The Swedish Society for Radioecology

Storlek: px
Starta visningen från sidan:

Download "The Swedish Society for Radioecology"


1 The Swedish Society for Radioecology Radioecological research during 25 years after the Chernobyl accident Tues 22 March Wed 23 March 2011 In collaboration with the Centre for Radiation Protection Research (CRPR) Department of Systems Ecology Stockholm University

2 Environmental monitoring of radioactive substances in Sweden Pål Andersson, Swedish Radiation Safety Authority. The Swedish Radiation Safety Authority is responsible for monitoring of radioactive substances in Sweden. Some external requirements and recommendations regarding this monitoring are put on Sweden through the Euratom treaty and conventions like the Helcom and Ospar conventions. The monitoring in Sweden consists of three parts; early warning systems for emergency preparedness, local monitoring around nuclear facilities and national monitoring. The national monitoring program includes sampling and measurement of radio nuclide content of airborne particulates, surface water, marine water, marine sediments, marine fish, moose, mixed diet, milk, drinking water and humans (whole body content). Reindeers are monitored through efforts of other authorities. Swedish surveys of radionuclides in soils and crops, indoor radon concentrations and ground gamma radiation are also activities coming close to environmental monitoring. After the Chernobyl accident much of the national monitoring has been focused on cesium 137. Results from the monitoring program are used to illustrate the impact of the Chernobyl accident on the Swedish radiation environment. Activity concentrations of cesium 137 in many of the samples types of the monitoring program have decreased a lot during the last 25 years and in many cases the current activity concentrations are close to or below detection limits of the program. Moose meat is an example of sample type where activity concentrations are higher and now decrease only very slowly with time.

3 Concentrations in different plant compartments of radiocaesium and radiostrontium, wet deposited on spring oilseed crop Stefan B. Bengtsson, Klas Rosén, Jan Eriksson and Annemieke I. Gärdenäs Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, SE , Uppsala, Sweden. The aim of this study is to determine how deposition of radionuclides in a growing crop stand influences the concentration in different plant parts, especially edible ones and how this depends on development stage, weather and length of time period before harvest. The information available on how deposited amount and time of deposition on growing crops influences the concentration in harvested products is limited. We analyzed the concentration of artificially wet deposited 134 Cs and 85 Sr in different plant compartments of spring oilseed rape (Brassíca napus L.) and how the concentration depends on the size and time of deposition of the radionuclides. We measured concentrations in the following plant compartments; stems, leaves, flowers, siliques except seeds and seeds. The radionuclides, 134 Cs and 85 Sr, were deposited at six different development stages using simulated rainfall. The study was conducted at an agricultural field at Ultuna, Sweden during the summer Leaf area index (LAI) was measured by using a LAI 2000 device. Biomass samples was dried, weighed and radioactivity was measured with High Purity Germanium (HPGe) detectors. This study shows that the highest concentration of 134 Cs and 85 Sr in the seeds at harvest occurred after deposition at the growth stage beginning of ripening. In this case the concentration of 134 Cs in seeds was 24% greater than that of 85 Sr (equal amounts were deposited of the two nuclides). For the siliques except seeds and the stems the highest concentration at harvest occurred after deposition at the growth stage senescence. In this case the concentration of 85 Sr in siliques except seeds was 58% greater than that of 134 Cs. In the stems the concentration of 85 Sr was 53% greater for than that of 134 Cs after a deposition at the same growth stage. The lowest concentration of 134 Cs and 85 Sr in seeds, siliques except seeds and stems at harvest occurred after deposition in the growth stage leaf development. In a well developed stand, the majority of deposited radionuclides are intercepted and partly taken up directly by the leaves. The concentrations in the different plant compartments are a combined effect of the total level of radionuclides intercepted by the whole plant and translocation within the plant.

