar man använda träd för att beskriva vissa typer av problem. Om man begränsar sig till träd där varje nod förgrenar sig högst två gånger, talar man om binära träd. Sådana

Läs mer

Idag: Dataabstraktion

Idag: Dataabstraktion Idag: Dataabstraktion Hur använder vi det vi hittills kan om Scheme för att realisera (implementera) sammansatta data? Hur separerar man datastrukturen från resten av ett program så att ändringar i datastrukturen

Läs mer

Komma igång med Allegro Common Lisp

Komma igång med Allegro Common Lisp Funktionell programmering med Lisp 9 Första gången Komma igång med Allegro Common Lisp Det Lisp-system som vi i kommer att använda för laborationerna heter Allegro Common Lisp. Det är en kommersiell programvara

Läs mer

Dataabstraktion. TDDD73 Funktionell och imperativ programmering i Python Föreläsning 12. Peter Dalenius Institutionen för datavetenskap

Dataabstraktion. TDDD73 Funktionell och imperativ programmering i Python Föreläsning 12. Peter Dalenius Institutionen för datavetenskap Dataabstraktion TDDD73 Funktionell och imperativ programmering i Python Föreläsning 12 Peter Dalenius Institutionen för datavetenskap 2014-11-19 Översikt Vad är abstraktion? Vad är en abstrakt datatyp?

Läs mer

Träd, binära träd och sökträd. Koffman & Wolfgang kapitel 6, avsnitt 1 4

Träd, binära träd och sökträd. Koffman & Wolfgang kapitel 6, avsnitt 1 4 Träd, binära träd och sökträd Koffman & Wolfgang kapitel 6, avsnitt 1 4 1 Träd Träd är ickelinjära och hierarkiska: i motsats till listor och fält en trädnod kan ha flera efterföljare ( barn ) men bara

Läs mer

13 Prioritetsköer, heapar

13 Prioritetsköer, heapar Prioritetsköer, heapar 31 13 Prioritetsköer, heapar U 101. En prioritetskö är en samling element där varje element har en prioritet (som används för att jämföra elementen med). Elementen plockas ut i prioritetsordning

Läs mer

Föreläsning 5. Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning

Föreläsning 5. Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Föreläsning 5 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Terminologi - träd Ett träd i datalogi består av en rotnod

Läs mer

Algoritmer och datastrukturer 2012, föreläsning 6

Algoritmer och datastrukturer 2012, föreläsning 6 lgoritmer och datastrukturer 2012, föreläsning 6 Nu lämnar vi listorna och kommer till nästa datastruktur i kursen: träd. Här nedan är ett exempel på ett träd: Båge Rot De rosa noderna är ett exempel på

Läs mer

Uppgift 6A - Frekvenstabell

Uppgift 6A - Frekvenstabell Uppgift 6A - Frekvenstabell (defstruct par element antal) (defun unika-element (lista) (reduce #'(lambda (x y) (if (listp x) (if (find y x) x (cons y x)) (if (eq x y) x (list x y)))) lista)) (defun sortera-tabell

Läs mer

Dugga Datastrukturer (DAT036)

Dugga Datastrukturer (DAT036) Dugga Datastrukturer (DAT036) Duggans datum: 2012-11-21. Författare: Nils Anders Danielsson. För att en uppgift ska räknas som löst så måste en i princip helt korrekt lösning lämnas in. Enstaka mindre

Läs mer

Datatyper och kontrollstrukturer. Skansholm: Kapitel 2) De åtta primitiva typerna. Typ Innehåll Defaultvärde Storlek

Datatyper och kontrollstrukturer. Skansholm: Kapitel 2) De åtta primitiva typerna. Typ Innehåll Defaultvärde Storlek De åtta primitiva typerna Java, datatyper, kontrollstrukturer Skansholm: Kapitel 2) Uppsala Universitet 11 mars 2005 Typ Innehåll Defaultvärde Storlek boolean true, false false 1 bit char Tecken \u000

Läs mer

Föreläsning 3. Stack

Föreläsning 3. Stack Föreläsning 3 Stack Föreläsning 3 ADT Stack Stack JCF Tillämpning Utvärdera ett postfix uttryck Stack implementerad med en array Stack implementerad med en länkad lista ADT Stack Grundprinciper: En stack

