ÖVNINGSUPPGIFTER KAPITEL 10
|
|
- Margareta Olofsson
- för 8 år sedan
- Visningar:
Transkript
1 ÖVNINGSUPPGIFTER KAPITEL 10 För vissa uppgifter behöver du en tabell över den standardiserade normalfördelningen. Se här. SAMPLING 1. Nedan ges beskrivningar av fyra sampel. Ange i respektive fall om detta är exempel på ett slumpmässigt draget sampel, ett stratifierat sampel eller ett klustrat sampel. (Notera: I föreläsningsanteckningarna så används benämningen obundet slumpmässigt urval för det som kallas slumpmässigt draget sampel i övningskompendiet.) a. Vi vill studera om det finns könsskillnader i träningsvanor bland unga föräldrar och samplar först slumpmässigt ett hundratal nyblivna mammor och därefter lika många unga pappor. b. Hur vanligt är det att finska kvinnor och män blir utsatta för våld i hemmet? För att svara på denna fråga så skickar vi ut en enkät till 1000 personer som vi slumpmässigt lottat fram från ett register av vuxna finländare. Vi lottar personerna så att alla har samma chans att komma med i samplet. c. I en studie vill man ta reda på om män med många äldre bröder har en större chans att bli homosexuella. I detta syfte samplar man slumpmässigt ett tusental familjer och samlar in data för varje manligt barn i familjen. d. Vi vill ta reda på hur arbetslösheten skiljer sig mellan olika områden i Finland och samplar slumpmässigt ett antal personer från respektive kommun. 2. Du vill kartlägga inställningen till droger bland 15-åriga högstadieelever. Ge ett exempel på hur ett klustrat sampel kunde se ut i det här fallet. 3. Nedan visas klipp från en artikel där författarna beskriver två dataset. Dataseten kallas för NCDS och BCS.
2 Vilket av följande påståenden är sanna? a. NCDS och BCS är exempel på tvärsnittsdata. b. NCDS och BCS är exempel på tidsseriedata. c. NCDS och BCS är exempel på poolade tvärsnitt. d. NCDS och BCS är exempel på paneldata. NORMALFÖRDELNINGEN 4. Hur stor blir inflationen nästa år? Anta att inflationstakten är normalfördelad med väntevärdet 2 procent och standardavvikelsen 1 procent. Vilket eller vilka av följande påståenden är sanna (tips: utnyttja regeln): a. Inflationen kommer att ligga någonstans mellan 0 och 4 procent med ~95 procentig sannolikhet. b. Sannolikheten för att vi får en negativ inflation (dvs. deflation) är ~5 procent. c. Sannolikheten för att inflationen blir över 5 procent är nära X är en normalfördelad variabel med väntevärde 20 och standardavvikelsen 4. Beräkna följande sannolikheter: a. P(X 20) b. P(X 14) c. P(X 14) d. P(X 31,4) 6. För att bli flygvärdinna i Kina krävs det att man är minst 165 centimeter lång. En genomsnittlig kinesisk kvinna är 160 centimeter med standardavvikelsen 4 centimeter, där längden är normalfördelad. Hur stor procent av kinesiska kvinnor skulle kunna bli flygvärdinnor? 7. I vissa länder har man noterat följande paradox: Männen har i snitt sämre avgångsbetyg från gymnasiet, men ändå en större chans än kvinnorna att bli antagna till de bästa utbildningarna. Hur är det möjligt? Figuren nedan ger svaret. I blått visas fördelningen för männens meritpoäng från gymnasiet och i rött visas fördelningen för kvinnornas. Båda är normalfördelade. Kvinnorna snittar 100 poäng och männen 95; kvinnornas standardavvikelse är 10 poäng och männens 16.