4 Radiological Emergency Preparedness in Nepal CR Bhatt 1,2, SL Shrestha 3, KK Shrestha 4 1 Department of Plant & Environmental Sciences, Norwegian University of Life Sciences, Ås, Norway, 2Department of Radiology, Gandaki Medical College, Pokhara, Nepal, 3 Department of Radiology & Imaging, Tribhuvan University Teaching Hospital, Kathmandu, Nepal, 4 Nuclear Society of Nepal, Kathmandu, Nepal Correspondence: China and India, the immediate neighbors of Nepal are emerging economic and political power centers with large number of nuclear power plants. Nepal has no nuclear power plant and is limited to the use of some radioisotopes, mainly of medical use. Any radiological or nuclear accident in its neighboring countries would pose a serious risk from fallout in Nepal (1). The geopolitical placement of Nepal in the context of Bangladesh, Pakistan and India also poses the risk of Nepal being used to transport Radiological Dispersal Devises. This can be further seen in the context of the open border between India and Nepal. Radiological Emergency Preparedness programs help mitigate radiation risks and socio economic consequences thereof (2). Importance of preparedness for radiological or nuclear emergency has been realized in Nepal (3), and nuclear law is under preparation. We have only been able to measure natural background radiation of a few places, and accordingly to which the annual effective dose is reported to be 1.8 msv (4). Nepal is also a new IAEA member country with no national radiation safety authority. In such a background, our poster will discuss the preparedness program in the context of the country highlighting its need. References 1. National Nuclear Policy of Nepal Rojas Palma C, Liland A, et al. (2009). TMT Handbook, (eds.) 3. Proc. Nat. Sem. Biological, Chemical, Radiological, Emergency, Preparedness. Response, June 2, 2004, Kathmandu, Nepal 4. Shrestha KK (2004). Status of Ionising Radiation Activities in Nepal. RONAST, Kathmandu, Nepal

5 New European Collaborative Efforts in Radioecology: STAR and the Alliance Clare Bradshaw and Leif Moberg 1 Department of Systems Ecology, Stockholm University 2 Strålsäkerhetsmyndigheten. Recent reviews of radioecology programmes in Europe, such as the Futurae project, indicated problems of: a steadily decreased funding base; fragmentation, with poor coordination among national strategies and programmes; poor recruitment of young scientists; retirement of key personnel, and closing of important infrastructures. One conclusion was that this might lead to problems meeting society s future radiological needs. The Director Generals of eight European organizations recognized these problems and signed a Memorandum of Understanding in June 2009, where they jointly stated their intention to bring together part of their respective R&D programmes into an integrated trans national programme. They also agreed to maintain and enhance radioecological competences and experimental infrastructures in Europe, address scientific and educational challenges in radioecology try to ensure the needs of regulators, society and industry in Europe were covered. Together these eight organisations have formed the European Radioecology Alliance, and aim to expand to include many more partners. In April 2010, seven of these Alliance members, together with Stockholm University and the University of Life Sciences in Norway, submitted a proposal to the EC to establish a Network of Excellence in Radioecology. The proposal was successful and the STAR Network officially started 1 Feb 2011 and will run for 4.5 years. The overall aims of STAR are to integrate research, infrastructure, knowledge dissemination, and training in radioecology between the partners. Joint research activities will include experiments to advance research on low dose and multi contaminant effects, attempts to find new ways to optimise integrated human and wildlife risk assessment and radiation protection systems. The ultimate aim is that after these 4.5 y the Alliance will carry on from the STAR network to become a multipartner European collaboration with a joint strategic agenda for the next years. In doing so it is hoped that the previously fragmented field of radioecology will become a strong and sustainable European network that can advance research in the field and meet society s future radiological needs.

6 Application of gamma spectrometry for measuring natural radioactivity Jose Luis Gutierrez Villanueva Department of Soil and Environment, SLU, Box 7014, Uppsala, Sweden RADON Group, Faculty of Medicine, University of Cantabria, c/cardenal Herrera Oria s/n, Santander, SPAIN One useful technique for the study of environmental radioactivity is gamma spectrometry in comparison with other available techniques such as alpha and beta spectrometry and ICP MS, which are much more expensive. This work presents the practical application of gamma spectrometry to determine the concentration of natural radionuclides and 137 Cs in samples from different parts of Sweden. There are locations in Sweden where the concetration of natural radionuclides is considerably high. The most important of these radionuclides are those belonging to the decay series of 238 U and 232 Th together wih 40 K. Some of these places were also contaminated by 137 Cs due to the Chernobyl accident. We present some results of a series of investigations carried out on different soil types where the natural radioactivity may be higher than the average. Comparison with the concentration of 137 Cs and natural radioactivity in different samples will also be presented