Läs mer

TENTAMEN I PROGRAMSPRÅK -- DVG C kl. 08:15-13:15

TENTAMEN I PROGRAMSPRÅK -- DVG C kl. 08:15-13:15 TENTAMEN I PROGRAMSPRÅK -- DVG C01 140605 kl. 08:15-13:15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Bilaga A: BNF-definition Betygsgräns: Kurs: Max 60p, Med beröm godkänd 50p, Icke utan beröm godkänd

Läs mer

Programmering i C++ EDA623 Dynamiska datastrukturer. EDA623 (Föreläsning 11) HT / 31

Programmering i C++ EDA623 Dynamiska datastrukturer. EDA623 (Föreläsning 11) HT / 31 Programmering i C++ EDA623 Dynamiska datastrukturer EDA623 (Föreläsning 11) HT 2013 1 / 31 Dynamiska datastrukturer Innehåll Länkade listor Stackar Köer Träd EDA623 (Föreläsning 11) HT 2013 2 / 31 Länkade

Läs mer

Träd - C&P kap. 10 speciellt binära sökträd sid. 452

Träd - C&P kap. 10 speciellt binära sökträd sid. 452 Föreläsning 10 Träd - C&P kap. 10 speciellt binära sökträd sid. 452 Dessa bilder finns i PDF-format på http://dsv.su.se/courses/pm2/f10/index.html Jozef Swiatycki DSV Bild 1 förälder Träd allmänt Binär-länkad

Läs mer

Abstrakta datatyper. Primitiva vektorer. Deklarera en vektor

Abstrakta datatyper. Primitiva vektorer. Deklarera en vektor Abstrakta datatyper 1 Primitiva vektorer Vektorer kan skapas av primitiva datatyper, objektreferenser eller andra vektorer. Vektorer indexeras liksom i C från 0. För att referera en vektor används hakparenteser.

Läs mer

Börja med att kopiera källkoden till din scheme-katalog (som du skapade i Laboration 1).

Börja med att kopiera källkoden till din scheme-katalog (som du skapade i Laboration 1). Laboration 3 Grafiska figurer I den här laborationen skall du konstruera ett schemeprogram som kan rita rektanglar, punkter, cirklar, linjer och bilder som består utav en eller flera av nyss nämnda figurer.

Läs mer

Föreläsning 5 Datastrukturer (DAT037)

Föreläsning 5 Datastrukturer (DAT037) Föreläsning 5 Datastrukturer (DAT037) Nils Anders Danielsson, Fredrik Lindblad 2016-11-14 Förra gången: Cirkulära arrayer Prioritetskö Binära heapar Leftistheapar merge Det verkar inte gå att slå ihop

Läs mer

Universitetet i Linköping Institutionen för datavetenskap Anders Haraldsson

Universitetet i Linköping Institutionen för datavetenskap Anders Haraldsson 1 2 - Block, räckvidd Dagens föreläsning Programmering i Lisp - Bindning av variabler (avs 14.6) fria variabler statisk/lexikalisk och dynamisk bindning - Felhantering (kap 17) icke-normala återhopp catch

Läs mer

F5: Debriefing OU2, repetition av listor, träd och hashtabeller. Carl Nettelblad

F5: Debriefing OU2, repetition av listor, träd och hashtabeller. Carl Nettelblad F5: Debriefing OU2, repetition av listor, träd och hashtabeller Carl Nettelblad 2017-04-24 Frågor Kommer nog inte att täcka 2 timmar Har ni frågor på OU3, något annat vi har tagit hittills på kursen, listor

Läs mer

Tentamen i Algoritmer & Datastrukturer i Java

Tentamen i Algoritmer & Datastrukturer i Java Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2007-03-13 Skrivtid: 4 timmar Kontakt person: Nicolina Månsson, tel. 035-167487 Poäng / Betyg:

Läs mer

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Prioritetskö Heap Representation som