3 Andel Män Kvinnor En läkarutbildning antar enbart personer som fått minst 120 meritpoäng i avgångsbetyg. Hur stor är sannolikheten för att en slumpmässigt utvald kvinna skulle bli antagen? En slumpmässigt utvald man? CENTRALA GRÄNSVÄRDESSATSEN 8. Vi samplar slumpmässigt 400 personer från en population där 50 procent är lever under fattigdomsgränsen (2 dollar per dag). Vilken av figurerna nedan (A, B eller C) representerar samplingfördelningen för p, där p är andelen personer i samplet som lever under fattigdomsgränsen. 0,75 A 0,5 0,25 0 Under fattigdomsgränsen Över fattigdomsgränsen
4 B. C. 0,4 0,45 0,5 0,55 0,6 0,5 0,55 0,6 0,65 0,7 9. En genomsnittlig finländare har 10 års utbildning. Du samplar slumpmässigt ett antal finländare och mäter genomsnittligt antal skolår i samplet, x. Figuren nedan visar två samplingfördelningar, A och B. Den ena visar samplingfördelningen för x då n = 500 och den andra då n = Vilken fördelning, A eller B, beskriver samplingfördelningen för x då n = 1000? Ingen motivering behövs. A B 9,4 9,6 9, ,2 10,4 10,6 10. Du samplar slumpmässigt 100 stycken 40-åriga kvinnor och mäter genomsnittligt antal barn per kvinna, x. I populationen så har kvinnorna i snitt 2 barn med en standardavvikelse på 1 barn. a. Beräkna standardavvikelsen för x. (Eller med andra ord: Hur stor är standardavvikelsen i samplingfördelningen för x?) b. Hur stor är sannolikheten för att få sampel där kvinnorna i snitt har någonting mellan 1,8 och 2,2 barn? c. Hur stor är sannolikheten för att få ett sampel där kvinnorna i snitt har mindre än 2,3 barn?
5 11. Du samplar slumpmässigt arbetstagare och mäter längden för deras arbetsvecka. I populationen så har arbetstagarna en genomsnittlig arbetsvecka på 34 timmar med en standardavvikelse på 5 timmar. a. Beräkna standardavvikelsen för x. (Eller med andra ord: Hur stor är standardavvikelsen i samplingfördelningen för x?) b. Hur stor är sannolikheten för att få sampel där den genomsnittliga arbetsveckan är minst 34,15 timmar lång? (Det vill säga: En överskattning på minst 9 minuter.) 12. Bland finska ungdomar så är det 10 procent som hoppar av gymnasiet. Du samplar slumpmässigt 900 ungdomar och mäter hur stor andel av dessa som hoppade av gymnasiet, p. a. Beräkna standardavvikelsen för p. (Eller med andra ord: Hur stor är standardavvikelsen i samplingfördelningen för p?) b. Hur stor är sannolikheten för att få sampel där minst 12 procent av ungdomarna hoppade av gymnasiet? c. Hur stor är sannolikheten för att få ett sampel där denna andel ligger någonstans mellan 8-12 procent? d. Anta nu att du inte vet hur stor andel som hoppar av gymnasiet, men att du vet att denna andel var 10 procent för några år sedan. I samplet så är det 13 procent som hoppade av. Är detta en signifikant ökning? Motivera kortfattat procent av finska pappor stannar hemma med barnet minst 3 månader. Du samplar slumpmässigt 400 finska pappor och mäter hur stor andel av dessa som stannade hemma minst tre månader, p. a. Beräkna standardavvikelsen för p. (Eller med andra ord: Hur stor är standardavvikelsen i samplingfördelningen för p?) b. Hur stor är sannolikheten för att få sampel där andelen pappor som stannat hemma minst tre månader ligger någonstans mellan procent? c. Anta nu att vi inte vet hur stor andel av finska pappor som stannar hemma med barnen minst tre månader, men vi vet att denna andel är 20 procent bland svenska pappor. I det finska samplet visar det sig att 18 procent av papporna stannat hemma minst tre månader. Är detta signifikant lägre än svenskarna? Motivera kortfattat. d. Se uppgift c, men anta nu att 15 procent av papporna i det finska samplet stannat hemma minst tre månader. Är detta signifikant lägre än bland svenskarna? Hur stort är p-värdet? e. Beräkna också ett ungefärligt 95-procentigt konfidensintervall för p (populationens andel). Anta då att 15 procent av papporna i samplet stannade hemma minst tre månader.