7 Uptake, depuration and genotoxicity of tritiated compounds by the marine mussel, Mytilus edulis Ben Jaeschke Department of Systems Ecology, Stockholm University Tritium is released into the aquatic environment in as tritiated water (HTO) and as various organic compounds. However, the mechanism by which tritium is bioconcentrated in marine organisms and its biological impact is not fully understood. We therefore aimed to elucidate the incorporation, depuration and genotoxicity of tritiated glycine and HTO in the marine mussel, Mytilus edulis. Mussels were exposed to tritiated water (37 MBq l 1 ) or tritiated glycine (1.4 MBq l 1 ) for one week. A parallel exposure of mussels to tritiated water (24 MBq l 1 ) for two weeks was conducted to identify effects of a longer exposure, such as the establishment of equilibrium of tissue activity and to evaluate the potential incorporation into nucleic acids (e.g. DNA). Following the uptake phase, the mussels were then allowed to depurate for a maximum of three weeks in natural seawater. Mussel tissue and haemolymph samples were collected throughout the exposure period and were extracted to examine the induction of micronuclei (MN), an indicator of genotoxic effects in the haemocytes. The tritium of whole tissues of adductor muscle, foot and gills were determined, as well as tritium in the DNA following its extraction using the cetyltrimethylammonium bromide (CTAB) method. The HTO and the tritiated glycine were found to accumulate in all tissues significantly over the control. Accumulations of HTO were significant in the foot, digestive gland and muscle tissue, whereas tritiated glycine accumulated in the digestive gland and preferentially in the gills. Mussels exposed to tritiated glycine demonstrated little or no tendency to depurate the tracer after three weeks, whilst those exposed to HTO demonstrated a 90 95% depuration after one day and a further, slower, decrease in activity over the three week period. Tritiated glycine was found to accumulate significantly in the DNA of the mussels, whereas no significant accumulation was found in DNA from tissues exposed to HTO. Micronucleus (MN) assays demonstrated significantly enhanced levels of genotoxicity, compared to sea water controls, from both forms of tritium. Induction was higher in mussels exposed to tritiated water (19 MN per thousand cells) compared to tritiated glycine (12 MN per thousand cells). However, this demonstrates a non linear dose response relationship where a higher activity of tritium did not lead to a proportionate increase in MN induction. These results indicate a much higher biological relevance of tritiated organic compounds, compared to the inorganic form, leading to a much larger level of bioaccumulation, and also a greater persistence in the organism following a pulse exposure. The incorporation into the nucleic acid of tritium from tritiated glycine and not from HTO indicates a significant difference in biological relevance and increased potential for genotoxicity that could explain the non linear genotoxic relationship.

8 Verification of a coastal marine ecosystem model for the environmental transport of elements and radionuclides. Lena Kono valenko 1, Linda Kumblad 1, Clare Bradshaw 1, Ulrik Kautsky2 1. Stockholm University, Department of Systems Ecology 2. Swedish Nuclear Fuel and Waste Management Co, Svensk Kärnbränslehantering AB (SKB) A dynamic compartment model for radionuclide transport in a coastal marine ecosystem has been developed. This model can be used in ecological risk assessment, i.e. for considering complex exposure conditions and fate of radionuclides in an ecosystem. It can also be used to investigate flows of essential elements, trace elements and toxic elements in the ecosystem. The radionuclide flow was assumed to follow the flow of organic matter but radionuclide specific mechanisms such as radionuclide uptake by plants, excretion of radionuclides by animals and adsorption of radionuclides to organic surfaces were connected to the carbon model that handles the differences between the dynamics of carbon and the radionuclides. The initial parameters for the dynamic radionuclide transport model were taken from carbon mass balance and ecosystem models compiled from field measurement data of Baltic coastal areas in Forsmark, Sweden, where there is a nuclear power plant. The simulation of radionuclide dynamics was executed using Matlab software and the Pandora package and Ecolego software. Verification of the coastal marine ecosystem model, first for carbon and then for 26 other elements, was done by comparison with site specific bioconcentration factors (BCF). Concentrations and BCFs of these 26 elements in all major ecosystem components of a shallow coastal area (Tixlan Bay, in the Forsmark area) were obtained from field sampling in These were used for comparison with the model simulation results. Future work will further develop the model to simulate other elements and radionuclides, both for this coastal ecosystem and for a freshwater lake.