Läs mer

Föreläsning 13. Dynamisk programmering

Föreläsning 13. Dynamisk programmering Föreläsning 13 Dynamisk programmering Föreläsning 13 Dynamisk programmering Fibonacci Myntväxling Floyd-Warshall Kappsäck Handelsresandeproblemet Uppgifter Dynamisk programmering Dynamisk programmering

Läs mer

Föreläsning 13. Rekursion

Föreläsning 13. Rekursion Föreläsning 13 Rekursion Rekursion En rekursiv metod är en metod som anropar sig själv. Rekursion används som alternativ till iteration. Det finns programspråk som stödjer - enbart iteration (FORTRAN)

Läs mer

Tentamen Datastrukturer, DAT037 (DAT036)

Tentamen Datastrukturer, DAT037 (DAT036) Tentamen Datastrukturer, DAT037 (DAT036) Datum och tid för tentamen: 2017-01-11, 14:00 18:00. Ansvarig: Fredrik Lindblad. Nås på tel nr. 031-772 2038. Besöker tentamenssalarna ca 15:00 och ca 17:00. Godkända

Läs mer

Länkade strukturer, parametriserade typer och undantag

Länkade strukturer, parametriserade typer och undantag Länkade strukturer, parametriserade typer och undantag Programmering för språkteknologer 2 Sara Stymne 2013-09-18 Idag Parametriserade typer Listor och länkade strukturer Komplexitet i länkade strukturer

Läs mer

Samlingar, Gränssitt och Programkonstruktion! Förelasning 11!! TDA540 Objektorienterad Programmering!

Samlingar, Gränssitt och Programkonstruktion! Förelasning 11!! TDA540 Objektorienterad Programmering! Samlingar, Gränssitt och Programkonstruktion! Förelasning 11!! TDA540 Objektorienterad Programmering! Samlingar Vi kommer att behöva hantera samlingar av objekt - Har oftast använd Array (fält) - Bra om

Läs mer

Föreläsning 3. Stack

Föreläsning 3. Stack Föreläsning 3 Stack Föreläsning 3 ADT Stack Stack JCF Tillämpning Utvärdera ett postfix uttryck Stack implementerad med en array Stack implementerad med en länkad lista Evaluate postfix expressions Läsanvisningar

Läs mer

ORDINARIE TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 08:15 13:15

ORDINARIE TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 08:15 13:15 ORDINARIE TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 160119 kl. 08:15 13:15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna eller i bilogarna. ***

Läs mer

Föreläsning 8 Datastrukturer (DAT037)

Föreläsning 8 Datastrukturer (DAT037) Föreläsning 8 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-23 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra

Läs mer

Objektorienterad programmering i Racket

Objektorienterad programmering i Racket Objektorienterad programmering i Racket Rasmus Andersson lätt utökat av Anders M. L. Februari 2016 Innehåll 1 1 Inledning Detta kompendium är skrivet som en resurs för kursen TDDC74 Programmering - abstraktion

Läs mer

Tommy Färnqvist, IDA, Linköpings universitet

Tommy Färnqvist, IDA, Linköpings universitet Föreläsning 9 Pekare, länkade noder, länkade listor TDDD86: DALP Utskriftsversion av föreläsning i Datastrukturer, algoritmer och programmeringsparadigm 25 september 2015 Tommy Färnqvist, IDA, Linköpings

Läs mer

FÖRELÄSNING 11 DATALOGI I

FÖRELÄSNING 11 DATALOGI I Föreläsning I07 FÖRELÄSNING DATALOGI I Grafer Beatrice Åkerblom beatrice@dsv.su.se Institutionen för Data- och Systemvetenskap SU/KTH Föreläsning I07 Läsanvisningar Michael Main Data Structures & Other

Läs mer

Föreläsning 7 Datastrukturer (DAT037)

Föreläsning 7 Datastrukturer (DAT037) Föreläsning 7 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-21 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra

Läs mer

Rekursion. Att tänka rekursivt Att programmera rekursivt i Java Exempel. Programmeringsmetodik -Java 254

Rekursion. Att tänka rekursivt Att programmera rekursivt i Java Exempel. Programmeringsmetodik -Java 254 Rekursion Rekursion är en grundläggande programmeringsteknik M h a rekursion kan vissa problem lösas på ett mycket elegant sätt Avsnitt 11 i kursboken: Att tänka rekursivt Att programmera rekursivt i Java

Läs mer

Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), Tiden det tar att utföra en iteration av loopen är oberoende av värdet på

Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), Tiden det tar att utföra en iteration av loopen är oberoende av värdet på Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), 2017-01-11 1. Loopen upprepas n gånger. getat på en dynamisk array tar tiden O(1). member på ett AVL-träd av storlek n tar tiden O(log n).