ÖVNINGSUPPGIFTER KAPITEL 10
ÖVNINGSUPPGIFTER KAPITEL 10 För vissa uppgifter behöver du en tabell över den standardiserade normalfördelningen. Se här. SAMPLING 1. Nedan ges beskrivningar av fyra sampel. Ange i respektive fall om detta
ÖVNINGSUPPGIFTER KAPITEL 10
ÖVNINGSUPPGIFTER KAPITEL 10 För vissa uppgifter behöver du en tabell över den standardiserade normalfördelningen. Se här. SAMPLING 1. Nedan ges beskrivningar av fyra sampel. Ange i respektive fall om detta
ÖVNINGSUPPGIFTER KAPITEL 9
ÖVNINGSUPPGIFTER KAPITEL 9 STOKASTISKA VARIABLER 1. Ange om följande stokastiska variabler är diskreta eller kontinuerliga: a. X = En slumpmässigt utvald person ur populationen är arbetslös, där x antar
ÖVNINGSUPPGIFTER KAPITEL 9
ÖVNINGSUPPGIFTER KAPITEL 9 STOKASTISKA VARIABLER 1. Ange om följande stokastiska variabler är diskreta eller kontinuerliga: a. X = En slumpmässigt utvald person ur populationen är arbetslös, där x antar
ÖVNINGSUPPGIFTER KAPITEL 4
ÖVNINGSUPPGIFTER KAPITEL 4 REGRESSIONSLINJEN: NIVÅ OCH LUTNING 1. En av regressionslinjerna nedan beskrivs av ekvationen y = 20 + 2x; en annan av ekvationen y = 80 x; en tredje av ekvationen y = 20 + 3x
ÖVNINGSUPPGIFTER KAPITEL 8
ÖVNINGSUPPGIFTER KAPITEL 8 SAMPEL KONTRA POPULATION 1. Nedan beskrivs fyra frågeställningar. Ange om populationen är ändlig eller oändlig i respektive fall. Om ändlig, beskriv också vem eller vad som ingår
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen
Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande
Kapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA
Kapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA 12.1 ANOVA I EN MULTIPEL REGRESSION Exempel: Tjänar man mer som egenföretagare? Nedan visas ett utdrag ur ett dataset som innehåller information
Föreläsning 4. Kapitel 5, sid Stickprovsteori
Föreläsning 4 Kapitel 5, sid 127-152 Stickprovsteori 2 Agenda Stickprovsteori Väntevärdesriktiga skattningar Samplingfördelningar Stora talens lag, Centrala gränsvärdessatsen 3 Statistisk inferens Population:
Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING
Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING När vi gör en regressionsanalys så bygger denna på vissa antaganden: Vi antar att vi dragit ett slumpmässigt sampel från en population
Föreläsning G60 Statistiska metoder
Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala
F9 SAMPLINGFÖRDELNINGAR (NCT
Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion
ATT KONTROLLERA FÖR BAKOMLIGGANDE FAKTORER
ATT KONTROLLERA FÖR BAKOMLIGGANDE FAKTORER 1. Regressionen nedan visar hur kvinnors arbetsmarknadsdeltagande varierar beroende på om de har småbarn eller inte. Datamaterialet gäller 753 amerikanska kvinnor
ÖVNINGSUPPGIFTER KAPITEL 6
ÖVNINGSUPPGIFTER KAPITEL 6 ATT KONTROLLERA FÖR BAKOMLIGGANDE FAKTORER 1. Regressionen nedan visar hur kvinnors arbetsmarknadsdeltagande varierar beroende på om de har småbarn eller inte. Datamaterialet
ÖVNINGSUPPGIFTER KAPITEL 6
ÖVNINGSUPPGIFTER KAPITEL 6 ATT KONTROLLERA FÖR BAKOMLIGGANDE FAKTORER 1. Regressionen nedan visar hur kvinnors arbetsmarknadsdeltagande varierar beroende på om de har småbarn eller inte. Datamaterialet
ÖVNINGSUPPGIFTER KAPITEL 7
ÖVNINGSUPPGIFTER KAPITEL 7 TIDSSERIEDIAGRAM OCH UTJÄMNING 1. En omdebatterad utveckling under 90-talet gäller den snabba ökningen i VDlöner. Tabellen nedan visar genomsnittlig kompensation för direktörer
ATT KONTROLLERA FÖR BAKOMLIGGANDE FAKTORER