9 Effect of potassium in forest soil on 137 Cs uptake in plants and fungi K. Rosén *, T. Nilsson, K.J. Johanson, I. Nikolova & M. Vinichuk Department of Soil and Environment, Swedish University of Agricultural Sciences, SLU, P.O. B ox 7014 SE , Uppsala, Sweden *Corresponding author. Tel.: ; fax: E mail: Low growing perennial shrubs, heather (Calluna vulgaris), lingonberry (Vaccinium vitisidaea) and bilberry (Vaccinium myrtillus) as well as fungal species growing on K fertilized plots (100 kg K ha 1 has been applied in 1992) showed significantly lower 137 Cs activity concentrations, corresponding species growing in a non fertilized control area. 137 Cs activity concentration in both plants and fungal sporocarps sampled on K fertilized area decreased over years but was as an average up to 60% lower compared to 137 Cs activity levels in the same species sampled on control area. The reduction of 137 Cs activity concentration due to fertilization of forest soil with K was found to be long lasting, statistically significant and strongly pronounced in all species studied. Notable decrease of 137 Cs activity concentrations in heather, lingonberry and bilberry was observed already within the first year after K fertilizer application, however, the most pronounced and significant reduction occurred over the first 7 8 years, followed by a gradually decreasing effect. The reduction in 137 Cs activity concentration in fungi after K fertilization was less pronounced, but still statistically significant. It has been suggested that single application of K fertilizer to forests might be an effective and feasible long countermeasure to decrease radiocaesium accumulation by plants and term fungi.

10 Chernobyl Measurements At Nuclear Chemistry, Chalmers, Between 1986 And 1992 Gunnar Skarnemark Nuclear Chemistry, Department of Chemical and Biological Engineering, Chalmers University of Technology, S Göteborg, Sweden The contribution will briefly describe the different phases of Chernobyl related studies performed by our group. They started with data collection to get more knowledge about the accident. They were followed first by a somewhat random sampling in the most contaminated parts of Sweden. Finally, they ended with one of very few radioecology investigations performed at Nuclear Chemistry, Chalmers. In this investigation two areas (in Gideå and Finnsjön) were followed for 6 years to gain knowledge about transport mechanisms of selected radionuclides. Some results from these investigations will be presented.

11 Biosphere modelling within the SR Site safety assessment of the planned repository for spent nuclear fuel in Forsmark. Björn Söderbäck Swedish Nuclear Fuel and Waste Management Co (SKB) The Swedish Nuclear Fuel and Waste Management Co, SKB, has performed the project SR Site to conduct a safety assessment of the planned repository for spent nuclear fuel in Forsmark. The assessment focuses on the performance of the repository, the transport of potentially released radionuclides from the repository, through the geosphere, up to and within the biosphere, and the consequences for humans and the environment in the biosphere. This presentation gives an overview of the biosphere part of the assessment. A short background to the location and design of the planned repository is given. The extensive work with the site investigation, site modelling and site development is summarised, and it is described how this work was used to identify areas potentially affected by discharge of deep groundwater from the planned repository. These areas, called biosphere objects, are the focus for the biosphere assessment. In order to assess the effects of a future potential release of radionuclides from the repository on humans and on non human biota, the transport and accumulation of radionuclides in biosphere objects over time was evaluated with the Radionuclide model for the biosphere. In the presentation, a brief overview of the radionuclide model is given and the main results of the biosphere assessment are summarised.