Läs mer

Tentamen TEN1 HI

Tentamen TEN1 HI Tentamen TEN1 HI1029 2015-03-17 Skrivtid: 8.15-13.00 Hjälpmedel: Referensblad (utdelas), papper (tomma), penna Logga in med tentamenskontot ni får av skrivvakten. Det kommer att ta tid att logga in ha

Läs mer

Datastrukturer. föreläsning 9. Maps 1

Datastrukturer. föreläsning 9. Maps 1 Datastrukturer föreläsning 9 Maps 1 Minsta uppspännande träd Maps 2 Minsta uppspännande träd Uppspännande träd till graf fritt delträd innehåller alla noderna Minsta uppspännande träd (MST) är det uppspännande

Läs mer

Föreläsning Datastrukturer (DAT036)

Föreläsning Datastrukturer (DAT036) Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-18 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Prims algoritm. Kruskals algoritm. Djupet först-sökning. Cykel

Läs mer

Föreläsning 7. Träd och binära sökträd

Föreläsning 7. Träd och binära sökträd Föreläsning 7 Träd och binära sökträd Föreläsning 7 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Läsanvisningar och

Läs mer

Sista delen av kursen

Sista delen av kursen Sista delen av kursen handlar om hur program, delprogram och datatyper deklareras och vad det man åstadkommit egentligen betyder. Innehåll Syntaktisk (hur ser det ut) och semantisk (vad betyder det) beskrivning

Läs mer

Tentamen i Algoritmer & Datastrukturer i Java

Tentamen i Algoritmer & Datastrukturer i Java Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2010-03-16 Skrivtid: 4 timmar Kontaktperson: Nicolina Månsson Poäng / Betyg: Max 44 poäng

Läs mer

Länkade strukturer. (del 2)

Länkade strukturer. (del 2) Länkade strukturer (del 2) Översikt Abstraktion Dataabstraktion Inkapsling Gränssnitt (Interface) Abstrakta datatyper (ADT) Programmering tillämpningar och datastrukturer 2 Abstraktion Procedurell abstraktion

Läs mer

PROV I MATEMATIK Algoritmik 26 mars 2008

PROV I MATEMATIK Algoritmik 26 mars 2008 UPPSALA UNIVERSITET Matematiska institutionen Salling, Wilander PROV I MATEMATIK Algoritmik 26 mars 2008 SKRIVTID: 8-12. HJÄLPMEDEL: Inga. Lösningarna skall åtföljas av förklarande text. För godkänt prov

Läs mer

Föreläsning 4. Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö

Föreläsning 4. Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö Föreläsning 4 Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö Kö (ADT) En kö fungerar som en kö. Man fyller på den längst bak och tömmer den längst fram

Läs mer

Datastrukturer. Föreläsning 5. Maps 1

Datastrukturer. Föreläsning 5. Maps 1 Datastrukturer Föreläsning 5 Maps 1 Traversering av träd Maps 2 Preordningstraversering Traversera = genomlöpa alla noderna i ett träd Varje nod besöks innan sina delträd Preordning = djupet först Exempel:

Läs mer

F6: Högre ordningens funktioner. Mönster för rekursion (1) Mönster för rekursion (1b) Mönster för rekursion (2) Högre Ordningens Funktioner

F6: Högre ordningens funktioner. Mönster för rekursion (1) Mönster för rekursion (1b) Mönster för rekursion (2) Högre Ordningens Funktioner F6: Högre ordningens funktioner Mönster för rekursion (1) Mönster för rekursion Partiellt applicerbara funktioner Anonyma funktioner Op HOF på listor Sortering Listreduktion Funktionskomposition Rekursivt

Läs mer