ATT KONTROLLERA FÖR BAKOMLIGGANDE FAKTORER 1. Regressionen nedan visar hur kvinnors arbetsmarknadsdeltagande varierar beroende på om de har småbarn eller inte. Datamaterialet gäller 753 amerikanska kvinnor
Föreläsning 5. Kapitel 6, sid Inferens om en population
Föreläsning 5 Kapitel 6, sid 153-185 Inferens om en population 2 Agenda Statistisk inferens om populationsmedelvärde Statistisk inferens om populationsandel Punktskattning Konfidensintervall Hypotesprövning
F9 Konfidensintervall
1/16 F9 Konfidensintervall Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 18/2 2013 2/16 Kursinformation och repetition Första inlämningsuppgiften rättas nu i veckan. För att
Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00
Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, tabellsamling (dessa skall returneras). Miniräknare. Ansvarig lärare: Jari Appelgren,
Uppgift a b c d e Vet inte Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TENTAMEN: Dataanalys och statistik för I, TMS136 Onsdagen den 5 oktober kl. 8.30-13.30 på M. Jour: Jenny Andersson, ankn 5317 Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på kursen använd ordlista
ÖVNINGSUPPGIFTER KAPITEL 9
ÖVNINGSUPPGIFTER KAPITEL 9 STOKASTISKA VARIABLER 1. Ange om följande stokastiska variabler är diskreta eller kontinuerliga: a. X = En slumpmässigt utvald person ur populationen är arbetslös, där x antar
Samplingfördelningar 1
Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi
ÖVNINGSUPPGIFTER KAPITEL 12
ÖVNINGSUPPGIFTER KAPITEL 12 ANOVA I EN MULTIPEL REGRESSION 1. I en amerikansk studie samlade man in data för 601 gifta personer, och mätte hur många utomäktenskapliga affärer de haft under det senaste
Tentamen i Statistik, STA A13 Deltentamen 2, 5p 4 mars 2006, kl. 09.00-13.00
Karlstads universitet Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 mars 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel- och tabellsamling (skall returneras) samt
DATORÖVNING 2: STATISTISK INFERENS.
DATORÖVNING 2: STATISTISK INFERENS. START Logga in och starta Minitab. Se till att du kan skriva Minitab-kommandon direkt i Session-fönstret (se föregående datorövning). CENTRALA GRÄNSVÄRDESSATSEN Enligt
Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig
FÖRELÄSNING 7:
FÖRELÄSNING 7: 2016-05-10 LÄRANDEMÅL Normalfördelningen Standardnormalfördelning Centrala gränsvärdessatsen Konfidensintervall Konfidensnivå Konfidensintervall för väntevärdet då variansen är känd Samla
Uppgift a b c d e Vet inte Poäng
TENTAMEN: Dataanalys och statistik för I2, TMS135 Fredagen den 12 mars kl. 8:45-11:45 på V. Jour: Jenny Andersson, ankn 8294 (mobil:070 3597858) Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på
ÖVNINGSUPPGIFTER KAPITEL 3
ÖVNINGSUPPGIFTER KAPITEL 3 SAMBAND 1. Nedan ges beskrivningar av tre olika datamaterial. a. I kyrkbänkarna har snittåldern stigit betänkligt under de senaste decennierna, men är unga människor verkligen
Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen
Sannolikhetslära och inferens II Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen 1 Statistikor och samplingfördelningar I Kapitel 6 studerades metoder för att bestämma sannolikhetsfördelningen
Statistisk försöksplanering
Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 2 November Tid: 09:00-13 Hjälpmedel: Miniräknare
HYPOTESPRÖVNING sysselsättning
0 självmord 20 40 60 HYPOTESPRÖVNING 4. Se spridningsdiagrammen nedan (A, B och C). Alla tre samband har samma korrelation och samma regressionslinje (r = 0,10, b = 0,15). Vi vill testa om sambandet mellan
Kapitel 22: KLUSTRADE SAMPEL OCH PANELDATA