12 The Dnieper River Aquatic System Radioactive Contamination; Twenty Five Years of Natural Attenuation and Remediation O. Voitsekhovych Head Environment Radiation Monitoring Department. Ukrainian Hydrometeorological Institute. Kiev Ukraine Twenty five years ago, an unprecedented large amount of radionuclides were released into the environment due to the major accident at Unit 4 of Chernobyl NPP. As a result, the catchment areas and water bodies of the Dnieper River Basin (third largest aquatic system in a Europe) had been significantly contaminated, primarily due to 137 Cs and 90 Sr. In the last 25 years there have been a number of studies which evaluated (1) the physical processes of radionuclide transport from the catchment s soils due to washout and migration in the aquifers into the rivers, lakes and reservoirs; (2) the radionuclide chemical physical forms speciation, and its transformation in the environment; and (3) the natural attenuation processes due to different geochemical, hydrological and ecosystem conditions. In some cases, the level of radionuclides contamination in the water bodies returned to pre accident conditions within the first decade following the accident. In other cases, some aquatic ecosystems remained highly contaminated. This paper presents the past twenty five year time series data of water body contamination and the dynamic impacts caused by natural factors and human activities in the Chernobyl affected areas. Doses associated with the water pathway makeup a small part of the total dose received by the population from all exposure pathways. However, the results of the radionuclide transport studies in large aquatic systems with large scale geochemical, hydrological, and ecosystem variables; description of the natural attenuation phenomena; and lessons learned associated water contamination mitigation are of particular interest. Special attention is paid to the results of extensively studied Chernobyl cooling Pond and Kiev reservoir. As separate part of presentation the fate of radionuclide fallout and Dnieper river inflow to the Black Sea will be discussed, using number of studies carried out during the cruises and coastal monitoring stations data as well. In addition some main conclusions from water protection and water remediation studies carried out in the Chernobyl exclusion zone will be presented based on coauthor contributions to comprehensive study such as Chernobyl What Have We Learned? The Successes and Failures to Mitigate Water Contamination Over 20 Years

13 SFREK - konferens mars Stockholms Universitet Svensk Förening för Radioekologi 10 år, Klas Rosén och Bernt Jones. adress: SLU, och Bakgrund Radioekologi är en relativ ung vetenskap, man kan säga att radioekologin föddes med atombomben. Riktig fart på radioekologin blev det på grund av spridning av radionuklider i samband med atmosfäriska test av atombomber framförallt de kärnvapenproven som skedde i början av 1960-talet och som orsakade en global spridning av Cesium och Strontium. Nedfallet av Cs-137 i Sverige var omkring Bq per m 2 och var till skillnad mot Tjernobylnedfallet relativt jämnt fördelat i Sverige. Inom framförallt jordbrukets och rennäringens och i viss mån inom sjösystemens radioekologi bedrevs en relativt intensiv forskning. Detta innebar att när Tjernobylolyckan inträffade 1986 fanns det en baskunskap inom jordbrukets och rennäringens radioekologi även om antalet personer som hade aktivt kunnande var få. Uppbyggnaden av kunskap under 60-talet var koncentrerad till några få institutioner i Sverige. De som var mest aktiva under denna tid var institutionen för radiofysik, Lunds universitet och dåvarande institutionen för radioekologi vid Lantbrukshögskolan i Ultuna samt institutionen för klinisk kemi vid Veterinärhögskolan i Stockholm, de båda senare i nära samarbete med Försvarets forskningsanstalt (FOA) i Stockholm. Efter nedläggningen 1999 av institutionen för radioekologi kände många radioekologer en saknad av den samlande funktionen för radioekologi som fanns i Uppsala. Tjernobylolyckan innebar en kraftig förnyelse av radioekologin, dels var det forskare från många andra ämnen än radioekologi som bidrog med viktiga insatser, dels var framförallt deponeringen av Cs-137 mycket större (ca Bq per m 2 över hela landet) än under 60-talet. Detta gjorde att man kunde på ett mera detaljrikt sätt studera omsättningen av Cs-137 i olika ekosystem. Detta innebar också att radioekologins möjligheter vidgades och bland annat kom att närma sig grundvetenskaperna. När minnet av Tjernobylolyckan börjat försvinna har forskningsresurserna inom radioekologi reducerats drastiskt och många icke-radioekologer återgått till sina grundvetenskaper. En av orsakerna till bildandet av en radioekologiförening, Svensk Förening för Radioekologi (SFREK) var att försöka stimulera forskare och andra intresserade att ha kontakter med radioekologin och varandra på ett teoretiskt och praktiskt plan. En annan orsak var det som nämndes ovan en saknad av ett centrum för radioekologi i landet. Ett annat värde med SFREK är att via hemsida och medlemmar kunna ta upp frågor från forskare, journalister och allmänhet och diskutera med kunniga radioekologer. Vart är radioekologin på väg, behövs radioekologer och i så fall varför? Så länge vi har kärnkraft och nukleära vapen kommer det att behövas en beredskap vid eventuella olyckor risken är naturligtvis störst för olyckor i gamla kärnkraftverk men det finns också en liten risk med nyare kärnkraftverk. I ett akutskede är det viktigt att ha snabbt tillgänglig kunskap av konsekvenserna

14 SFREK - konferens mars Stockholms Universitet av ett radioaktivt nedfall på den primära livsmedelsproduktionen. Denna kunskap kan inte upprätthållas bara genom beredskapsplaner och litteraturstudier. I annat fall får man räkna med att kompetensen inom området minskar. Radioekologisk kunskap kommer även att behövas i framtiden i samband med slutförvar av utbränt kärnbränsle. Om det pågår relevant radioekologisk forskning innebär detta också att det kommer att finnas möjligheter till detektion av radionuklider på flera platser i landet vilket också är viktigt ur beredskapssynpunkt. Skulle vi få ett omfattande nedfall av radionuklider över Sverige under vegetationsperioden skulle behovet av analyser av radionuklider bli mycket stort. För detta har SSM byggt upp en strålskyddsberedskap med 7-8 kontrakterade beredskapslaboratorier i landet. Vad skall då framtida radioekologer studera för att upprätthålla en bra kompetens? Efter Tjernobyl har det mesta av forskningen koncentrerats på radiocesium. Det finns fortfarande luckor i vårt kunnande. Mer forskning behövs rörande radiojod och radiostrontium och naturliga radionukliders förekomst i naturen. Speciellt radiojod erbjuder många forskningsmässigt intressanta problemställningar. I ett längre perspektiv kommer troligen radioekologi närma sig de grundläggande ämnena och utnyttja radioekologiska metoder och forskningsmetodik för att angripa fundamentala biologiska problemställningar. SFREK Svensk förening för Radioekologi bildades vid ett konstituerande möte den 26 april 2001 i Uppsala. Initiativet togs av en arbetsgrupp bestående av personer som tidigare arbetat på Institutionen för Radioekologi (Klas Rosén, Karl-Johan Johansson, Britt-Marie Svedenstål, Christin Danesh och Hans Lönsjö). På detta första konstituerande möte diskuterades namn på föreningen, stadgar antogs, hemsida diskuterades och val av den första styrelsen gjordes. Två namnförslag fanns att ta ställning till 1, Sällskapet för Radioekologi eller 2, Svensk Förening för Radioekologi. Den första styrelsen bestod av Klas Rosén (ordf), Mats Isaksson (kassör), Birgitta Åhman (sekreterare), Bernt Jones och Torbjörn Nylen. I samband med mötet hölls flera seminarier med tema "15 år efter Tjernobylolyckan". Svensk Förening för Radioekologi är en fristående ideell sammanslutning som vill verka för ökad spridning av kunskap om ämnet radioekologi. Föreningens medlemmar skall utgöra ett kontaktnät för dem som arbetar med och har intresse för radioekologiska frågor. Föreningens mål är att: främja forskning, nationellt och internationellt samarbete inom radioekologi och närliggande områden verka för kommunikation mellan forskare, beslutsfattare, massmedia och allmänhet samt att uppmärksamma aktuella frågor inom radioekologi sprida information via föreningens hemsida och genom regelbundna seminarier och konferenser om aktuella frågor inom radioekologin. Vid 2003 års möte ändrades stadgarna i SFREK så att verksamhetsår ska vara samma som kalender år. De första stadgarna antogs den 26 april 2001 och reviderades 29 april 2003 samt 15 mars 2005.