Kapitel 22: KLUSTRADE SAMPEL OCH PANELDATA Statistiska tester bygger alltid på vissa antaganden. Är feltermen homoskedastisk? Är den normalfördelad? Dessa antaganden är faktiskt aldrig uppfyllda i praktiken,
Urvalsmetoder: Sannolikhetsurval resp. icke-sannolikhetsurval, OSU (kap )
F3 Urvalsmetoder: Sannolikhetsurval resp. icke-sannolikhetsurval, OSU (kap 9.1-9.4) Urval Anta att vi ska göra en urvalsunderökning och samla in primärdata Totalundersökning ofta inte möjlig För dyrt Tar
ÖVNINGSUPPGIFTER KAPITEL 13
ÖVNINGSUPPGIFTER KAPITEL 13 KORSTABELLER 1. Nedan visas tre korstabeller utifrån tre olika dataset (A, B och C). Korstabellerna beskriver sambandet mellan kön och vilken hand man skriver med (vänster,
0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.
Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling
ÖVNINGSUPPGIFTER KAPITEL 2
ÖVNINGSUPPGIFTER KAPITEL 2 DATAMATRISEN 1. Datamatrisen nedan visar ett utdrag av ett datamaterial för USA:s 50 stater. Stat Befolkningsmängd Inkomst Marijuana Procent män (miljoner) per person lagligt?
Tentamen på. Statistik och kvantitativa undersökningar STA100, 15 HP. Ten1 9 HP. 19 e augusti 2015
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA100, 15 HP Ten1 9 HP 19 e augusti 2015 Tillåtna hjälpmedel: Miniräknare
ÖVNINGSUPPGIFTER KAPITEL 2
ÖVNINGSUPPGIFTER KAPITEL 2 DATAMATRISEN 1. Datamatrisen nedan visar ett utdrag av ett datamaterial för USA:s 50 stater. Stat Befolkningsmängd Inkomst Marijuana Procent män (miljoner) per person lagligt?
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15
Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 6 april 004, klockan 08.15-13.15 Tillåtna hjälpmedel: Bifogad
Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 1 Statistik; teori och tillämpning i biologi 1 Kursens uppbyggnad 9 föreläsningar Föreläsningsunderlag läggs ut på kurshemsidan 5 lektioner Uppgifter från kursboken enligt planering 5 laborationer
Vi har en ursprungspopulation/-fördelning med medelvärde µ.
P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har
Urval. Slumpmässiga urval (sannolikhetsurval) Fördelar med slumpmässiga urval
Urval F3 Urvalsmetoder: Sannolikhetsurval resp. icke-sannolikhetsurval, OSU (kap 9.1-9.4) Ursprung: Linda Wänström Anta att vi ska göra en urvalsunderökning och samla in primärdata Totalundersökning ofta
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen
EXAMINATION KVANTITATIV METOD vt-11 (110204)
ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110204) Examinationen består av 11 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt
Problemdel 1: Uppgift 1
STOCKHOLMS UNIVERSITET MT 00 MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik, CH 8 februari 0 LÖSNINGAR 8 februari 0 Problemdel : Uppgift Rätt svar är: a) X och X är oberoende och Y och Y
Föreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 4 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Icke-parametriska test Mann-Whitneys test (kap 8.10 8.11) Wilcoxons test (kap 9.5) o Transformationer (kap 13) o Ev. Andelar
Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 2 Statistik; teori och tillämpning i biologi 1 Normalfördelning Samplingfördelningar och CGS Fördelning för en stickprovsstatistika (t.ex. medelvärde) kallas samplingfördelning. I teorin är
TENTAMEN I STATISTIKENS GRUNDER 2
STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 2 2012-11-20 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:
7,5 högskolepoäng. Statistisk försöksplanering och kvalitetsstyrning. TentamensKod: Tentamensdatum: 28 oktober 2016 Tid: 9.
Statistisk försöksplanering och kvalitetsstyrning Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen 4I2B KINAF4, KINAR4, KINLO4, KMASK4 7,5 högskolepoäng Tentamensdatum: 28 oktober 206 Tid:
Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig (ej fackspråklig) ordbok utan kommentarer. Formelsamling lånas i tentamenslokalen.
Grundläggande statistik med regressionsanalys Ladokkod: TT131A 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-05-28 Tid: 14-18 Hjälpmedel: Miniräknare
Föreläsning 3. Kapitel 4, sid Sannolikhetsfördelningar
Föreläsning 3 Kapitel 4, sid 79-124 Sannolikhetsfördelningar 2 Agenda Slumpvariabel Sannolikhetsfördelning 3 Slumpvariabel (Stokastisk variabel) En variabel som beror av slumpen Ex: Tärningskast, längden
Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal
MSG830 Statistisk analys och experimentplanering
MSG830 Statistisk analys och experimentplanering Tentamen 16 April 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri
, s a. , s b. personer från Alingsås och n b
Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen
Tentamen i matematisk statistik för BI2 den 16 januari 2009
Tentamen i matematisk statistik för BI den 6 januari 9 Uppgift : Ett graviditetstest att använda i hemmet är inte helt tillförlitligt. Ett speciellt test visar positivt resultat för kvinnor, som inte är
Stockholms Universitet Statistiska institutionen Termeh Shafie
Stockholms Universitet Statistiska institutionen Termeh Shafie TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2011-10-28 Skrivtid: 9.00-14.00 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade
Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.
Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för
Kapitel 15: INTERAKTIONER, STANDARDISERADE SKALOR OCH ICKE-LINJÄRA EFFEKTER
Kapitel 15: INTERAKTIONER, STANDARDISERADE SKALOR OCH ICKE-LINJÄRA EFFEKTER När vi mäter en effekt i data så vill vi ofta se om denna skiljer sig mellan olika delgrupper. Vi kanske testar effekten av ett
0 om x < 0, F X (x) = c x. 1 om x 2.
Avd. Matematisk statistik TENTAMEN I SF193 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH MÅNDAGEN DEN 16 AUGUSTI 1 KL 8. 13.. Examinator: Gunnar Englund, tel. 7974 16. Tillåtna hjälpmedel: Läroboken.
Läs noggrant informationen nedan innan du börjar skriva tentamen
Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0004M Totala antalet uppgifter: Totala antalet poäng Lärare: 5 25 Mykola Shykula, Inge Söderkvist, Eva Lövf Tentamensdatum 2016-03-21 Skrivtid 09.00-14.00
Stockholms Universitet Statistiska institutionen Termeh Shafie
Stockholms Universitet Statistiska institutionen Termeh Shafie TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2012-03-16 Skrivtid: 9.00-14.00 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:
Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar
Föreläsning 6 (kap 6.1, 6.3, 7.1-7.3): Punktskattningar Marina Axelson-Fisk 4 maj, 2016 Stickprov (sample) Idag: Stickprovsmedelvärde och varians Statistika (statistic) Punktskattning (point estimation)
TMS136. Föreläsning 13
TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra
SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt
FÖRELÄSNING 8:
FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data
8. NÅGRA SPECIELLA KONTINUERLIGA SANNOLIKHETSFÖRDELNINGAR
8. NÅGRA SPECIELLA KONTINUERLIGA SANNOLIKHETSFÖRDELNINGAR 8.1 Normalfördelningen Den kanske viktigaste och mest kända sannolikhetsfördelning är den s k normalfördelningen. Den har en mycket stor betydelse
Föreläsningsanteckningar till kapitel 8, del 2
Föreläsningsanteckningar till kapitel 8, del 2 Kasper K. S. Andersen 4 oktober 208 Jämförelse av två väntevärden Ofte vil man jämföra två eller fler) produkter, behandlingar, processer etc. med varandra.