15 SFREK - konferens mars Stockholms Universitet Styrelsen har haft regelbundna möten, varje år mellan 3-6 st. Ett flertal seminarium har arrangerats av styrelsen årligen. Ofta ett under hösten och ett på vårterminen i samband med årsmöte. Flera av mötena har medvetet varit på orter där vi har haft medlemmar som Umeå, Göteborg och Lund och Malmö. Årsmötena i SFREK skall enligt stadgarna hållas innan aprils utgång. Årsmöte, höstmöte, datum, plats, föredragshållare och titel på föredragen är listade nedan. Årsmöte och Höstmöte , 26 april Uppsala SLU. Konstituerande möte. Föredrag; Konsekvenserna inom jordbruket efter Tjernobylolyckan av Klas Rosén. Föredrag; Tjernobyl och renskötsel av Birgitta Åhman. Föredrag; Radiocesium i skogen av Karl-Johan Johansson. 2002, 19 april Stockholm, SSI. Föredrag; Skydd av miljön- en utmaning, av Syönnve Sundell- Bergman. Föredrag; Cesium i lodjur av Birgitta Åhman Höstmöte: 18 september i Göteborg. Föredrag; Persondoser från omgivningen av Bengt Erlandsson. Föredrag; Omgivningsmätprogrammet i Västsverige av Håkan Grundin. 2003, 29 april Stockholm SKB. Sem1; SKBs verksamhet och radioekologiskforskning av Ulrik Kautsky. Höstmöte: 4 december på SLU Ultuna. Föredrag; Radioecology in the Ukraine av Marat Dolgilevich. 2004, 14 april Stockholm FOI Ursvik, Föredrag; Radioekologi och Beredskap av Torbjörn Nylen, FOI Umeå. Höstmöte: 30 november i Umeå. Föredrag av Torbjörn Nylén. 2005, 15 mars Uppsala SLU. Föredrag; How research can benefit from policy and decisionmaking, av Irene Zinger-Larsson. Föredrag; Biologiska effekter av strålning på organismer i miljön av Synnöve Sundell-Bergman. Föredrag; Development of assessment tools for ERICA av Rodolfo Avila. Höstmöte: 16 november i Malmö. Föredrag; Fem föredrag presenterades. Radioanalytiska studier av transurana element till följd av Tjernobylolyckan av Elis Holm, Diskussion av ICRP:s nya Skydd av icke human biota av Rören Mattsson, Retrospektiv dosimetri med OSL-studier på alternativa dosimetrimaterial av Jon Behring, Överföring av 137-Cs från markbeläggning till människa i Sverige av Christopher L. Rääf och Undersökning av strålnivån i två västsvenska kommuner med hjälp av TLD preliminära resultat och framtida undersökningar av Sara Almgren. 2006, 26 april Marstrand. I samband med konferens i Marstrand april 2006 se nedan. 2007, 24 april Stockholm SSI. Föredrag; skriften Strålmiljön i Sverige av Pål Andersson. 2008, 14 mars Göteborg Radiofysik. Föredrag; Personbundna dosmätningar i Västsverige och i Gävleregionen av Sara Almgren. Föredrag; Tids- och rumsvariationer av naturlig bakgrundsstrålning av Mats Isaksson.

16 SFREK - konferens mars Stockholms Universitet 2009, 29 april Uppsala SLU. Föredrag; Terrest radioekologi och uppföljningsmätningar efter Tjernobylolyckan av Klas Rosén. 2010, 22 april Stockholm SSM. Föredrag; Natural Radionuclides in Meadow and Pasture land in the Nordic countries av José-Luis Gutierrez Villanueva. Föredrag; Effect of Nordic diets on ECOSYS model predictions of ingestion doses av Mats Isaksson. Avgiften för medlemskap i SFREK ha varit en anledning till diskussion på årsmötena. Hittills har medlemmarna inte behövt betala någon avgift. Svensk Förening för Radioekologi har arrangerat fyra konferenser mellan åren Konferensbidrag har kommit från såväl myndigheter, universitet som företag. SSM, SKB, Facilia och CRPR. 1. Konferens om "15 år efter Tjernobylolyckan" 26 april 2001, SLU, Uppsala, med presentation av 4 föredrag 2. Konferens om radioekologi och strålning i miljön, mars 2004, Sunnersta Herrgård, Uppsala, med nordiskt deltagande och presentation av 15 föredrag. 3. Konferens om Two decades after Chernobyl -summing up the consequences of the accident april 2006 i Marsstrand. Möte samarrangerades med radiobiologiföreningen i Sverige. Föredrag inom radioekologi var 23 st 4. Konferens om Radioecological research during 25 years after the Chernobyl accident mars Stockholms universitet, Stockholm. Föreningen har nu 55 medlemmar. Antalet har varierat mellan st under åren Styrelsen består idag 2011 av Mats Isacsson (ordf), Pål Andersson (kassör), Karolina Stark (sekrt), Klas Rosén och Bernt Jones. Den som är intresserad att bli medlem kan vända sig till någon i styrelsen.