Föreläsning 3. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 3 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Inferens om två populationer (kap 8.1 8.) o Parvisa observationer (kap 9.1 9.) o p-värde (kap 6.3) o Feltyper, styrka, stickprovsstorlek
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska
TENTAMEN I STATISTIKENS GRUNDER
STOCKHOLMS UNIVERSITET Statistiska institutionen Ellinor Fackle-Fornius TENTAMEN I STATISTIKENS GRUNDER 2 2009-10-29 Skrivtid: 15.00-20.00 Godkända hjälpmedel: Miniräknare, språklexikon Tentamen består
(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs.
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 31:E MAJ 2012 KL 08.00 13.00. Examinator: Tobias Rydén, tel 790 8469. Kursledare: Tatjana Pavlenko, tel 790 8466.
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 16 januari 2004, kl
Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A0 och STA A3 (9 poäng) 6 januari 004, kl. 4.00-9.00 Tillåtna hjälpmedel: Bifogade formel-
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 ( uppgifter) Tentamensdatum 2018-08-28 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Niklas Grip Jourhavande
Statistisk försöksplanering
Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 25 Oktober 2017 Tid: 09:00-13 Hjälpmedel: Miniräknare
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (11 uppgifter) Tentamensdatum 2016-10-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson och
Föreläsning 6. Kapitel 7, sid Jämförelse av två populationer
Föreläsning 6 Kapitel 7, sid 186-209 Jämförelse av två populationer 2 Agenda Jämförelse av medelvärden för två populationer Jämförelse av populationsandelar för två populationer Konfidensintervall och
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-08-22 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Jourhavande lärare: Mykola
F3 Introduktion Stickprov
Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever
Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl
Karlstads Universitet Avdelningen för Nationalekonomi och Statistik Tentamen i Statistik, STG A0 och STG A06 (3,5 hp) Torsdag 5 juni 008, Kl 4.00-9.00 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-03-22 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson, Niklas
Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken
Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen
Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle
Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Lärare: Mikael Elenius, 2006-08-25, kl:9-14 Betygsgränser: 65 poäng Väl Godkänt, 50 poäng
LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400
LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 Tentamen i: Statistik A1, 15 hp Antal uppgifter: 6 Krav för G: 13 Lärare:
TENTA:t\IEN I STATISTISK TEORJ NIED TILLÄNIPNINGAR Il
.. STOCKHOLMS UNVERSTET Statistiska institutionen J cssica Franzcn TENTA:t\EN STATSTSK TEORJ NED TLLÄNPNNGAR l 2018-11-26 Skrivtid: 12.00-17.00 Godkända hjälpmedel: Miniräknare, språklexikon. Tentamen
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-06-02 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Mikael Stenlund Examinator:
Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University
Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl
Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema
1. En kontinuerlig slumpvariabel X har följande täthetsfunktion (för någon konstant k). f.ö.
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för tekniska fysiker, MSTA6, 4p Peter Anton Per Arnqvist LÖSNINGSFÖRSLAG TILL TENTAMEN 7-- LÖSNINGSFÖRSLAG TILL TENTAMEN
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 004, kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, approimationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
Obligatorisk uppgift, del 1
Obligatorisk uppgift, del 1 Uppgiften består av tre sannolikhetsproblem, som skall lösas med hjälp av miniräknare och tabellsamling. 1. Vid tillverkning av en produkt är felfrekvensen 0,02, dvs sannolikheten
Hypotestestning och repetition
Hypotestestning och repetition Statistisk inferens Vid inferens använder man urvalet för att uttala sig om populationen Centralmått Medelvärde: x= Σx i / n Median Typvärde Spridningsmått Används för att
EXAMINATION KVANTITATIV METOD vt-11 (110319)
ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110319) Examinationen består av 10 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt
Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?
När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns
Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p)
Avd. Matematisk statistik TENTAMEN I SF1901, SF1905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel-
Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT
Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT Regressionsanalys handlar om att estimera hur medelvärdet för en variabel (y) varierar med en eller flera oberoende variabler (x). Exempel: Hur